Characteristics and Geological Significance of Late Miocene Skarn-Type Tungsten Mineralization in Ramba, Southern Tibet
-
摘要: 然巴岩体位于北喜马拉雅带东段,主要岩石类型为二云母花岗岩,与之接触的斜长角闪岩普遍发生矽卡岩化,并伴随有白钨矿化.为限定成岩成矿年龄和成矿流体性质,采用锆石U-Pb定年、云母Ar-Ar定年、矿物地球化学等分析方法开展研究.含钨石英脉中白云母Ar-Ar年龄(6.3 Ma)与二云母花岗岩锆石U-Pb年龄(7.3 Ma)相当,表明花岗岩的侵位及相关的钨成矿作用均发生于晚中新世,为迄今区域内已知最年轻的稀有金属成矿事件.矽卡岩内石榴子石与辉石矿物对的含铁率比值(3.12~3.74)与白钨矿极低的Mo含量(12.0×10-6~56.8×10-6)显示成矿流体为还原性,与岩浆锆石氧逸度计结果(∆FMQ=-5.78~-2.08)一致.白钨矿稀土元素特征明显继承自花岗岩,指示岩浆出溶的成矿流体与富钙围岩发生反应诱发了白钨矿的沉淀.研究揭示喜马拉雅淡色花岗岩与围岩的接触变质带为稀有金属有利的成矿部位,需给予更多关注.Abstract: The Ramba leucogranite, located in the eastern part of the Northern Himalaya, is mainly composed of two-mica granite. The amphibolite in contact with it is commonly skarnized and accompanied by scheelite mineralization. To qualify the diagenetic and metallogenic ages and the ore-forming fluid characters, an integrated approach involving zircon U-Pb and mica Ar-Ar dating, and mineral geochemistry was carried out. The Ar-Ar age (6.3 Ma) of muscovite from the scheelite-bearing quartz vein yielded is comparable to the zircon U-Pb age (7.3 Ma) of two-mica granite, indicating that the granite emplacement and associated tungsten mineralization both occurred in the Late Miocene, which is the youngest known rare-metal mineralization event in the region. The iron ratios of garnet and pyroxene mineral pairs within the scheelite-bearing skarn (3.12 to 3.74), and the relatively low Mo content (12.0×10-6-56.8×10-6) of scheelite, collectively indicate that the ore-forming fluid is reduced, which is consistent with the magmatic zircon oxygen fugacity calculated results (ΔFMQ=-5.78 to -2.08). The rare-earth element characteristics of scheelite are inherited from the leucogranite granite, further indicating that the W-rich ore-forming fluid was dissolved from the evolved granitic melt and subsequently reacted with the Ca-rich wall rocks to induce the precipitation of scheelite. This study reveals that the contact metamorphic zone between Himalayan leucogranite and surrounding wall rock is a favorable site for rare-metals, and deserves attention in future prospecting.
-
Key words:
- Himalaya leucogranite /
- contact metamorphic zone /
- tungsten mineralization /
- Ramba /
- mineralogy
-
图 1 青藏高原大地构造图(a);喜马拉雅淡色花岗岩位置图(b);然巴穹窿构造简图(b)
a.据潘桂棠等(2004);b.据Zheng et al.(2016);c.据Liu et al.(2014)
Fig. 1. Tectonic of Tibetan Plateau (a); location map of Himalayan leucogranite (b); simplified geologic map of the Ramba dome (c)
图 6 然巴二云母花岗岩锆石稀土元素配分图(a);然巴二云母花岗岩锆石氧逸度计算结果(b)
a.标准化值据Sun and McDonough(1989);b.底图据Loucks et al.(2020). FMQ. Fe2SiO4-Fe3O4-SiO2;NNO-Ni-NiO;HM. Fe2O3-Fe3O4
Fig. 6. Normalized REE pattern of two-mica granite in Ramba (a); calculated oxygen fugacities of zircons from the two-mica granite in Ramba (b)
图 8 然巴矽卡岩中石榴子石、辉石端元组成
Gro.钙铝榴石;And.钙铁榴石;Pry.镁铝榴石;Spe.锰铝榴石;Di.透辉石;Hd.钙铁辉石;Jo.钙锰辉石. 底图据赵一鸣等(1990)
