Spatial-Temporal Evolution of Geohazard Chain Participated by Glacier and Snow in Zhibai Gully, SE Tibetan Plateau
-
摘要: 冰雪型地质灾害链是藏东南地区重大工程建设中的重要风险源,分析灾害链的演化规律可为重大灾害隐患识别和风险研判提供支撑.以直白沟为对象,通过野外调查、遥感解译和灾害监测,研究了孕灾背景的演化和1950年以来的6次灾害链事件的活动特征.结果表明:直白沟冰雪型地质灾害链是由冰川活动和高位岩崩驱动的,演进模式分为相变驱动物性变化成链和多要素级联效应成链两类,灾害链的活跃程度受地震作用显著控制.孕灾条件中的冰川和冰碛物的时空演化控制了灾害链的活动特征,地震和冰川消退驱动链首灾害由冰川跃动向高位岩体转换,物源增多和冰水相变作用增加了灾害链的演进长度和规模.现状直白沟内的则隆弄冰川退缩严重,由冰川跃动启动灾害链可能性减小,而由地震及冻融循环诱发的高位岩崩启动灾害链的可能性显著增强.Abstract: The glacier and snow-related geohazard chain pose a significant threat to the economic activities in the Southeast Tibetan Plateau. Analyzing the evolution law of disaster can provide support for the risk prevention and mitigation, and also for the early identification of disaster. Based on field survey, remote sensing interpretation, and hazard monitoring, in this paper it aims to analyze the evolution of disaster formation conditions and the activity characteristics of six geohazard chain events since the 1950. The results show that the geohazard chain in Zhibai Gully was driven by glacier activity and rock collapse. The evolution models of geohazard chain are summarized into two types: physical property change chain induced by ice water phase transformation, and geological cascade chain induced by coupling of multi factors. It is found that the disaster activity is significantly controlled by the earthquake, and the disaster characteristics is correlated with the temporal-spatial evolution of the formation conditions. Under the influence of the earthquake and deglacialtion, the initiation of disaster chain is transformed from glacier active to rock collapse. The increasing of soil material sources and the effect of ice water phase transformation both enhance the evolution length and scale of disaster. For the present, the Zelongnong glacier is retreating seriously, decreasing the possibility of a geohazard triggered by a glacier. Corresponding the ice/rock avalanche becomes the key to the geohazard chain.
-
Key words:
- geohazard chain /
- evolution progress /
- glacier surge /
- ice-rock avalanche /
- debris flow /
- environmental geology
-
表 1 直白沟孕灾背景分析数据源统计
Table 1. Statistics of data source of geohazard formation conditions in Zhibai Gully
序号 时间 数据源 影像数据分辨率 数据类型 1 1961年11月4日 Keyhole 约3 m 光学遥感影像 2 1969年12月5日 Keyhole 约3 m 3 1970年12月5日 Keyhole 约30 m 4 1976年3月17日 Keyhole 约30 m 5 1982年12月5日 Keyhole 约0.5 m 6 2003年1月3日 Google earth 0.3 m 7 2013年12月8日 Google earth 0.3 m 8 2014年10月25日 Google earth 0.3 m 9 2017年12月4日 Google earth 0.3 m 10 2016年8月 Planet 3 m 11 2017年10月 Planet 3 m 12 2017年12月 Planet 3 m 13 2019年9月 Planet 3 m 14 2020年10月 Planet 3 m 15 2021年8月 Planet 3 m 16 2022年9月 Planet 3 m 17 2019年 相机、无人机测绘 - 野外调查资料 18 2020年 相机、无人机测绘 - 表 2 直白沟地质灾害链事件统计
