• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    鲜水河断裂带地震矩亏损的空间分布及2022年泸定M 6.8级地震

    尹力 周本刚 任治坤 罗纲

    尹力, 周本刚, 任治坤, 罗纲, 2024. 鲜水河断裂带地震矩亏损的空间分布及2022年泸定M 6.8级地震. 地球科学, 49(2): 425-436. doi: 10.3799/dqkx.2023.138
    引用本文: 尹力, 周本刚, 任治坤, 罗纲, 2024. 鲜水河断裂带地震矩亏损的空间分布及2022年泸定M 6.8级地震. 地球科学, 49(2): 425-436. doi: 10.3799/dqkx.2023.138
    Yin Li, Zhou Bengang, Ren Zhikun, Luo Gang, 2024. Spatial Distribution of Seismic Moment Deficit in Xianshuihe Fault Zone and the 2022 Luding M 6.8 Earthquake. Earth Science, 49(2): 425-436. doi: 10.3799/dqkx.2023.138
    Citation: Yin Li, Zhou Bengang, Ren Zhikun, Luo Gang, 2024. Spatial Distribution of Seismic Moment Deficit in Xianshuihe Fault Zone and the 2022 Luding M 6.8 Earthquake. Earth Science, 49(2): 425-436. doi: 10.3799/dqkx.2023.138

    鲜水河断裂带地震矩亏损的空间分布及2022年泸定M 6.8级地震

    doi: 10.3799/dqkx.2023.138
    基金项目: 

    国家重点研发计划项目 2022YFC3003501

    中国地震局地质研究所基本科研业务专项 IGCEA2315

    国家自然科学基金青年项目 41904089

    详细信息
      作者简介:

      尹力(1989-),男,副研究员,博士,主要从事断层活动及地震循环的岩石圈变形过程的有限元数值模拟、地震活动特征及危险性分析. ORCID:0000-0003-0850-6930. E-mail:yinli2022@ies.ac.cn

    • 中图分类号: P315

    Spatial Distribution of Seismic Moment Deficit in Xianshuihe Fault Zone and the 2022 Luding M 6.8 Earthquake

    • 摘要: 2022年9月5日泸定M 6.8级地震发生在鲜水河断裂带南端的磨西断裂. 该地震的发震机制以及未来该断裂段是否仍会发生强震是值得关注的科学问题.拟从地震能量积累与释放的角度来解释该地震的发震原因以及鲜水河断裂带未来的发震潜力. 通过对比地震矩积累与释放的时空分布,发现地震大都发生在地震矩亏损的段落,并有填补地震矩亏损的趋势. 此外,鲜水河断裂带至今存在3个显著的地震矩亏损段,均具发生6.5级以上地震的潜力. 1786年康定M 7.6级地震发生之后,经过两百多年时间的积累,足以发生M 6.5级以上地震,而泸定M 6.8级地震仅释放了磨西断裂上部分的地震矩亏损,未来该断裂段仍具有发生强震的可能.

       

    • 图  1  鲜水河断裂带的断层及地震分布图

      Fig.  1.  Distribution of faults and earthquakes on the Xianshuihe fault zone

      图  2  鲜水河断裂带内地震记录的Gutenberg-Richter估计

      由开源代码ZMAP绘制;Wiemer(2001)Mc为最小完备震级,红色方点为各震级的频度,灰色方点为累积的地震频度

      Fig.  2.  The Gutenberg-Richter distribution of seismic events in the Xianshuihe fault zone

      图  3  GPS速度场(相对于稳定的华南块体)

      数据来自Wang and Shen(2020). 红色虚线围限的多边形区域是拟分析的地震带.

      Fig.  3.  GPS velocity field (with respect to the stable south China block)

      图  4  GPS速度和应变率场

      a.GPS站点相对于稳定华南的速度(紫色箭头)和连续速度场(底图色);b. 应变率(应变率张量的第二不变量,底图色)和主应变率(红棒为拉应变率,黑棒为压应变率);红色虚线围限的多边形区域定义了拟分析地震带的范围.

