• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    山火后首次泥石流预警

    易伟 余斌 胡卸文 胡建春 刘烽焰 王严

    易伟, 余斌, 胡卸文, 胡建春, 刘烽焰, 王严, 2024. 山火后首次泥石流预警. 地球科学, 49(10): 3826-3840. doi: 10.3799/dqkx.2023.145
    引用本文: 易伟, 余斌, 胡卸文, 胡建春, 刘烽焰, 王严, 2024. 山火后首次泥石流预警. 地球科学, 49(10): 3826-3840. doi: 10.3799/dqkx.2023.145
    Yi Wei, Yu Bin, Hu Xiewen, Hu Jianchun, Liu Fengyan, Wang Yan, 2024. On Early Warning of First Debris Flow after a Wildfire. Earth Science, 49(10): 3826-3840. doi: 10.3799/dqkx.2023.145
    Citation: Yi Wei, Yu Bin, Hu Xiewen, Hu Jianchun, Liu Fengyan, Wang Yan, 2024. On Early Warning of First Debris Flow after a Wildfire. Earth Science, 49(10): 3826-3840. doi: 10.3799/dqkx.2023.145

    山火后首次泥石流预警

    doi: 10.3799/dqkx.2023.145
    基金项目: 

    国家自然科学基金资助项目 U21A2032

    国家自然科学基金资助项目 41731285

    国家自然科学基金资助项目 41672283

    详细信息
      作者简介:

      易伟(1988-),男,讲师,博士研究生,主要从事泥石流预报研究. E-mail:578161927@qq.com

      通讯作者:

      余斌(1966-),男,博士,教授,博士生导师,主要从事泥石流灾害与防治、泥石流预报研究.E-mail: yubin08@cdut.cn

    • 中图分类号: P694

    On Early Warning of First Debris Flow after a Wildfire

    • 摘要: 火后泥石流是一种易发且破坏力强的灾害,是山区开展防灾减灾的重要对象.国外研究火后泥石流预测模型只针对数据库所在的区域预测效果良好,对其他地区的预测结果不理想.森林火灾会造成林下土壤斥水性显著增强,发生降雨时,极易形成大流量山洪,诱发泥石流.在山火后的第一个雨季泥石流发生的降雨阈值很低,泥石流发生概率很高.选择四川凉山州发生的山火为研究案例,提出等效前期降雨量概念,并通过野外人工降雨实验,建立等效前期降雨量计算模型,结合常规泥石流预警公式建立沟床起动类型的火后首次泥石流的预警模型,在国内凉山、甘孜地区和美国地区的火后首次泥石流案例中,验证了方法的可靠性,为火后泥石流的减灾防灾提供一种新的方法.

       

    • 图  1  研究区地形地貌及过火区域、火后泥石流沟分布

      Fig.  1.  Topography and geomorphology of the study area and locations of the burned area and postfire debris flow gullies

      图  2  微型人工降雨系统示意图

      Fig.  2.  Schematic diagram of the mini artificial rainfall system

      图  3  微型人工降雨原位实验图

      Fig.  3.  In-situ experimental figure of mini artificial rainfall system

      图  4  土壤渗透系数与总降雨量关系

      Fig.  4.  Relationship between soil permeability coefficient and total rainfall

      图  5  不同土壤质地颗粒分析曲线图

      Fig.  5.  Grain size distribution curves of soils with different textures

      图  6  不同类型土壤渗透系数与总降雨量关系

      Fig.  6.  Relationship between soil permeability coefficient and total rainfall

      图  7  山火后土壤渗透系数与坡度的关系

      Fig.  7.  Relationship between postfire soil permeability coefficient and slope angle

      图  8  不同火烈度下,土壤渗透系数与前期降雨量的关系

      Fig.  8.  Relationship between soil permeability coefficient and rainfall under different fire intensities

      图  9  等效前期降雨量与土壤渗透系数的关系

      Fig.  9.  Relationship between EAR and soil permeability coefficient

      图  10  预警模型在四川凉山的验证

      1. 中坝发生泥石流沟; 2. 中坝未发生泥石流沟; 3. 鹿鹤村发生泥石流沟; 4. 鹿鹤村未发生泥石流沟; 5. 光福寺发生泥石流沟; 6. 响水沟发生泥石流沟; 7. 响水沟未发生泥石流沟