Table 2. Statistics of geohazard chain events in Zhibai Gully
事件编号 暴发时间 降水条件 危害情况 数据来源 GC1 1950年8月15日 无降雨 夷平直白村,百余人死亡 张文敬(1985) GC2 1950年8月15日 无降雨 堵塞主河,形成溃决洪水 GC3 1968年(藏历七月) 无降雨 堵塞主河,形成溃决洪水 GC4 2014年 未知 未冲出沟口 遥感解译 GC5 2017年 未知 未冲出沟口 GC6 2020年9月10日 无降雨 冲毁桥梁,挤占主河 野外调查 表 3 直白沟灾害链的时空间分区特征
Table 3. The temporal-spatial zoning characteristics of disaster chain in Zhibai Gully
编号 链首灾害 第1链生区 链中灾害Ⅰ 第2链生区 链中灾害Ⅱ 第3链生区 链末灾害 GC1 冰川跃动 主冰川交汇口 冰岩碎屑流 冲沟中部 - - 泥石流 GC2 冰川跃动 冰舌末端下游沟道 冰岩碎屑流 - - 交汇口 溃决洪水 GC3 冰川跃动 冰舌末端下游沟道 冰岩碎屑流 - - 交汇口 溃决洪水 GC4 冰岩崩 冰崩所在斜坡坡脚 - - - - 碎屑流 GC5 冰岩崩 崩塌下部冰碛平台 - - - - 碎屑流 GC6 冰岩崩 崩塌下部斜坡 碎屑流 南侧支沟沟道 泥石流 交汇口 堵江 -
Al, L. A. E., 2013. Working Group Ⅰ Contribution to the IPCC Fifth Assessment Report Climate Change 2013: The Physical Science Basis Summary for Policymakers. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9781107415324.004 An, B. S., Wang, W. C., Yang, W., et al., 2022. Process, Mechanisms, and Early Warning of Glacier Collapse-Induced River Blocking Disasters in the Yarlung Tsangpo Grand Canyon, Southeastern Tibetan Plateau. Science of the Total Environment, 816: 151652. https://doi.org/10.1016/j.scitotenv.2021.151652 Chen, C., Li, H. Y., Chen, J. K., et al., 2022. Overtopping and Flood Routing Process of Landslide Dams Consisted of Ice-Soil Mixtures: A Preliminary Study. Journal of Hydrology, 604: 127252. https://doi.org/10.1016/j.jhydrol.2021.127252 Chen, C., Zhang, L. M., Xiao, T., et al., 2020. Barrier Lake Bursting and Flood Routing in the Yarlung Tsangpo Grand Canyon in October 2018. Journal of Hydrology, 583: 124603. https://doi.org/10.1016/j.jhydrol.2020.124603 Cui, P., Chen, R., Xiang, L. Z., et al., 2014. Risk Analysis of Mountain Hazards in Tibetan Plateau under Global Warming. Progressus Inquisitiones DE Mutatione Climatis, 10(2): 103-109(in Chinese with English abstract). doi: 10.3969/j.issn.1673-1719.2014.02.004 Cui, P., Dang, C., Cheng, Z. L., et al., 2010. Debris Flows Resulting from Glacial-Lake Outburst Floods in Tibet, China. Physical Geography, 31(6): 508-527. https://doi.org/10.2747/0272-3646.31.6.508 Cui, P., Guo, J., 2021. Evolution Models, Risk Prevention and Control Countermeasures of the Valley Disaster Chain. Advanced Engineering Sciences, 53(3): 5-18(in Chinese with English abstract). Cui, P., Guo, X. J., Jiang, T. H., et al., 2019. Disaster Effect Induced by Asian Water Tower Change and Mitigation Strategies. Bulletin of Chinese Academy of Sciences, 34(11): 1313-1321(in Chinese with English abstract). Cui, S. H., Pei, X. J., Huang, R. Q., 2019. An Initiation Model of DGB Landslide: Non-Coordinated Deformation Inducing Rock Damage