• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    华南寒武纪早期海水氧化还原状态对动物演化的影响

    金承胜 崔豪 程猛 张子虎 常华进 张弢 曹正琦

    金承胜, 崔豪, 程猛, 张子虎, 常华进, 张弢, 曹正琦, 2024. 华南寒武纪早期海水氧化还原状态对动物演化的影响. 地球科学, 49(10): 3674-3684. doi: 10.3799/dqkx.2023.142
    引用本文: 金承胜, 崔豪, 程猛, 张子虎, 常华进, 张弢, 曹正琦, 2024. 华南寒武纪早期海水氧化还原状态对动物演化的影响. 地球科学, 49(10): 3674-3684. doi: 10.3799/dqkx.2023.142
    Jin Chengsheng, Cui Hao, Cheng Meng, Zhang Zihu, Chang Huajin, Zhang Tao, Cao Zhengqi, 2024. Impact of Marine Redox Conditions on Animal Evolution in Early Cambrian Nanhua Basin, South China. Earth Science, 49(10): 3674-3684. doi: 10.3799/dqkx.2023.142
    Citation: Jin Chengsheng, Cui Hao, Cheng Meng, Zhang Zihu, Chang Huajin, Zhang Tao, Cao Zhengqi, 2024. Impact of Marine Redox Conditions on Animal Evolution in Early Cambrian Nanhua Basin, South China. Earth Science, 49(10): 3674-3684. doi: 10.3799/dqkx.2023.142

    华南寒武纪早期海水氧化还原状态对动物演化的影响

    doi: 10.3799/dqkx.2023.142
    基金项目: 

    国家自然科学基金项目 41702129

    国家自然科学基金项目 42002027

    云南省应用基础研究面上项目 2019FB143

    湖北文理学院科研启动项目 2059163

    详细信息
      作者简介:

      金承胜(1987-),男,讲师,博士,从事埃迪卡拉纪-寒武纪早期海洋化学及其与动物演化之间关系的研究. ORCID:0000-0002-8553-8103. E-mail:jchengshxsm@163.com

    • 中图分类号: P593

    Impact of Marine Redox Conditions on Animal Evolution in Early Cambrian Nanhua Basin, South China

    • 摘要: 寒武纪早期海洋氧化还原状态的变化经常被用来解释早期动物的辐射和灭绝,但该机制目前并不十分清晰.对华南盆地相渣拉沟剖面开展了总有机碳含量、铁组分、主量元素和微量元素的研究.在此基础之上,将渣拉沟剖面的海水氧化还原状态与华南和西伯利亚其他剖面已发表的研究结果进行了综合对比分析.结果表明,寒武纪第二期至第三期出现了氧化水体的扩张,而寒武纪第四期海洋变得更加缺氧.寒武纪早期海洋氧化还原状态与化石记录之间的对比研究表明,寒武纪第三期海洋氧化程度的增加可能是早期动物辐射的关键因素,而寒武纪第四期海洋缺氧程度的加剧可能是早期动物多样性降低和古杯动物灭绝的直接原因.

       

    • 图  1  全球寒武纪早期古地理分布(a)(Yang et al., 2015);华南寒武纪早期古地理分布(b)(修改自Jiang et al., 2012)

      1. 肖滩;2.金沙;3.中南村;4.南皋;5.渣拉沟

      Fig.  1.  Paleogeographic map globally during the Early Cambrian (a) (Yang et al., 2015), paleogeographic map of the Nanhua basin during the Early Cambrian (b) (Jiang et al., 2012)