Fig. 8. The end members of garnet and pyroxene in skarn
图 11 然巴矽卡岩中共生的石榴石和辉石含铁率(Kp)比值(a);白钨矿MoO3和WO3比值投点图(b)
a.底图据赵一鸣等(1990);b. 底图来自Sun and Chen(2017)
Fig. 11. Ratio of iron content (Kp) of garnet to pyroxene coexisting in skarn at Ramba (a); point diagram of MoO3 and WO3 ratio of scheelite (b)
图 12 然巴白钨矿球粒陨石标准化稀土元素配分模式图
标准化值据Sun and McDonough(1989);然巴淡色花岗岩全岩数据来源于刘志超(2013)
Fig. 12. Normalized REE pattern of scheelite from Ramba
表 1 LA-ICP-MS锆石U-Pb同位素分析结果
Table 1. Analysis results of LA-ICP-MS zircon U-Pb isotopic dating
品号 Pb(10-6) Th(10-6) U(10-6) Th/U 207Pb/206Pb 207Pb/235U 206Pb/238U 206Pb/238U 比值 1σ 比值 1σ 比值 1σ 年龄
(Ma)1σ RB17-1 1.80 209 1611 0.13 0.052 78 0.007 02 0.006 53 0.000 57 0.001 04 0.000 03 6.7 0.2 RB17-2 3.30 308 2815 0.11 0.049 68 0.003 78 0.007 34 0.000 48 0.001 10 0.000 03 7.1 0.2 RB17-3 3.11 302 2674 0.11 0.047 84 0.004 18 0.006 79 0.000 51 0.001 07 0.000 03 6.9 0.2 RB17-4 3.63 413 3186 0.13 0.047 88 0.004 19 0.006 76 0.000 52 0.001 07 0.000 03 6.9 0.2 RB17-5 4.79 171 4438 0.04 0.047 70 0.004 54 0.006 52 0.000 46 0.001 09 0.000 03 7.0 0.2 RB17-6 2.41 310 1889 0.16 0.046 10 0.004 95 0.006 75 0.000 64 0.001 10 0.000 03 7.1 0.2 RB17-7 1.56 123 1358 0.09 0.050 90 0.005 17 0.007 12 0.000 56 0.001 10 0.000 04 7.1 0.3 RB17-8 4.06 337 3583 0.09 0.048 28 0.003 45 0.007 05 0.000 43 0.001 10 0.000 03 7.1 0.2 RB17-9 8.29 325 7601 0.04 0.046 90 0.002 04 0.007 06 0.000 32 0.001 09 0.000 02 7.1 0.2 RB17-10 3.36 396 2530 0.16 0.048 56 0.003 99 0.007 99 0.000 62 0.001 21 0.000 03 7.8 0.2 RB17-11 3.55 317 2893 0.11 0.051 44 0.004 77 0.007 61 0.000 57 0.001 19 0.000 04 7.7 0.2 RB17-12 1.46 129 1171 0.11 0.049 92 0.005 60 0.007 44 0.000 60 0.001 17 0.000 04 7.5 0.2 RB17-13 0.939 102 733 0.14 0.05648 0.011 75 0.007 51 0.000 77 0.001 20 0.000 06 7.7 0.4 RB17-14 1.16 111 949 0.12 0.060 61 0.006 83 0.008 56 0.000 87 0.001 18 0.000 05 7.6 0.3 RB17-15 16.8 379 13451 0.03 0.048 07 0.001 57 0.008 03 0.000 28 0.00120 0.000 02 7.7 0.1 RB17-16 1.37 118 1077 0.11 0.049 88 0.006 25 0.007 23 0.000 70 0.001 15 0.000 04 7.4 0.2 RB17-17 2.42 237 1913 0.12 0.050 10 0.004 04 0.008 16 0.000 63 0.001 19 0.000 03 7.7 0.2 表 2 然巴岩体锆石微量元素分析结果(10-6)
Table 2. Analysis results of trace elements in zircon
样品 RB17-1 RB17-2 RB17-3 RB17-4 RB17-5 RB17-6 RB17-7 RB17-8 RB17-9 La - 0.01 0.01 0.01 0.01 0.01 - - 0.01 Ce 5.44 4.36 5.80 5.89 1.83 11.93 1.58 4.87 4.63 Pr 0.12 0.17 0.21 0.22 0.13 0.18 0.05 0.11 0.13 Nd 3.33 3.23 2.92 5.03 2.25 3.85 1.06 3.46 3.07 Sm 9.46 10.42 11.08 14.44 7.50 10.56 3.78 11.04 13.41 Eu 0.74 0.75 0.69 0.84 0.65 1.35 0.13 0.60 1.19 Gd 47.1 65.5 64.3 80.1 50.0 56.8 26.4 71.9 90.9 Tb 13.9 20.4 19.9 24.4 18.3 17.4 8.2 23.7 31.6 Dy 126 204 194 230 219 172 82 248 341 Ho 37.5 65.0 61.8 71.7 75.9 55.8 24.5 80.5 115.0 Er 140 256 238 279 325 212 96 309 447 Tm 24.4 48.0 42.7 50.1 62.2 39.2 18.0 58.3 91.5 Yb 199 396 370 403 518 301 143 461 742 Lu 37.1 77.7 68.9 77.1 92.8 