in Sliding Zone during Strong Seismic Shaking. Chinese Journal of Rock Mechanics and Engineering, 38(2): 237-253(in Chinese with English abstract). Delaney, K. B., Evans, S. G., 2015. The 2000 Yigong Landslide (Tibetan Plateau), Rockslide-Dammed Lake and Outburst Flood: Review, Remote Sensing Analysis, and Process Modelling. Geomorphology, 246: 377-393. https://doi.org/10.1016/j.geomorph.2015.06.020 Dong, H. W., Xu, Z. Q., Cao, H., et al., 2018. Comparison of Eastern and Western Boundary Faults of Eastern Himalayan Syntaxis, and Its Tectonic Evolution. Earth Science, 43(4): 933-951(in Chinese with English abstract). Fan, X. M., Xu, Q., Scaringi, G., et al., 2017. Failure Mechanism and Kinematics of the Deadly June 24th 2017 Xinmo Landslide, Maoxian, Sichuan, China. Landslides, 14(6): 2129-2146. https://doi.org/10.1007/s10346-017-0907-7 Feng, W. K., Hu, Y. P., Xie, J. Z., et al., 2016. Disaster Mechanism and Stability Analysis of Shattered Bedding Slopes Triggered by Rainfall—A Case Study of Sanxicun Landslide. Chinese Journal of Rock Mechanics and Engineering, 35(11): 2197-2207(in Chinese with English abstract). Feng, Y. T., Xiao, S. X., Hou, X. L., et al., 2006. Study on Slope Stability Based on Rockfall Impetus Actions. Chinese Journal of Rock Mechanics and Engineering, 25(S1): 2682-2686(in Chinese with English abstract). Hu, K. H., Zhang, X. P., You, Y., et al., 2019. Landslides and Dammed Lakes Triggered by the 2017 Ms6.9 Milin Earthquake in the Tsangpo Gorge. Landslides, 16(5): 993-1001. https://doi.org/10.1007/s10346-019-01168-w Li, B., Gao, Y., Wan, J. W., et al., 2020. The Chain of the Major Geological Disasters and Related Strategies in the Yalu-Zangbu River Canyon Region. Hydropower and Pumped Storage, 6(2): 11-14, 35(in Chinese with English abstract). Li, J., Chu, H. L., Li, B., et al., 2021. Analysis of Development Characteristics of High-Elevation Chain Geological Hazard in Zelongnong, Nyingchi, Tibet Based on High Resolution Image and InSAR Interpretation. The Chinese Journal of Geological Hazard and Control, 32(3): 42-50(in Chinese with English abstract). Li, W. L., Zhao, B., Xu, Q., et al., 2022. More Frequent Glacier-Rock Avalanches in Sedongpu Gully are Blocking the Yarlung Zangbo River in Eastern Tibet. Landslides, 19(3): 589-601. https://doi.org/10.1007/s10346-021-01798-z Liu, J. J., Cheng, Z. L., Li, Y., 2013. Glacier Lake Outburst Floods of the Guangxieco Lake in 1988 in Tibet, China. Natural Hazards and Earth System Sciences Discussions, 1(5): 4605-4634. Liu, W. F., Xiao, S. X., Sui, Y. C., et al., 2006. Analysis of Natural Disaster Chain and Chain-Cutting Disaster Mitigation Mode. Chinese Journal of Rock Mechanics and