      图  2  华南寒武纪早期研究区域的地层对比框架

      数据来源:1.肖滩(Zhu et al.,2001Och et al.,2013);2.金沙(尹恭正,1987Jin et al.,2016);3.中南村(赵元龙等,1999Liu et al.,2020);4.南皋(Yang et al.,2003梅冥相等,2007);5.渣拉沟(梅冥相等,2007杨兴莲等,2010;本文).肖滩剖面石岩头组底部的U-Pb年龄来自附近的梅树村剖面(Compston et al.,2008).肖滩剖面玉案山组与红井哨组之间的界线年龄来自四川乐山剖面旋回地层学的研究结果(Zhang et al.,2022).Ni-Mo层的Re-Os年龄来自Xu et al.(2011).缩写:ED.埃迪卡拉纪;DY.灯影组;ZJQ.朱家箐组;MXS.明心寺组;JMC.九门冲组;BMC.变马冲组;LB.老堡组;AP.Anabarites trisulcantus-Protohertzina unguliformisPP.Paragloborilus sublobosus-Purella squamuloseW.Watsonella crosbyiSP. Sinosachites flabelliformis-Tannuolina zhangwentangiP. Parabadiella huoiH. HupeidiscusHo. Hunanocephalus ovalisOd. Oryctocarella dunyunensis

      Fig.  2.  Stratigraphic correlation of the study sections in the Early Cambrian Nanhua basin

      图  3  渣拉沟剖面铁组分和氧化还原敏感元素分布

      数据来源:空心圆数据(Li et al.,2017);实心圆数据(本文)

      Fig.  3.  Iron speciation and redox-sensitive elements in the Zhalagou Section

      图  4  寒武纪早期海洋氧化还原状态与早期动物演化之间的关系

      a.全球(Na and Kiessling, 2015)和华南动物总数量(Li et al.,2007);b.西伯利亚动物总数量和古杯动物数量(He et al.,2019);c.西伯利亚δ13Ccarb和δ34SCAS数据(He et al.,2019);d.华南海水氧化还原状态.缩写和数据来源:XT.肖滩(Och et al.,2013);JS.金沙(Jin et al.,2016);ZNC.中南村(Liu et al.,2020);ZLG.渣拉沟(本文)

      Fig.  4.  Relationship between ocean redox conditions and evolution of early animals during the Early Cambrian