56.3 27.8 88.7 133.0 REE 643 1 152 1 080 1 241 1 374 939 432 1 362 2 014 LREE 19.1 18.9 20.7 26.4 12.4 27.9 6.6 20.1 22.4 HREE 624 1 133 1 059 1 215 1361 911 426 1 341 1 992 δEu 0.09 0.07 0.06 0.06 0.08 0.14 0.03 0.05 0.08 LREE/HREE 0.03 0.02 0.02 0.02 0.01 0.03 0.02 0.01 0.01 logfO2 -16.8 -17.7 -17.2 -17.1 -20.8 -15.0 -19.2 -17.6 -18.9 ΔFMQ -3.22 -4.07 -3.47 -3.78 -5.11 -2.37 -4.90 -4.17 -4.50 样品 RB17-10 RB17-11 RB17-12 RB17-13 RB17-14 RB17-15 RB17-16 RB17-17 La 0.03 0.01 - - 0.01 0.02 0.01 0.01 Ce 5.38 13.18 2.27 2.26 4.05 2.06 2.49 4.00 Pr 0.18 0.17 0.06 0.03 0.09 0.07 0.09 0.05 Nd 3.73 2.68 1.97 1.44 1.77 1.79 1.74 2.71 Sm 12.64 9.78 5.54 3.22 4.96 11.21 6.53 9.15 Eu 1.01 1.80 0.46 0.34 0.59 0.43 0.44 0.61 Gd 76.2 69.8 31.2 23.3 26.8 93.3 35.7 58.7 Tb 23.3 24.3 8.8 6.5 8.1 37.2 10.3 18.3 Dy 218 254 91 63 83 392 97 176 Ho 69.2 86.2 30.2 20.5 29.6 119.4 27.1 55.2 Er 278 340 130 80 125 460 98 213 Tm 51.4 61.6 26.2 15.1 24.4 84.6 17.9 40.4 Yb 435 509 233 129 221 663 140 329 Lu 84.8 97.8 50.0 26.2 44.9 110.1 26.3 63.1 REE 1 259 1 471 611 371 574 1 976 463 970 LREE 22.9 27.6 10.3 7.3 11.5 15.6 11.3 16.5 HREE 1 236 1 443 600 363 563 1 960 452 953 δEu 0.08 0.15 0.08 0.09 0.13 0.03 0.07 0.06 LREE/HREE 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.02 logfO2 -17.5 -15.9 -18.6 -18.4 -17.6 -21.7 -18.4 -17.7 ΔFMQ -3.42 -2.08 -4.10 -3.54 -2.76 -5.78 -3.83 -3.73 表 3 然巴地区石英脉中白云母40Ar/39Ar同位素年龄分析结果
Table 3. 40Ar/39Ar isotopic ages of muscovite in quartz vein from Ramba
T(℃) 40Ar/39Ar 1σ 37Ar/39Ar 1σ 36Ar/39Ar 1σ 40Ar(%) 39Ar(%) Age(Ma) ±2σ(Ma) 680 51.816 1 0.090 4 0 0.035 9 0.172 1 0.001 2 1.86 0.57 9.6 7.1 740 64.975 1 0.110 8 0 0.031 2 0.217 7 0.001 5 1.01 1.12 6.6 8.6 780 8.787 8 0.014 4 0.016 0 0.011 5 0.027 8 0.000 3 6.61 1.85 5.8 1.5 870 6.287 5 0.010 1 0 0.005 2 0.018 4 0.000 2 13.71 3.47 8.6 1.0 910 2.382 8 0.003 8 0 0.001 0 0.005 9 0 27.26 15.37 8.5 0.2 940 1.398 4 0.002 4 0 0.000 7 0.002 6 0 45.83 31.53 6.4 0.1 970 1.104 8 0.001 8 0 0.001 4 0.001 6 0 56.23 13.57 6.2 0.1 1 000 1.346 4 0.002 2 0 0.002 4 0.002 5 0 45.57 8.62 6.2 0.3 1 040 1.686 1 0.002 7 0 0.004 6 0.003 5 0.000 1 38.03 5.15 5.4 0.4 1 090 1.696 5 0.002 7 0 0.002 2 0.003 6 0.000 1 36.39 5.61 6.2 0.4 1 190 1.217 9 0.002 0 0.000 4 0.002 2 0.002 0 0 50.17 12.17 6.1 0.2 1 300 5.189 0 0.008 7 0 0.024 7 0.015 4 0.000 5 12.21 0.96 6.3 2.8 表 4 然巴石榴子石、辉石电子探针分析结果(%)
Table 4. Results of EPAM analysis of garnet and pyroxene from Ramba
样品 Grt-1 Grt-2 Grt-3 Grt-4 Grt-5 样品 Px-1 Px-2 Px-3 Px-4 Px-5 SiO2 38.82 38.11 38.10 38.09 37.99 SiO2 50.40 50.12 49.71 49.95 49.53 TiO2 0.16 0.37 0.33 0.35 0.34 TiO2 0 0.04 0.04 0 0.05 Al2O3 20.62 20.40 20.17 20.37 20.37 Al2O3 0.33 0.31 0.62 0.19 0.66 Cr2O3 0.06 0.07 0.02 0 0 Cr2O3 0.04 0.02 0.01 0.06 0.04 TFeO 5.61 6.13 6.05 5.93 6.57 TFeO 17.29 16.80 18.19 18.71 18.91 MnO 0.39 0.28 0.25 0.26 0.35 MnO 0.19 0.16 0.39 0.36 0.34 MgO 0.06 0.10 0.10 