Engineering, (s1): 2675-2681 (in Chinese with English abstract). Liu, Y. P., Montgomery, D. R., Hallet, B., et al., 2006. Quaternary Glacier Blocking Events at the Entrance of Yarlung Zangbo Great Canyon, Southeast Tibet. Quaternary Sciences, (S1): 52-62 (in Chinese with English abstract). Lu, C. F., Cai, C. X., 2019. Challenges and Countermeasures for Construction Safety during the Sichuan-Tibet Railway Project. Engineering, 5(5): 833-838. https://doi.org/10.1016/j.eng.2019.06.007 Ma, S. Y., Xu, C., Xu, X. W., et al., 2020. Characteristics and Causes of the Landslide on July 23, 2019 in Shuicheng, Guizhou Province, China. Landslides, 17(6): 1441-1452. https://doi.org/10.1007/s10346-020-01374-x Ma, Y. M., Ruan, W. M., Niu, C., et al., 2022. Movement History of the Microcontinents from the Tibetan Plateau Based on Paleomagnetic Results with Sufficient Sampling Units. Journal of Earth Science, 33(5): 1072-1080. https://doi.org/10.1007/s12583-022-1721-2 Qiao, J. P., Huang, D., Yang, Z. J., et al., 2012. Statistical Method on Dynamic Reserve of Debris Flow's Source Materials in Meizoseismal Area of Wenchuan Earthquake Region. The Chinese Journal of Geological Hazard and Control, 23(2): 1-6(in Chinese with English abstract). Shang, Y. J., Yang, Z. F., Li, L. H., et al., 2003. A Super-Large Landslide in Tibet in 2000: Background, Occurrence, Disaster, and Origin. Geomorphology, 54(3-4): 225-243. https://doi.org/10.1016/S0169-555X(02)00358-6 Shen, Y. J., Chen, S. W., Zhang, L., et al., 2022. High-Altitude Initiation, Dynamic Collapse and Phase Transformation of Mountain Snow-Ice Melt Geological Disaster Chain. Journal of Glaciology and Geocryology, 44(2): 643-656(in Chinese with English abstract). Shi, Y. F., Yang, Z. H., Xie, Z. C., et al., 1964. The Glacial Debris Flow in Guxiang, Tibet. Chinese Science Bulletin, 6: 542-544(in Chinese). Shugar, D. H., Jacquemart, M., Shean, D., et al., 2021. A Massive Rock and Ice Avalanche Caused the 2021 Disaster at Chamoli, Indian Himalaya. Science, 373(6552): 300-306. https://doi.org/10.1126/science.abh4455 Tang, M. G., Xu, Q., Deng, W. F., et al., 2022a. Degradation Law of Mechanical Properties of Typical Rock in Sichuan-Tibet Traffic Corridor under Freeze-Thaw and Unloading Conditions. Earth Science, 47(6): 1917-1931(in Chinese with English abstract). Tang, M. G., Wang, L. N., Liu, X. X., et al., 2022b. Distribution and Risk of Ice Avalanche Hazards in Tibetan Plateau. Earth Science, 47(12): 4647-4662(in Chinese with English abstract). Wei, R. Q., Zeng, Q. L., Davies, T., et al., 2018. Geohazard Cascade and Mechanism of Large Debris Flows in Tianmo Gully, SE Tibetan Plateau and Implications to Hazard