      Fig.  10.  Validation of the early warning model using data from Liangshan, Sichuan

      图  11  预警模型在四川甘孜的验证

      Fig.  11.  Validation of the early warning model using data from Ganzi, Sichuan

      图  12  美国加利福尼亚州和科罗拉多州各地雨量站和火后首次泥石流沟分布

      Fig.  12.  Distribution of rainfall stations and gullies with initial postfire debris flows in California and Colorado

      图  13  1 h降雨预警模型在美国的验证

      1. 发生泥石流流域;2. 发生泥石流流域;3. 发生泥石流流域;4. 未发生泥石流流域;5. 未发生泥石流流域;6. 未发生泥石流流域

      Fig.  13.  Validation of the early warning model with 1 h rainfall data using cases in the United States

      表  1  四川凉山地区地形、地质和水源因子数据汇总

      Table  1.   Summary data on topographic, geological, and hydrological factors in Liangshan, Sichuan

      沟名 L (km) J A(km2) T Bz (mm) I(mm) Bq(mm) R1 P R 是否发生泥石流
      中坝1# 0.22 0.85 0.04 0.35 6.5 6.5 434 1.30 0.32 0.04
      中坝2# 0.30 0.59 0.07 0.29 6.5 6.5 434 1.30 0.31 0.04
      中坝3# 0.27 0.69 0.08 0.42 6.5 6.5 434 1.30 0.34 0.04
      中坝4# 0.62 0.60 0.26 0.31 6.5 6.5 434 1.30 0.32 0.04
      中坝5# 0.92 0.56 0.37 0.20 6.5 6.5 271 0.90 0.20 0.04
      中坝6# 0.78 0.58 0.23 0.17 6.5 6.5 282 0.92 0.20 0.04
      鹿鹤村1# 0.46 0.31 0.14 0.14 27.5 27.5 43 1.02 0.26 0.15
      鹿鹤村2# 0.31 0.55 0.04 0.13 27.5 27.5 41 1.02 0.26 0.15
      鹿鹤村3# 0.33 0.55 0.07 0.07 27.5 27.5 203 1.42 0.35 0.15
      鹿鹤村4# 0.58 0.44 0.04 0.12 27.5 27.5 203 1.42 0.35 0.15
      鹿鹤村5# 0.77 0.72 0.13 0.11 27.5 27.5 203 1.42 0.32 0.15
      鹿鹤村6# 0.96 0.46 0.10 0.08 27.5 27.5 203 1.42 0.35 0.15
      鹿鹤村7# 0.67 0.41 0.29 0.11 27.5 27.5 203 1.42 0.34 0.15
      鹿鹤村8# 0.55 0.51 0.16 0.10 27.5 27.5 92 1.14 0.25 0.15
      光福寺1# 0.63 0.47 0.15 0.12 29.1 29.1 185 1.43 0.36 0.16
      光福寺2# 0.69 0.37 0.23 0.13 29.1 29.1 185 1.43 0.36 0.16
      光福寺3# 0.79 0.51 0.35 0.23 29.1 29.1 185 1.43 0.40 0.16
      光福寺4# 1.12 0.47 0.40 0.12 29.1 29.1 185 1.43 0.36 0.16
      响水沟1# 0.49 0.37 0.36 0.11 16.3 16.3 326 1.35 0.34 0.09
      响水沟2# 1.41 0.72 0.20 0.11 16.3 16.3 326 1.35 0.33 0.09
      响水沟3# 0.74 0.41 0.13 0.13 16.3 16.3 326 1.35 0.33 0.09
      响水沟4# 0.34 0.27 0.09 0.12 21.2 12.0 161 0.81 0.20 0.09
      响水沟5# 0.31 0.26 0.08 0.12 21.6 13.0 158 0.81 0.20 0.09
      响水沟6# 0.36 0.29 0.07 0.09 21.6 13.0 157 0.81 0.19 0.09
      响水沟7# 0.44 0.45 0.14 0.23 19.8 12.0 177 0.84 0.24 0.09
      响水沟8# 0.44 0.51 0.19 0.37 19.1 12.0 186 0.85 0.26 0.09
      响水沟9# 0.95 0.36 0.38 0.13 16.3 13.2 215 0.97 0.24 0.09
      响水沟10# 0.87 0.58 0.43 0.28 16.1 13.1 174 0.87 0.25 0.09
      响水沟11# 0.76 0.38 0.44 0.24 13.9 11.1 194 0.85 0.24 0.09
      响水沟12# 0.36 0.49 0.03 0.05 12.5 10.0 258 0.97 0.20 0.09
      响水沟13# 0.26 0.26 0.04 0.08 9.6 7.1 290 0.96 0.22 0.09
      响水沟14# 0.51 0.31 0.17 0.15 9.6 7.1 289 0.96 0.25 0.09
      响水沟15# 0.56 0.43 0.13 0.12 10 7.5 285 0.96 0.24 0.09
      响水沟16# 0.31 0.41 0.08 0.20 10.3 6.4 281 0.91 0.25 0.09
      响水沟17# 0.26 0.40 0.03 0.10 11 6.8 274 0.90 0.22 0.09
      响水沟18# 0.42 0.53 0.07 0.13 11.8 7.3 266 0.90 0.23 0.09
      响水沟19# 0.46 0.41 0.08 0.09 11.8 7.3 266 0.90 0.21 0.09
      响水沟20# 0.33 0.35 0.05 0.09 11.6 6.8 268 0.88 0.21 0.09
      响水沟21# 0.26 0.38 0.04 0.11 11.9 6.9 265 0.88 0.21 0.09
      响水沟22# 0.41 0.50 0.10 0.18 13.4 8.4 247 0.89 0.24 0.09
      响水沟23# 0.29 0.55 0.04 0.14 13.9 8.6 242 0.88 0.23 0.09
      响水沟24# 0.33 0.51 0.07 0.18 16.2 10.3 216 0.88 0.24 0.09
      响水沟25# 0.45 0.45 0.09 0.13 15.8 10.3 222 0.89 0.22 0.09
      响水沟26# 0.58 0.37 0.27 0.23 15.6 10.3 224 0.90 0.25 0.09
      响水沟27# 0.46 0.12 0.12 0.04 17.5 11.1 202 0.87 0.18 0.09
      响水沟28# 0.41 0.22 0.08 0.07 18.2 11.3 195 0.86 0.19 0.09
      下载: 导出CSV