      Fig.  4.  GPS velocity field and strain rate field

      图  5  地震矩积累与释放的对比

      通过大地震(M > 6.0;橙色点)的Kostrv矩求和计算的累积地震矩(红线),红色虚线为考虑M 6.0级以下地震的校正结果. 大地测量方法获得的地震矩积累由灰线(自1500年至今)表示,灰色虚线考虑了发震地壳厚度HWt的不确定性. 绿线显示自1620年至今的地震矩积累

      Fig.  5.  Comparison of moment accumulated and release rates

      图  6  沿鲜水河断裂带地震矩积累与释放的对比

      a. 鲜水河断裂带的断层轨迹(黑色实线)及主要地震事件的时空分布(MW > 6.0),从下到上按时间顺序排列,显示为水平灰色线条,其地震破裂长度取决于震级;红色线条为泸定6.8级地震;b.沿鲜水河断裂带的地震矩积累和释放的对比

      Fig.  6.  Comparison of moment accumulated and release along the Xianshuihe fault zone

      图  7  沿鲜水河断裂带地震矩亏损的空间分布

      a.假设1500年的应变水平为0,颜色区域显示了沿鲜水河断裂带的地震矩亏损的空间分布;灰色虚线为误差范围;b. 沿鲜水河断裂带24 km(MW 6.5)、50(MW 7.0)和94(MW 7.4)的移动空间窗口内累积的地震矩亏损. 灰色虚线为不同震级对应的地震矩;LMW. 空间窗口的长度

      Fig.  7.  Moment deficit along the Xianshuihe fault zone

      图  8  康定-磨西段以1786年为起点的地震矩亏损及地震危险性

      a. 假设1786年的应变水平为0,颜色区域显示了沿鲜水河断裂带的地震矩积累与释放的空间分布;灰色虚线为地震矩积累的误差范围;b. 沿鲜水河断裂带24 km(MW 6.5)、50(MW 7.0)和94 km(MW 7.4)的移动空间窗口内累积的地震矩亏损;灰色虚线为不同震级对应的地震矩;LMW. 空间窗口的长度.

      Fig.  8.  Moment deficit and seismic hazards along the Kangding-Moxi segment from 1786

      表  1  自1500年以来鲜水河断裂带上历史和仪器记录的大地震(M > 6.0)

      Table  1.   Large earthquakes (M > 6.0) of the historic and recorded seismic catalogs on the Xianshuihe fault

      年份 经度(ºE) 纬度(ºN) 断层段 MS MW 破裂长度(1)
      (km)
      M0
      (1018 Nm)
      2022 102.08 29.59 磨西 6.80 6.700 25 12.60
      2014 101.68 30.29 康定 6.30 6.000 30(2) 1.15
      1981 101.15 30.95 道孚 6.90 6.520 45 6.85
      1973 100.52 31.50 炉霍 7.60 7.100 90 46.77
      1967 100.20 31.62 炉霍 6.80 6.350 18 3.71
      1955 101.84 30.03 康定 7.50 7.370 35 127.35
      1923 100.90 31.17 道孚 7.30 7.160 60 61.24
      1919 101.07 31.00 道孚 6.25 6.300 22(3) 2.80
      1904 101.00 31.06 道孚 7.00 6.840 55 20.42
      1893 101.37 30.70 康定 7.00 6.840 70 20.42
      1816 100.75 31.29 道孚 7.50 7.370 60 127.35
      1811 100.15 31.61 炉霍 6.75 6.635 45 10.06
      1793 101.33 30.75 乾宁 6.50 6.450 35 5.31
      1792 101.00 31.06 乾宁 6.75 6.635 45 10.06
      1786 102.04 29.87 康定 7.75 7.635 90 318.05
      1748 101.62 30.33 康定 6.50 6.450 35 5.31
      1747 100.85 31.23 道孚 6.75 6.635 45 10.06
      1725 101.83 30.16 康定 7.00 6.840 50 20.42
      1700 101.79 30.36 康定 6.50 6.450 35 5.31
      注:(1) Wen et al.(2008); (2) 易桂喜等(2015); (3) 震级-破裂长度经验公式估计(Wells and Coppersmith, 1994).
      下载: 导出CSV

      表  2  应变率及地震矩积累速率($ {\dot{\boldsymbol{M}}}^{\boldsymbol{G}} $)的计算

      Table  2.   Calculation of strain rate and moment accumulated rate ($ {\dot{\boldsymbol{M}}}^{\boldsymbol{G}} $)