    • Abanda, P. A., Hannigan, R. E., 2006. Effect of Diagenesis on Trace Element Partitioning in Shales. Chemical Geology, 230(1): 42-59. https://doi.org/10.1016/j.chemgeo.2005.11.011
      Brennan, S. T., Lowenstein, T. K., Horita, J., 2004. Seawater Chemistry and the Advent of Biocalcification. Geology, 32(6): 473. https://doi.org/10.1130/g20251.1
      Cai, C., Xiang, L., Yuan, Y., et al., 2015. Marine C, S and N Biogeochemical Processes in the Redox-Stratified Early Cambrian Yangtze Ocean. Journal of the Geological Society, 172(3): 390-406. https://doi.org/10.1144/jgs2014-054
      Canfield, D. E., Raiswell, R., Westrich, J. T., et al., 1986. The Use of Chromium Reduction in the Analysis of Reduced Inorganic Sulfur in Sediments and Shales. Chemical Geology, 54(1-2): 149-155. https://doi.org/10.1016/0009-2541(86)90078-1
      Chen, D. Z., Zhou, X. Q., Fu, Y., et al., 2015a. New U-Pb Zircon Ages of the Ediacaran-Cambrian Boundary Strata in South China. Terra Nova, 27(1): 62-68. https://doi.org/10.1111/ter.12134
      Chen, X., Ling, H. F., Vance, D., et al., 2015b. Rise to Modern Levels of Ocean Oxygenation Coincided with the Cambrian Radiation of Animals. Nature Communications, 6: 7142. https://doi.org/10.1038/ncomms8142
      Compston, W., Zhang, Z., Cooper, J. A., et al., 2008. Further SHRIMP Geochronology on the Early Cambrian of South China. American Journal of Science, 308(4): 399-420. https://doi.org/10.2475/04.2008.01
      Dickson, A. J., Idiz, E., Porcelli, D., et al., 2022. No Effect of Thermal Maturity on the Mo, U, Cd, and Zn Isotope Compositions of Lower Jurassic Organic-Rich Sediments. Geology, 50(5): 598-602. https://doi.org/10.1130/g49724.1
      Guo, W., Feng, Q. L., Khan, M. Z., 2021. Organic Matter Enrichment Mechanism of Black Shale in Wufeng-Longmaxi Formations: A Case Study from Jiaoye 143-5 Well at Chongqing. Earth Science, 46(2): 572-582(in Chinese with English abstract).
      He, T. C., Zhu, M. Y., Mills, B. J. W., et al., 2019. Possible Links between Extreme Oxygen Perturbations and the Cambrian Radiation of Animals. Nature Geoscience, 12: 468-474. https://doi.org/10.1038/s41561-019-0357-z
      Jiang, G. Q., Wang, X. Q., Shi, X. Y., et al., 2012. The Origin of Decoupled Carbonate and Organic Carbon Isotope Signatures in the Early Cambrian (ca. 542-520 Ma) Yangtze Platform. Earth and Planetary Science Letters, 317/318: 96-110. https://doi.org/10.1016/j.epsl.2011.11.018
      Jin, C. S., Li, C., Algeo, T. J., et al., 2016. A Highly Redox-Heterogeneous Ocean in South China during the Early Cambrian (∼529-514 Ma): Implications for Biota-Environment Co-Evolution. Earth and Planetary Science Letters, 441: 38-51. https://doi.org/10.1016/j.epsl.2016.02.019
      Li, C., Jin, C. S., Planavsky, N. J., et al., 2017. Coupled Oceanic Oxygenation and Metazoan Diversification during the Early-Middle Cambrian? Geology, 45(8): 743-746. https://doi.org/10.1130/g39208.1
      Li, G. X., Steiner, M., Zhu, X. J., et al., 2007. Early Cambrian Metazoan Fossil Record of South China: Generic Diversity and Radiation Patterns. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1-2): 229-249. https://doi.org/10.1016/j.palaeo.2007.03.017
      Li, Q. Q., Lan, B. F., Li, G. Q., et al., 2021. Element Geochemical Characteristics and Their Geological Significance of Wufeng-Longmaxi Formation Shales in North Margin of the Central Guizhou Uplift. Earth Science, 46(9): 3172-3188(in Chinese with English abstract).