0.13 0.08 MgO 6.76 7.16 6.09 5.81 5.50 CaO 34.08 33.60 33.77 34.09 33.37 CaO 23.85 24.07 23.71 23.49 23.59 Na2O 0 0 0.01 0 0 Na2O 0.07 0.08 0.13 0.11 0.13 K2O 0 0 0.01 0 0.01 K2O 0.01 0 0 0.01 0 SrO 0.11 0.10 0.14 0.09 0.11 SrO 0.17 0.14 0.13 0.19 0.15 NiO 0 0 0.03 0.02 0.02 NiO 0.04 0.01 0.05 0.00 0.04 总量 99.90 99.15 98.96 99.32 99.19 总量 99.14 98.91 99.06 98.87 98.93 NFe 0.04 0.05 0.05 0.05 0.05 NFe 0.14 0.14 0.15 0.16 0.16 基于12个氧原子计算阳离子数 基于6个氧原子计算阳离子数 Si4+ 2.99 2.96 2.97 2.96 2.96 Si4+ 1.99 1.98 1.98 2.00 1.98 Ti4+ 0.01 0.02 0.02 0.02 0.02 Ti4+ 0 0 0 0 0 Al3+ 1.87 1.87 1.85 1.86 1.87 Al3+ 0.02 0.01 0.03 0.01 0.03 Cr3+ 0 0 0 0 0 Cr3+ 0 0 0 0 0 Fe2+ 0.16 0.16 0.13 0.11 0.16 Fe2+ 0.56 0.52 0.57 0.61 0.61 Fe3+ 0.20 0.23 0.26 0.27 0.26 Fe3+ 0.01 0.03 0.03 0.01 0.02 Mn2+ 0.03 0.02 0.02 0.02 0.02 Mn2+ 0.01 0.01 0.01 0.01 0.01 Mg2+ 0.01 0.01 0.01 0.02 0.01 Mg2+ 0.40 0.42 0.36 0.35 0.33 Ca2+ 2.79 2.78 2.80 2.82 2.77 Ca2+ 1.00 1.02 1.01 1.00 1.00 Na+ 0 0 0 0 0 Na+ 0.01 0.01 0.01 0.01 0.01 K+ 0 0 0 0 0 K+ 0 0 0 0 0 Sr+ 0 0 0.01 0 0 Sr+ 0 0 0 0 0 Ni+ 0 0 0.002 0.001 0.001 Ni+ 0 0 0 0 0 And 0.284 8 0.280 3 0.280 2 0.286 7 0.279 3 Di 0.413 9 0.446 8 0.382 1 0.356 4 0.343 8 Gro 0.706 4 0.711 6 0.711 2 0.705 7 0.711 9 Hd 0.579 4 0.547 6 0.604 0 0.631 0 0.644 1 Pyr+Spe 0.008 8 0.008 1 0.008 6 0.007 6 0.008 8 Jo 0.006 6 0.005 7 0.013 9 0.012 5 0.012 1 表 5 然巴白钨矿微量元素含量(10-6)
Table 5. Contents of trace elements in scheelite of Ranba
样品 白钨矿Ⅰ 白钨矿Ⅱ RB17-19-1 RB17-19-2 RB17-19-3 RB17-19-4 RB17-19-5 RB17-19-6 RB19-16-1 RB19-16-2 RB19-16-3 La 12.4 13.4 11.9 21.1 23.9 22.0 44.9 20.5 38.0 Ce 40.8 59.5 47.1 86.6 81.5 75.0 61.1 33.0 51.7 Pr 9.81 14.00 10.50 19.90 17.80 16.40 4.95 3.16 4.43 Nd 74.5 97.9 73.2 124.0 110.0 112.0 12.8 11.3 13.1 Sm 33.60 40.50 25.00 40.30 34.20 32.60 1.88 2.15 2.29 Eu 8.73 10.60 5.78 8.55 10.10 8.29 2.52 1.33 2.48 Gd 47.70 52.80 32.20 47.70 39.90 39.30 1.32 1.73 1.87 Tb 5.78 6.58 4.63 6.87 5.17 4.56 0.17 0.29 0.33 Dy 26.30 31.10 25.70 37.50 25.70 21.70 1.18 1.74 2.09 Ho 4.57 5.43 5.39 7.48 4.36 3.41 0.21 0.35 0.43 Er 8.05 10.80 11.80 17.80 8.48 6.24 0.58 0.94 1.13 Tm 0.63 0.9 1.08 1.81 0.77 0.48 0.08 0.13 0.23 Yb 2.22 3.64 5.20 8.04 2.80 1.54 0.68 0.99 1.72 Lu 0.24 0.48 0.56 0.92 0.31 0.14 0.08 0.15 0.23 Y 60.80 78.30 73.60 129.00 63.40 46.70 5.57 11.40 13.30 Sr 141 135 169 121 146 107 41.1 76.6 91.9 Mo 140.0 137.0 122.0 120.0 137.0 121.0 55.7 23.5 33.3 Na 8.66 2.92 6.43 0.87 3.06 2.48 2.63 3.41 5.98 Nb 19.40 18.00 13.10 9.44 22.60 11.00 5.66 5.23 10.80 W 587 427 588 605 487 233 494 681 496 083 521 251 487 233 494 681 496 083 ∑REE 275.0 348.0 260.0 428.0 365.0 343.0 132.0 77.7 120.0 δEu 0.67 0.70 0.62 0.60 0.83 0.71 4.65 2.04 3.55 Nb/Ta 177.0 186.0 264.0 90.5 212.0 99.8 60.5 73.9 58.1 样品 白钨矿Ⅱ RB19-16-4 RB19-16-5 RB19-16-6 RB17-5-1 RB17-5-2 RB17-5-3 RB17-5-4 RB17-5-5 RB17-5-6 La 31.0 28.2 30.7 23.8 15.2 15.4 11.2 23.8 12.9 Ce 48.5 