Monitoring. Engineering Geology, 233: 172-182. https://doi.org/10.1016/j.enggeo.2017.12.013 Wu, G. J., Yao, T. D., Wang, W. C., et al., 2019. Glacial Hazards on Tibetan Plateau and Surrounding Alpines. Bulletin of Chinese Academy of Sciences, 34(11): 1285-1292(in Chinese with English abstract). Wu, K. P., Liu, S. Y., Guo, W. Q., 2020. Glacier Variation and Its Response to Climate Change in the Mount Namjagbarwa from 1980 to 2015. Journal of Glaciology and Geocryology, 42(4): 1115-1125(in Chinese with English abstract). Wu, G. J., Yao, T. D., Wang, W. C., et al., 2019. Glacial Hazards on Tibetan Plateau and Surrounding Alpines. Bulletin of Chinese Academy of Sciences, 34(11): 1285-1292(in Chinese with English abstract). Yang, G. S., Shen, Y. J., Jia, H. L., et al., 2018. Research Progress and Tendency in Characteristics of Multi-Scale Damage Mechanics of Rock under Freezing-Thawing. Chinese Journal of Rock Mechanics and Engineering, 37(3): 545-563(in Chinese with English abstract). Yang, Y. C., Gao, D. Y., Li, B. S., 1987. A Preliminary Study of Water Vapor Channels in the Lower Yarlung Tsangpo River Valley. Science China Earth Science, (8): 97-106 (in Chinese). Yao, T. D., Thompson, L., Yang, W., et al., 2012. Different Glacier Status with Atmospheric Circulations in Tibetan Plateau and Surroundings. Nature Climate Change, 2(9): 663-667. https://doi.org/10.1038/nclimate1580 Yao, T. D., Xue, Y. K., Chen, D. L., et al., 2019. Recent Third Pole's Rapid Warming Accompanies Cryospheric Melt and Water Cycle Intensification and Interactions between Monsoon and Environment: Multidisciplinary Approach with Observations, Modeling, and Analysis. Bulletin of the American Meteorological Society, 100(3): 423-444. https://doi.org/10.1175/bams-d-17-0057.1 Yin, F. L., Han, L. B., Jiang, C. S., et al., 2018. Interaction between the 2017 M6.9 Mainling Earthquake and the 1950 M8.6 Zayu Earthquake and Their Impacts on Surrounding Major Active Faults. Chinese Journal of Geophysics, 61(8): 3185-3197(in Chinese with English abstract). Zhang, W. J., 1983. A Surging Glacier in the Nanjiabawa Peak Area, Himalayas. Journal of Glaciology and Geocryology, 5(4): 75-76(in Chinese with English abstract). Zhang, W. J., 1985. Some Features of the Surge Glacier in the Mt. namjagbarwa. Journal of Mountain Research, 3(4): 234-238(in Chinese with English abstract). Zhang, X. H., Xue, R. Y., Wang, M., et al., 2020. Field Investigation and Analysis on Flood Disasters Due to Baige Landslide Dam Break in Jinsha River. Advanced Engineering Sciences, 52(5): 89-100(in Chinese with English abstract). Zhao, B., Li, W. L., Wang, Y. S., et al., 2019. Landslides Triggered by the Ms 6.9 Nyingchi