      Liu, Y., Magnall, J. M., Gleeson, S. A., et al., 2020. Spatio-Temporal Evolution of Ocean Redox and Nitrogen Cycling in the Early Cambrian Yangtze Ocean. Chemical Geology, 554: 119803. https://doi.org/10.1016/j.chemgeo.2020.119803
      Mei, M. X., Ma, Y. S., Zhang, H., et al., 2007. Sequence-Stratigraphic Frameworks for the Cambrian of the Upper-Yangtze Region: Ponder on the Sequence Stratigraphic Background of the Cambrian Biological Diversity Events. Journal of Stratigraphy, 31(1): 68-78(in Chinese with English abstract).
      Na, L., Kiessling, W., 2015. Diversity Partitioning during the Cambrian Radiation. Proceedings of the National Academy of Sciences of the United States of America, 112(15): 4702-4706. https://doi.org/10.1073/pnas.1424985112
      Och, L. M., Shields-Zhou, G. A., Poulton, S. W., et al., 2013. Redox Changes in Early Cambrian Black Shales at Xiaotan Section, Yunnan Province, South China. Precambrian Research, 225: 166-189. https://doi.org/10.1016/j.precamres.2011.10.005
      Poulton, S. W., Canfield, D. E., 2005. Development of a Sequential Extraction Procedure for Iron: Implications for Iron Partitioning in Continentally Derived Particulates. Chemical Geology, 214(3-4): 209-221. https://doi.org/10.1016/j.chemgeo.2004.09.003
      Raiswell, R., Hardisty, D. S., Lyons, T. W., et al., 2018. The Iron Paleoredox Proxies: A Guide to the Pitfalls, Problems and Proper Practice. American Journal of Science, 318(5): 491-526. https://doi.org/10.2475/05.2018.03
      Sheen, A. I., Kendall, B., Reinhard, C. T., et al., 2018. A Model for the Oceanic Mass Balance of Rhenium and Implications for the Extent of Proterozoic Ocean Anoxia. Geochimica et Cosmochimica Acta, 227: 75-95. https://doi.org/10.1016/j.gca.2018.01.036
      Tribovillard, N., Algeo, T. J., Lyons, T., et al., 2006. Trace Metals as Paleoredox and Paleoproductivity Proxies: An Update. Chemical Geology, 232(1-2): 12-32. https://doi.org/10.1016/j.chemgeo.2006.02.012
      Wang, D., Ling, H. F., Struck, U., et al., 2018. Coupling of Ocean Redox and Animal Evolution during the Ediacaran-Cambrian Transition. Nature Communications, 9: 2575. https://doi.org/10.1038/s41467-018-04980-5
      Wang, H. Z., Wang, D., Wei, G. Y., et al., 2022. Increases in Marine Environmental Heterogeneity during the Early Animal Innovations: Evidence from Nitrogen Isotopes in South China. Precambrian Research, 369: 106501. https://doi.org/10.1016/j.precamres.2021.106501
      Wei, G. Y., Planavsky, N. J., He, T. C., et al., 2021. Global Marine Redox Evolution from the Late Neoproterozoic to the Early Paleozoic Constrained by the Integration of Mo and U Isotope Records. Earth Science Reviews, 214: 103506. https://doi.org/10.1016/j.earscirev.2021.103506
      Xiang, L., Cai, C. F., He, X. Y., et al., 2012. The Mechanisms for the Enrichment of Trace Elements in the Lower Cambrian Black Chert Successions from Zhalagou Section, Guizhou Province. Acta Petrologica Sinica, 28(3): 971-980(in Chinese with English abstract).
      Xiang, L., Schoepfer, S. D., Shen, S. Z., et al., 2017. Evolution of Oceanic Molybdenum and Uranium Reservoir Size around the Ediacaran-Cambrian Transition: Evidence from Western Zhejiang, South China. Earth and Planetary Science Letters, 464: 84-94. https://doi.org/10.1016/j.epsl.2017.02.012
      Xu, L. G., Lehmann, B., Mao, J. W., et al., 2011. Re-Os Age of Polymetallic Ni-Mo-PGE-Au Mineralization in Early Cambrian Black Shales of South China: A Reassessment. Economic Geology, 106(3): 511-522. https://doi.org/10.2113/econgeo.106.3.511