      区域 面积
      (1010 m2)
      应变率(10-9/a) H
      (103 m)
      μ
      (1010 N/m2)
      $ {\dot{M}}^{G} $
      (1017 Nm/a)
      鲜水河 5.57 $ 39.{3}_{-3.7}^{+5.6} $ 17 ±3 3 $ 22.{4}_{-5.7}^{+7.7} $
      注:H是断层带的深度;μ是断层的剪切模量;计算应变率场时Wt为18,Wt的不确定范围为±6.
      下载: 导出CSV
    • Allen, C. R., Luo, Z. L., Qian, H., et al., 1991. Field Study of a Highly Active Fault Zone: The Xianshuihe Fault of Southwestern China. Geological Society of America Bulletin, 103(9): 1178-1199. https://doi.org/10.1130/0016-7606(1991)103<1178:fsoaha>2.3.co;2 doi: 10.1130/0016-7606(1991)103<1178:fsoaha>2.3.co;2
      Cheng, J., Rong, Y. F., Magistrale, H., et al., 2017. An Mw‐Based Historical Earthquake Catalog for Mainland China. Bulletin of the Seismological Society of America, 107(5): 2490-2500. https://doi.org/10.1785/0120170102
      Chousianitis, K., Ganas, A., Evangelidis, C. P., 2015. Strain and Rotation Rate Patterns of Mainland Greece from Continuous GPS Data and Comparison between Seismic and Geodetic Moment Release. Journal of Geophysical Research: Solid Earth, 120(5): 3909-3931. https://doi.org/10.1002/2014jb011762
      D'Agostino, N., 2014. Complete Seismic Release of Tectonic Strain and Earthquake Recurrence in the Apennines (Italy). Geophysical Research Letters, 41(4): 1155-1162. https://doi.org/10.1002/2014gl059230
      Hanks, T. C., Kanamori, H., 1979. A Moment Magnitude Scale, Journal of Geophysical Research, 84(NB5): 2348-2350. https://doi.org/10.1029/JB084iB05p02348.
      Kostrov, B. V., 1974. Seismic Moment and Energy of Earthquakes, and Seismic Flow of Rock Izv. Acad. Sci. Ussr Phys. Solid Earth, 1: 23-44.
      Li, Y. X., Bürgmann, R., 2021. Partial Coupling and Earthquake Potential along the Xianshuihe Fault, China. Journal of Geophysical Research: Solid Earth, 126(7): 1-5. https://doi.org/10.1029/2020jb021406
      Malservisi, R., Gans, C., Furlong, K. P., 2003. Numerical Modeling of Strike-Slip Creeping Faults and Implications for the Hayward Fault, California. Tectonophysics, 361(1/2): 121-137. https://doi.org/10.1016/s0040-1951(02)00587-5
      Meade, B. J., 2002. Estimates of Seismic Potential in the Marmara Sea Region from Block Models of Secular Deformation Constrained by Global Positioning System Measurements. Bulletin of the Seismological Society of America, 92(1): 208-215. https://doi.org/10.1785/0120000837
      Min, Z., Wu, G., Jiang, Z., et al., 1995. The Catalogue of Chinese Historical Strong Earthquakes (B. C. 2300-A. D. 1911). Seismological Publishing House, Beijing (in Chinese).
      Ojo, A. O., Kao, H., Jiang, Y., et al., 2021. Strain Accumulation and Release Rate in Canada: Implications for Long-Term Crustal Deformation and Earthquake Hazards. Journal of Geophysical Research: Solid Earth, 126(4): 1-16. https://doi.org/10.1029/2020jb020529
      Qiao, X., Zhou, Y., 2021. Geodetic Imaging of Shallow Creep along the Xianshuihe Fault and its Frictional Properties. Earth and Planetary Science Letters, 567(2): 117001. https://doi.org/10.1016/j.epsl.2021.117001
      Reid, H. F., 1910. The California Earthquake of April 18, 1906. Volume Ⅱ. The Mechanics of the Earthquake. Carnegie Institution of Washington, Washington, D. C.
      Shen, Z. K., Lü, J. N., Wang, M., et al., 2005. Contemporary Crustal Deformation around the Southeast Borderland of the Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 110(B11): 5-20. https://doi.org/10.1029/2004jb003421
      Shen, Z. K., Wang, M., Zeng, Y. H., et al., 2015. Optimal Interpolation of Spatially Discretized Geodetic Data. Bulletin of the Seismological Society of America, 105(4): 2117-2127. https://doi.org/10.1785/0120140247
      Sparacino, F., Palano, M., Peláez, J. A., et al., 2020. Geodetic Deformation Versus Seismic Crustal Moment-Rates: Insights from the Ibero-Maghrebian Region. Remote Sensing, 12(6): 952. https://doi.org/10.3390/rs12060952
      Tape, C., Musé, P., Simons, M., et al., 2009. Multiscale Estimation of GPS Velocity Fields. Geophysical Journal International, 179(2): 945-971. https://doi.org/10.1111/j.1365-246x.2009.04337.x