46.0 45.9 39.7 34.0 26.7 17.4 41.8 17.6 Pr 4.69 4.59 4.25 3.67 4.15 2.89 1.69 4.43 1.62 Nd 14.50 15.40 12.40 13.00 18.10 12.30 6.18 16.60 5.38 Sm 3.05 3.23 2.23 3.45 5.56 3.80 1.69 4.34 1.39 Eu 1.71 2.02 2.04 3.65 2.46 1.79 1.48 3.59 1.09 Gd 2.17 2.64 1.75 4.25 6.07 4.39 2.15 4.83 1.73 Tb 0.35 0.43 0.30 0.66 1.00 0.65 0.35 0.78 0.25 Dy 2.25 2.72 1.68 4.70 5.14 3.88 2.52 4.67 1.80 Ho 0.45 0.56 0.34 0.91 1.09 0.77 0.52 0.83 0.37 Er 1.13 1.55 0.87 2.65 2.49 2.03 1.55 2.25 1.13 Tm 0.22 0.25 0.12 0.39 0.31 0.26 0.26 0.28 0.16 Yb 1.30 1.96 0.88 2.62 1.77 1.42 1.81 2.39 1.31 Lu 0.17 0.25 0.12 0.38 0.28 0.25 0.34 0.35 0.18 Y 13.00 17.30 8.66 25.70 24.40 16.80 16.60 18.20 8.55 Sr 145.0 70.7 38.7 110.0 145.0 93.8 28.4 30.8 146.0 Mo 34.5 40.1 56.8 22.7 12.0 45.8 29.2 35.3 19.1 Na 2.49 1.46 2.79 6.77 96.1 6.02 5.04 6.05 2.57 Nb 5.23 5.60 5.56 5.52 3.94 3.89 5.74 4.50 4.48 W 521 251 524 023 540 620 549 650 520 036 594 242 574 932 593 810 584 468 ∑REE 111.0 110.0 104.0 104.0 97.6 76.6 49.2 111.0 46.9 δEu 1.93 2.05 3.05 2.91 1.29 1.33 2.37 2.39 2.15 Nb/Ta 52.1 59.9 53.5 64.5 39.3 37.7 45.8 44.7 61.8 表 6 喜马拉雅淡色花岗岩相关的稀有金属成矿年龄汇总
Table 6. Summary of ages for the rare-metal mineralizations related to the Himalayan leucogranites
岩体名称 成矿元素组合 成矿类型 成矿花岗岩岩石类型 成矿年龄 数据来源 夏如 Be-Nb-Ta、
Nb-Ta-W伟晶岩型、
花岗岩型花岗伟晶岩
电气石-石榴子石花岗岩33~34 Ma 谢磊等(2021) 珠峰地区 Li、Be、Nb-Ta 伟晶岩型 伟晶岩 23~25 Ma Liu et al.(2020) 拉隆 Be 伟晶岩型 伟晶岩 23.19 Ma 黄勇等(2019) Be-W-Sn-Nb-Ta 矽卡岩型 白云母花岗岩 23.23 Ma 库曲 Li、Be-Nb-Ta 伟晶岩型 花岗伟晶岩 22 Ma 周起风等(2021) 错那洞 W-Sn-Be 矽卡岩型
锡石石英脉型
锡石硫化物型
伟晶岩型二云母花岗岩、白云母花岗岩 14 Ma Xie et al.(2020) Nb-Ta 伟晶岩型 伟晶岩 17 Ma 错那 Nb-Ta 伟晶岩型 伟晶岩 12.2 Ma 谢磊等(2021) -
Aikman, A. B., Harrison, T. M., Ding, L., 2008. Evidence for Early (> 44 Ma) Himalayan Crustal Thickening, Tethyan Himalaya, Southeastern Tibet. Earth and Planetary Science Letters, 274(1/2): 14-23. https://doi.org/10.1016/j.epsl.2008.06.038 Gao, L. E., Zeng, L. S., Yan, L. L., et al., 2021. Enrichment Mechanisms of Sn-Cs-Tl in the Himalaya Leucogranite. Acta Petrologica Sinica, 37(10): 2923-2943(in Chinese with English abstract). doi: 10.18654/1000-0569/2021.10.01 Ghaderi, M., Palin, J. M., Campbell, I. H., et al., 1999. Rare Earth Element Systematics in Scheelite from Hydrothermal Gold Deposits in the Kalgoorlie-Norseman Region, Western Australia. Economic Geology, 94(3): 423-437. https://doi.org/10.2113/gsecongeo.94.3.423 Guo, L., Zhang, J. J., Zhang, B., 2008. Structures, Kinematics, Thermochronology and Tectonic Evolution of the Ramba Gneiss Dome in the Northern Himalaya. Progress in Natural Science, 18(7): 851-860. https://doi.org/10.1016/j.pnsc.2008.01.016 Hou, Z. Q., Chen, J., Zhai, M. G., 2020. Current Status and Frontiers of Research on Critical Mineral Resources. Chinese Science Bulletin, 65(33): 3651-3652(in Chinese). doi: 10.1360/TB-2020-1417 Huang, Y., Fu, J. G., Li, G. M., et al., 2019. Determination of Lalong Dome in South