Earthquake, China (18 November 2017): Analysis of the Spatial Distribution and Occurrence Factors. Landslides, 16(4): 765-776. https://doi.org/10.1007/s10346-019-01146-2 Zhao, C., Fan, X. M., Yang, F., et al., 2020. Movement of Baige Landslide in Jinsha River and Prediction of Potential Unstable Rock Mass. Science Technology and Engineering, 20(10): 3860-3867(in Chinese with English abstract). Zhuang, Y., Yin, Y. P., Xing, A. G., et al., 2020. Combined Numerical Investigation of the Yigong Rock Slide-Debris Avalanche and Subsequent Dam-Break Flood Propagation in Tibet, China. Landslides, 17(9): 2217-2229. https://doi.org/10.1007/s10346-020-01449-9 Zou, Q., Cui, P., Jiang, H., et al., 2020. Analysis of Regional River Blocking by Debris Flows in Response to Climate Change. Science of the Total Environment, 741: 140262. https://doi.org/10.1016/j.scitotenv.2020.140262 崔鹏, 陈容, 向灵芝, 等, 2014. 气候变暖背景下青藏高原山地灾害及其风险分析. 气候变化研究进展, 10(2): 103-109. 崔鹏, 郭剑, 2021. 沟谷灾害链演化模式与风险防控对策. 工程科学与技术, 53(3): 5-18. 崔鹏, 郭晓军, 姜天海, 等, 2019. "亚洲水塔"变化的灾害效应与减灾对策. 中国科学院院刊, 34(11): 1313-1321. 崔圣华, 裴向军, 黄润秋, 2019. 大光包滑坡启动机制: 强震过程滑带非协调变形与岩体动力致损. 岩石力学与工程学报, 38(2): 237-253. 董汉文, 许志琴, 曹汇, 等, 2018. 东喜马拉雅构造结东、西边界断裂对比及其构造演化过程. 地球科学, 43(4): 933-951. doi: 10.3799/dqkx.2018.701 冯文凯, 胡云鹏, 谢吉尊, 等, 2016. 顺层震裂斜坡降雨触发灾变机制及稳定性分析: 以三溪村滑坡为例. 岩石力学与工程学报, 35(11): 2197-2207. 冯玉涛, 肖盛燮, 侯晓丽, 等, 2006. 基于岩崩动力作用下的斜坡稳定性研究. 岩石力学与工程学报, 25(增刊1): 2682-2686. 李滨, 高杨, 万佳威, 等, 2020. 雅鲁藏布江大峡谷地区特大地质灾害链发育现状及对策. 水电与抽水蓄能, 6(2): 11-14, 35. 李军, 褚宏亮, 李滨, 等, 2021. 基于高分影像与InSAR解译的西藏林芝则隆弄高位链式地质灾害发育特征分析. 中国地质灾害与防治学报, 32(3): 42-50. 刘文方, 肖盛燮, 隋严春, 等, 2006. 自然灾害链及其断链减灾模式分析. 岩石力学与工程学报, (s1): 2675-2681. 刘宇平, D. R. Montgomery, B. Hallet, 等, 2006. 西藏东南雅鲁藏布大峡谷入口处第四纪多次冰川阻江事件. 第四纪研究, (s1): 52-62. 乔建平, 黄栋, 杨宗佶, 等, 2012. 汶川地震极震区泥石流物源动储量统计方法讨论. 中国地质灾害与防治学报, 23(2): 1-6. 申艳军, 陈思维, 张蕾, 等, 2022. 冰雪型地质灾害链高位萌生、动力溃散及物相转化过程剖析. 冰川冻土, 44(2): 643-656. 汤明高, 许强, 邓文锋, 等, 2022a. 冻融及加卸荷条件下川藏交通廊道典型岩石力学特性的劣化规律. 地球科学, 47(6): 1917-1931. doi: 10.3799/dqkx.2021.260 汤明高, 王李娜, 刘昕昕, 等, 2022b. 青藏高原冰崩隐患发育分布规律及危险性. 地球科学, 47(12): 4647-4662. doi: 10.3799/dqkx.2021.074 邬光剑, 姚檀栋, 王伟财, 等, 2019. 青藏高原及周边地区的冰川灾害. 中国科学院院刊, 34(11): 1285-1292. 吴坤鹏, 刘时银, 郭万钦, 2020.1980—2015年南迦巴瓦峰地区冰川变化及其对气候变化的响应. 冰川冻土, 42(4): 1115-1125. 杨更社, 申艳军, 贾海梁, 等, 2018. 冻融环境下岩体损伤力学特性多尺度研究及进展. 岩石力学与工程学报, 37(3): 545-563. 杨逸畴, 高登义, 李渤生, 1987. 雅鲁藏布江下游河谷水汽通道初探. 中国科学: 地球科学, (8): 97-106. 尹凤玲, 韩立波, 蒋长胜, 等, 2018.2017年米林6.9级地震与1950年察隅8.6级地震的关系及两次地震对周边活动断层的影响. 地球物理学报, 61(8): 3185-3197. 张文敬, 1983. 南迦巴瓦峰的跃动冰川. 冰川冻土, 5(4): 75-76. 张文敬, 1985. 南迦巴瓦峰跃动冰川的某些特征. 山地研究, 3(4): 234-238. 张新华, 薛睿瑛, 王明, 等, 2020. 金沙江白格滑坡堰塞坝溃决洪水灾害调查与致灾浅析. 工程科学与技术, 52(5): 89-100. 赵程, 范宣梅, 杨帆, 等, 2020. 金沙江白格滑坡运动过程分析及潜在不稳定岩体预测. 科学技术与工程, 20(10): 3860-3867. -