      表  2  四川甘孜地区地形、地质和水源因子数据汇总

      Table  2.   Summary of data on topographic, geological, and hydrological factors in Ganzi, Sichuan

      沟名 L(km) J A(km2) T G 过火面积占比 I(mm) Bq(mm) R1 P 泥石流发生次序 是否发生泥石流
      F1 1.47 0.26 1.68 0.22 7.68 0.52 1.9 252 1.72 0.46 首次
      21.9 125 2.62 0.70 准首次
      F2 0.36 0.52 0.09 0.22 7.68 0.93 1.9 451 2.96 0.79 首次
      1.2 458 2.95 0.79 准首次
      3.0 416 2.84 0.76 准首次
      21.9 224 3.23 0.86 准首次
      F3-2 0.39 0.46 0.07 0.12 7.68 0.86 21.9 207 3.13 0.74 准首次
      1.9 417 2.75 0.65 首次
      F4 0.35 0.44 0.04 0.08 7.68 0.86 1.9 384 2.64 0.57 首次
      3.0 417 2.75 0.59 准首次
      21.9 207 3.13 0.67 准首次
      F5-1 0.75 0.50 0.29 0.20 8.64 0.82 1.9 198 3.07 0.76 首次
      21.9 397 2.63 0.65 准首次
      F6 0.45 0.61 0.10 0.19 8.64 0.84 1.9 407 2.69 0.66 首次
      21.9 202 3.10 0.76 准首次
      下载: 导出CSV

      表  3  美国加利福尼亚州和科罗拉多州各地1 h变差系数计算数据汇总

      Table  3.   Summary of the calculated 1 h COV data for various locations in California and Colorado in the United States

      火灾点 地点 R1h σ CV
      Old and Grand Prix火灾 加利福利亚州南部 36.65 16.49 0.45
      Missionary Ridge火灾 科罗拉多州西南部 55.29 25.99 0.47
      Coal Seam火灾 科罗拉多州中南部 65.99 33.78 0.51
      下载: 导出CSV

      表  4  美国各地火后首次泥石流流域在1 h降雨预警模型中地形、地质和水源因子数据汇总

      Table  4.   Summary of data on topographic, geological and hydrological factors in the early warning model with 1 h rainfall for catchments with initial postfire debris flows across the United States