Tibet and New Discovery of Rare Metal Mineralization. Earth Science, 44(7): 2197-2206(in Chinese with English abstract). Jiang, S. Y., Wang, W., 2022. How does the Strategic Key Metal Produce Super-Rich Integrated Ore? Earth Science, 47(10): 3869-3871(in Chinese with English abstract). Jiang, S. Y., Wang, W., Su, H. M., 2023. Super-Enrichment Mechanisms of Strategic Critical Metal Deposits: Current Understanding and Future Perspectives. Journal of Earth Science, 34(4): 1295-1298. https://doi.org/10.1007/s12583-023-2001-5 Klemme, S., Günther, D., Hametner, K., et al., 2006. The Partitioning of Trace Elements between Ilmenite, Ulvospinel, Armalcolite and Silicate Melts with Implications for the Early Differentiation of the Moon. Chemical Geology, 234(3/4): 251-263. https://doi.org/10.1016/j.chemgeo.2006.05.005 Le Fort, P., Cuney, M., Deniel, C., et al., 1987. Crustal Generation of the Himalayan Leucogranites. Tectonophysics, 134(1/2/3): 39-57. https://doi.org/10.1016/0040-1951(87)90248-4 Li, G. M., Zhang, L. K., Jiao, Y. J., et al., 2017. First Discovery and Implications of Cuonadong Superlarge Be-W-Sn Polymetallic Deposit in Himalayan Metallogenic Belt, Southern Tibet. Mineral Deposits, 36(4): 1003-1008(in Chinese with English abstract). Liu, C., Wang, R. C., Wu, F. Y., et al., 2020. Spodumene Pegmatites from the Pusila Pluton in the Higher Himalaya, South Tibet: Lithium Mineralization in a Highly Fractionated Leucogranite Batholith. Lithos, 358/359: 105421. https://doi.org/10.1016/j.lithos.2020.105421 Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2): 537-571. https://doi.org/10.1093/petrology/egp082 Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004 Liu, Z. C., 2013. Age and Genesis of Himalayan Ranba Pale Granite (Dissertation). University of Chinese Academy of Sciences, Beijing (in Chinese with English abstract). Liu, Z. C., Wu, F. Y., Ji, W. Q., et al., 2014. Petrogenesis of the Ramba Leucogranite in the Tethyan Himalaya and Constraints on the Channel Flow Model. Lithos, 208/209: 118-136. https://doi.org/10.1016/j.lithos.2014.08.022 Loucks, R. R., Fiorentini, M. L., Henríquez, G. J., 2020. New Magmatic Oxybarometer Using Trace Elements in Zircon. Journal of Petrology, 61(3): egaa034. https://doi.org/10.1093/petrology/egaa034 Lu, J. J., Zhang, R. Q., Huang, X. D., et al., 2022. Metallogenic Characteristics of Tungsten, Tin, and Rare Metal Deposits in the Jiangnan Orogenic Belt. South China Geology, 38(3): 359-381(in Chinese with English abstract). Pan, G. T., Ding, J., 2004. Geological Map and Description of Qinghai-Tibet Plateau and Adjacent Areas (1∶1 500 000). Chengdu Cartographic Publishing House, Chengdu (in Chinese). Qin, K. Z., Zhao, J. X., He, C. T., et al., 2021. Discovery of the Qiongjiagang Giant Lithium Pegmatite Deposit in Himalaya, Tibet, China. Acta Petrologica Sinica, 37(11): 3277-3286(in Chinese