      Tapponnier, P., Xu, Z. Q., Roger, F., et al., 2001. Oblique Stepwise Rise and Growth of the Tibet Plateau. Science, 294(5547): 1671-1677. https://doi.org/10.1126/science.105978
      Wang, S., Wu, G., Shi, Z., 1999. The Catalogue of Recent Earthquakes in China (A. D. 1912-A. D. 1990), China Science and Technology Publishing House, Beijing, China (in Chinese).
      Wang, H., Liu, M., Cao, J. L., et al., 2011. Slip Rates and Seismic Moment Deficits on Major Active Faults in Mainland China. Journal of Geophysical Research, 116(B2): 255-263. https://doi.org/10.1029/2010jb007821
      Wang, H., Liu, M., Shen, X. H., et al., 2010. Balance of Seismic Moment in the Songpan-Ganze Region, Eastern Tibet: Implications for the 2008 Great Wenchuan Earthquake. Tectonophysics, 491(1/2/3/4): 154-164. https://doi.org/10.1016/j.tecto.2009.09.022
      Wang, M., Shen, Z. K., 2020. Present‐Day Crustal Deformation of Continental China Derived from GPS and its Tectonic Implications. Journal of Geophysical Research: Solid Earth, 125(2): 125-139. https://doi.org/10.1029/2019jb018774
      Wang, W., Qiao, X. J., Yang, S. M., et al., 2017. Present-Day Velocity Field and Block Kinematics of Tibetan Plateau from GPS Measurements. Geophysical Journal International, 208(2): 1088-1102. https://doi.org/10.1093/gji/ggw445
      Ward, S. N., 1998. On the Consistency of Earthquake Moment Rates, Geological Fault Data, and Space Geodetic Strain: The United States. Geophysical Journal International, 134(1): 172-186. https://doi.org/10.1046/j.1365-246x.1998.00556.x
      Wells, D. L., Coppersmith, K. J., 1994. New Empirical Relationships among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement. Bulletin of the Seismological Society of America, 84(4): 974-1002. https://doi.org/10.1785/bssa0840040974
      Wen, X. Z., Ma, S. L., Xu, X. W., et al., 2008. Historical Pattern and Behavior of Earthquake Ruptures along the Eastern Boundary of the Sichuan-Yunnan Faulted-Block, Southwestern China. Physics of the Earth and Planetary Interiors, 168(1/2): 16-36. https://doi.org/10.1016/j.pepi.2008.04.013
      Wesson, R. L., 1988. Dynamics of Fault Creep. J. Geophys. Res. , 93(B8): 8929-8951, https://doi. org/https://doi.org/10.1029/JB093iB08p08929.
      Wiemer, S., 2001. A Software Package to Analyze Seismicity: ZMAP. Seismological Research Letters, 72(3): 373-382. https://doi.org/10.1785/gssrl.72.3.373
      Xu, X. W., Wen, X. Z., Zheng, R. Z., et al., 2003. Pattern of Latest Tectonic Motion and its Dynamics for Active Blocks in Sichuan-Yunnan Region, China. Science in China Series D Earth Sciences, 46(S2): 210-226(in Chinese with English abstract). doi: 10.1360/03dz0017
      Yi, G., Long, F., Wen, X., et al., 2015. Seismogenic Structure of the M 6.3 Kangding Earthquake Sequence on 22 Nov. 2014, Southwestern China, Chinese Journal of Geophysics-Chinese Edition, 58(4): 1205-1219 (in Chinese with English abstract).
      Zhang, P. Z., 2013. A Review on Active Tectonics and Deep Crustal Processes of the Western Sichuan Region, Eastern Margin of the Tibetan Plateau. Tectonophysics, 584(B2): 7-22. https://doi.org/10.1016/j.tecto.2012.02.021
      Zhao, G. Q., Meng, G. J., Wu, W. W., et al., 2021. Earthquake Potential Assessment around the Southeastern Tibetan Plateau Based on Seismic and Geodetic Data. Pure and Applied Geophysics, 179(1): 11-44. https://doi.org/10.1007/s00024-021-02917-6
      闵子群, 吴戈, 江在雄, 等, 1995. 中国历史地震目录(公元前23世纪—公元1911年). 北京: 地震出版社.
      汪素云, 吴戈, 时振梁, 等, 1999. 中国近代地震目录(公元1912—1990). 北京: 中国科学技术出版社.
      徐锡伟, 闻学泽, 郑荣章, 等, 2003. 川滇地区活动块体最新构造变动样式及其动力来源. 中国科学(D辑), 46: 210-226.
      易桂喜, 龙锋, 闻学泽, 等, 2015. 2014年11月22日康定M6.3级地震序列发震构造分析. 地球物理学报, 58(4): 1205-1219. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201504010.htm
    • dqkxzx-49-2-425-附图.jpg
    • 加载中
    图(8) / 表(2)
    计量
    • 文章访问数:  312
    • HTML全文浏览量:  268
    • PDF下载量:  66
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-02-11
    • 刊出日期:  2024-02-25

    目录

      /

      返回文章
      返回