      Yang, A. H., Zhu, M. Y., Zhang, J. M., et al., 2003. Early Cambrian Eodiscoid Trilobites of the Yangtze Platform and Their Stratigraphic Implications. Progress in Natural Science, 13(11): 861-866. https://doi.org/10.1080/10020070312331344560
      Yang, B., Steiner, M., Keupp, H., 2015. Early Cambrian Palaeobiogeography of the Zhenba-Fangxian Block (South China): Independent Terrane or Part of the Yangtze Platform? Gondwana Research, 28(4): 1543-1565. https://doi.org/10.1016/j.gr.2014.09.020
      Yang, X. L., Zhao, Y. L., Zhu, M. Y., et al., 2010. Sponge Spicule Fossils from the Jiumenchong and Zhalagou Formations (Cambrian) of Guizhou. Acta Micropalaeontologica Sinica, 27(3): 243-252(in Chinese with English abstract).
      Yin, G. Z., 1987. Cambrian. In: Bureau of Guizhou Geology and Mineral Resources, Regional Geology of Guizhou Province. Geological Publishing House, Beijing, 49-96 (in Chinese).
      Zhang, T., Li, Y. F., Fan, T. L., et al., 2022. Orbitally-Paced Climate Change in the Early Cambrian and Its Implications for the History of the Solar System. Earth and Planetary Science Letters, 583: 117420. https://doi.org/10.1016/j.epsl.2022.117420
      Zhao, M. Y., Zhang, S., Tarhan, L. G., et al., 2020. The Role of Calcium in Regulating Marine Phosphorus Burial and Atmospheric Oxygenation. Nature Communications, 11: 2232. https://doi.org/10.1038/s41467-020-15673-3
      Zhao, Y. L., Steiner, M., Yang, R. D., et al., 1999. Discovery and Significance of the Early Metazoan Biotas from the Lower Cambrian Niutitang Formation Zunyi, Guizhou, China. Acta Palaeontologica Sinica, 38(S1): 132-144, 187-188(in Chinese with English abstract).
      Zhao, Y. L., Yin, L. M., Guo, Q. J., et al., 2022. Progress on the Study of Cambrian Stage 4 Global Stratotype Section and Point (GSSP). Guizhou Geology, 38(4): 351-359 (in Chinese with English abstract).
      Zhu, M., Li, G., Zhang, J., et al., 2001. Early Cambrian stratigraphy of East Yunnan, Southwestern China: A Synthesis. Acta Palaeont Sin, 40(Supply): 4-39.
      Zhu, M. Y., Zhao, F. C., Yin, Z. J., et al., 2019a. The Cambrian Explosion: Advances and Perspectives from China. Science China (Earth Sciences), 49(10): 1455-1490(in Chinese).
      Zhu, M. Y., Yang, A. H., Yuan, J. L., et al., 2019b. Cambrian Integrative Stratigraphy and Timescale of China. Science China (Earth Sciences), 62(1): 25-60(in Chinese).
      郭伟, 冯庆来, Maliha Zareen Khan, 2021. 重庆焦页143-5井五峰组-龙马溪组黑色页岩有机质富集机理. 地球科学, 46(2): 572-582. doi: 10.3799/dqkx.2020.049
      李琪琪, 蓝宝锋, 李刚权, 等, 2021. 黔中隆起北缘五峰-龙马溪组页岩元素地球化学特征及其地质意义. 地球科学, 46(9): 3172-3188. doi: 10.3799/dqkx.2020.354
      梅冥相, 马永生, 张海, 等, 2007. 上扬子区寒武系的层序地层格架: 寒武纪生物多样性事件形成背景的思考. 地层学杂志, 31(1): 68-78.
      向雷, 蔡春芳, 贺训云, 等, 2012. 贵州渣拉沟剖面下寒武统黑色硅质岩微量元素富集机制. 岩石学报, 28(3): 971-980.
      杨兴莲, 赵元龙, 朱茂炎, 等, 2010. 贵州寒武系九门冲组和渣拉沟组中的海绵骨针化石. 微体古生物学报, 27(3): 243-252.
      尹恭正, 1987. 寒武系. 见: 贵州省地矿局编. 中华人民共和国地质矿产部地质专报第7号, 贵州省区域地质志. 北京: 地质出版社.
      赵元龙, M. Steiner, 杨瑞东, 等, 1999. 贵州遵义下寒武统牛蹄塘组早期后生生物群的发现及重要意义. 古生物学报, 38(增刊1): 132-144, 187-188.
      赵元龙, 尹磊明, 郭庆军, 等, 2022. 全球寒武系第4阶国际层型剖面及点位(GSSP)研究的进展. 贵州地质, 38(4): 351-359.
      朱茂炎, 赵方臣, 殷宗军, 等, 2019a. 中国的寒武纪大爆发研究: 进展与展望. 中国科学: 地球科学, 49(10): 1455-1490.
      朱茂炎, 杨爱华, 袁金良, 等, 2019b. 中国寒武纪综合地层和时间框架. 中国科学: 地球科学, 49(1): 26-65.
    • 加载中
    图(4)
    计量
    • 文章访问数:  317
    • HTML全文浏览量:  119
    • PDF下载量:  62
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-12-01
    • 网络出版日期:  2024-11-08
    • 刊出日期:  2024-10-25

    目录

      /

      返回文章
      返回