with English abstract). doi: 10.18654/1000-0569/2021.11.02 Rempel, K. U., Williams-Jones, A. E., Migdisov, A. A., 2009. The Partitioning of Molybdenum(VI) between Aqueous Liquid and Vapour at Temperatures up to 370 ℃. Geochimica et Cosmochimica Acta, 73(11): 3381-3392. https://doi.org/10.1016/j.gca.2009.03.004 Schmidt, C., Romer, R. L., Wohlgemuth-Ueberwasser, C. C., et al., 2020. Partitioning of Sn and W between Granitic Melt and Aqueous Fluid. Ore Geology Reviews, 117: 103263. https://doi.org/10.1016/j.oregeorev.2019.103263 Shannon, R. D., 1976. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallographica Section A, 32(5): 751-767. https://doi.org/10.1107/s0567739476001551 Song, G. X., Qin, K. Z., Li, G. M., et al., 2014. Scheelite Elemental and Isotopic Signatures: Implications for the Genesis of Skarn-Type W-Mo Deposits in the Chizhou Area, Anhui Province, Eastern China. American Mineralogist, 99(2/3): 303-317. https://doi.org/10.2138/am.2014.4431 Su, Q. W., Mao, J. W., Song, S. W., et al., 2020. Trace Element Geochemistry of Scheelites from Yongping Cu-W Deposit in Jiangxi: Implications for Ore Genesis. Mineral Deposits, 39(4): 631-646(in Chinese with English abstract). Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19 Sun, K. K., Chen, B., 2017. Trace Elements and Sr-Nd Isotopes of Scheelite: Implications for the W-Cu-Mo Polymetallic Mineralization of the Shimensi Deposit, South China. American Mineralogist, 102(5): 1114-1128. https://doi.org/10.2138/am-2017-5654 Wang, R. C., Wu, F. Y., Xie, L., et al., 2017. A Preliminary Study of Rare-Metal Mineralization in the Himalayan Leucogranite Belts, South Tibet. Science China: Earth Science, 47(8): 871-880(in Chinese). Wang, S. S., 1983. Dating of the Chinese K-Ar Standard Sample (Fangshan Biotite, ZBH-25) by Using the 40Ar/39Ar Method. Scientia Geologica Sinica, 4: 315-321. Wu, F. Y., Liu, X. C., Liu, Z. C., et al., 2020. Highly Fractionated Himalayan Leucogranites and Associated Rare-Metal Mineralization. Lithos, 352/353: 105319. https://doi.org/10.1016/j.lithos.2019.105319 Wu, F. Y., Liu, Z. C., Liu, X. C., et al., 2015. Himalayan Leucogranite: Petrogenesis and Implications to Orogenesis and Plateau Uplift. Acta Petrologica Sinica, 31(1): 1-36(in Chinese with English abstract). Wu, F. Y., Wang, R. C., Liu, X. C., et al., 2021. New Breakthroughs in the Studies of Himalayan Rare-Metal Mineralization. Acta Petrologica Sinica, 37(11): 3261-3276(in Chinese with English abstract). doi: 10.18654/1000-0569/2021.11.01 Xiao, Y. Y., Chen, S., Niu, Y. L., et al., 2020. Mineral Compositions of Syn-Collisional Granitoids and Their Implications for the Formation of Juvenile Continental Crust and Adakitic Magmatism. Journal of Petrology, 61(3): egaa038. https://doi.org/10.1093/petrology/egaa038 Xie, L., Tao, X. Y., Wang, R. C., et al., 2020. Highly Fractionated Leucogranites in the Eastern Himalayan Cuonadong Dome and Related Magmatic Be-Nb-Ta and Hydrothermal Be-W-Sn Mineralization. Lithos, 354: 105286. https://doi.org/10.1016/j.lithos.2019.105286 Xie, L., Wang, R. C., Tian, E. N., et al., 2021. Oligocene Nb-Ta-W-Mineralization Related to the Xiaru Leucogranite in the Himalayan Orogen. Chinese Science Bulletin, 66(35): 4574-4591(in Chinese). doi: 10.1360/TB-2021-0546 Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1): 211-280. https://doi.org/10.1146/annurev.earth.28.1.211 Zhang, W., Jiang, S. Y., Ouyang, Y. P., et al., 2021. Geochronology and Textural and Compositional Complexity of Apatite from the Mineralization-Related Granites in the World-Class Zhuxi W-Cu Skarn Deposit: A Record of Magma Evolution and W Enrichment in the Magmatic System. Ore Geology Reviews, 128: 103885. https://doi.org/10.1016/j.oregeorev.2020.103885 Zhao, K. D., Jiang, S. Y., 2022. How did the World-Famous South China Tungsten-Tin Metallogenic Province Come into Being? Earth Science, 47(10): 3882-3884(in Chinese). Zhao, Y. M., Lin, W. W., Bi, C. S., 1990. China Skarn Deposit. Geological Publishing House, Beijing (in Chinese). Zheng, Y. C., Hou, Z. Q., Fu, Q., et al., 2016. Mantle Inputs to Himalayan Anatexis: Insights from Petrogenesis of the Miocene Langkazi Leucogranite and Its Dioritic Enclaves. Lithos, 264: 125-140. https://doi.org/10.1016/j.lithos.2016.08.019 Zhou, Q. F., Qin, K. Z., He, C. T., et al., 2021. Li-Be-Nb-Ta Mineralogy of the Kuqu Leucogranite and Pegmatite in the Eastern Himalaya, Tibet, and Its Implication. Acta Petrologica Sinica, 37(11): 3305-3324(in Chinese with English abstract). doi: 10.18654/1000-0569/2021.11.05 高利娥, 曾令森, 严立龙, 等, 2021. 喜马拉雅淡色花岗岩: 关键金属Sn-Cs-Tl的富集机制. 岩石学报, 37(10): 2923-2943. 侯增谦, 陈骏, 翟明国, 2020. 战略性关键矿产研究现状与科学前沿. 科学通报, 65(33): 3651-3652. 黄勇, 付建刚, 李光明, 等, 2019. 藏南拉隆穹窿的厘定及其稀有多金属成矿作用新发现. 地球科学, 44(7): 2197-2206. doi: 10.3799/dqkx.2019.114 蒋少涌, 王微, 2022. 战略性关键金属是如何发生超常富集成矿的?. 地球科学, 47(10): 3869-3871. doi: 10.3799/dqkx.2022.844 李光明, 张林奎, 焦彦杰, 等, 2017. 西藏喜马拉雅成矿带错那洞超大型铍锡钨多金属矿床的发现及意义. 矿床地质, 36(4): 1003-1008. 刘志超, 2013. 喜马拉雅然巴淡色花岗岩时代与成因(博士学位论文). 北京: 中国科学院大学. 陆建军, 章荣清, 黄旭栋, 等, 2022. 江南造山带钨锡稀有金属矿床成矿作用特征. 华南地质, 38(3): 359-381. 潘桂棠, 丁俊, 2004. 青藏高原及邻区地质图及说明书(1∶1 500 000). 成都: 成都地图出版社. 秦克章, 赵俊兴, 何畅通, 等, 2021. 喜马拉雅琼嘉岗超大型伟晶岩型锂矿的发现及意义. 岩石学报, 37(11): 3277-3286. 苏蔷薇, 毛景文, 宋世伟, 等, 2020. 江西永平Cu-W矿床白钨矿地球化学特征及其对矿床成因的指示. 矿床地质, 39(4): 631-646. 王汝成, 吴福元, 谢磊, 等, 2017. 藏南喜马拉雅淡色花岗岩稀有金属成矿作用初步研究. 中国科学: 地球科学, 47(8): 871-880. 吴福元, 刘志超, 刘小驰, 等, 2015. 喜马拉雅淡色花岗岩. 岩石学报, 31(1): 1-36. 吴福元, 王汝成, 刘小驰, 等, 2021. 喜马拉雅稀有金属成矿作用研究的新突破. 岩石学报, 37(11): 3261-3276. 谢磊, 王汝成, 田恩农, 等, 2021. 喜马拉雅夏如渐新世淡色花岗岩铌钽钨成矿作用. 科学通报, 66(35): 4574-4591. 赵葵东, 蒋少涌, 2022. 世界著名的华南钨锡成矿省是如何形成的?. 地球科学, 47(10): 3882-3884. doi: 10.3799/dqkx.2022.849 赵一鸣, 林文蔚, 毕承思, 等, 1990. 中国矽卡岩矿床. 北京: 地质出版社. 周起凤, 秦克章, 何畅通, 等, 2021. 喜马拉雅东段库曲岩体锂、铍和铌钽稀有金属矿物研究及指示意义. 岩石学报, 37(11): 3305-3324. -