      沟名 L
      (km)
      J A
      (km2)
      高烈度火烧区占比 T G B
      (mm)
      I
      (mm)
      Bq
      (mm)
      R1 P 是否发生泥石流
      Mitchell Creek 0.62 0.68 0.51 0.75 0.79 8 6.99 6.99 233 1.55 0.52
      Fish hatchery 0.11 1.01 0.02 0.75 0.76 8 12.19 12.19 188 1.64 0.55
      south canyon 0.32 0.50 0.12 0.75 0.39 8 17.02 17.02 146 1.73 0.51
      A 1.46 0.39 2.25 0.75 0.48 8 9.27 9.27 213 1.59 0.48
      B 0.65 0.72 0.46 0.75 0.67 8 8.51 8.51 220 1.57 0.51
      CS1# 0.68 0.30 0.20 0.75 0.09 8 12.19 12.19 188 1.64 0.36
      CS2# 0.32 0.17 0.13 0.75 0.14 8 6.99 6.99 233 1.55 0.37
      CS3# 0.38 0.31 0.04 0.75 0.05 8 11.58 11.58 193 1.63 0.31
      CS4# 0.65 0.26 0.21 0.75 0.09 8 11.35 11.35 195 1.63 0.36
      CS5# 0.68 0.21 0.20 0.75 0.07 8 9.61 9.61 211 1.59 0.33
      CS6# 0.52 0.33 0.16 0.75 0.14 8 9.61 9.61 211 1.59 0.38
      33 0.39 0.70 0.22 0.70 0.75 10 23.50 11.68 190 1.59 0.47
      34 0.74 0.47 0.55 0.70 0.42 10 86.85 32.00 87 2.30 0.61
      35 0.38 0.70 0.28 0.70 1.06 10 43.20 22.86 133 1.98 0.63
      59 0.18 0.27 0.13 0.70 0.73 10 46.25 20.32 85 1.60 0.47
      60 0.98 0.48 1.18 0.70 0.62 10 50.40 22.86 75 1.70 0.49
      62 0.29 0.80 0.22 0.70 1.55 10 41.40 14.73 73 1.22 0.42
      64 0.55 0.82 0.38 0.70 0.85 10 39.40 14.73 90 1.29 0.40
      67 0.41 0.31 0.35 0.70 0.53 10 8.90 5.59 253 1.53 0.42
      68 0.21 1.05 0.12 0.70 1.87 10 15.25 10.16 243 1.75 0.63
      2956 0.36 0.39 0.35 0.70 0.86 10 60.05 29.97 39 1.96 0.60
      2965 0.22 0.45 0.11 0.70 0.65 10 33.50 16.26 151 1.68 0.49
      2966 0.72 0.97 0.49 0.70 0.79 10 40.00 18.29 117 1.63 0.49
      2969 0.35 0.84 0.23 0.70 1.17 10 20.85 12.19 216 1.74 0.57
      2840 0.74 0.59 0.48 0.70 0.44 10 50.29 50.29 84 3.37 0.90
      2864 0.22 0.50 0.08 0.70 0.50 10 15.25 12.19 262 1.96 0.54
      2875 0.52 0.51 0.49 0.70 0.80 10 25.90 10.16 157 1.34 0.41
      2881 0.2 0.45 0.15 0.70 1.14 10 44.60 32.00 204 2.86 0.93
      543844 0.12 1.10 0.04 0.70 1.61 10 9.14 9.14 209 1.53 0.53
      534861 0.21 0.73 0.10 0.70 1.05 10 19.81 19.81 134 1.80 0.57
      543864 0.98 0.43 0.82 0.70 0.35 10 68.35 24.89 61 1.76 0.45
      534865 0.10 0.72 0.03 0.70 1.07 10 11.68 11.68 191 1.60 0.51
      OG1# 0.62 0.06 0.11 0.70 0.01 10 8.90 5.59 253 1.53 0.19
      OG2# 0.64 0.05 0.17 0.70 0.01 10 8.90 5.59 253 1.53 0.20
      OG3# 0.86 0.19 0.29 0.70 0.06 10 10.16 10.16 202 1.56 0.28
      OG4# 0.45 0.31 0.08 0.70 0.07 10 10.16 10.16 202 1.56 0.29
      OG5# 0.33 0.06 0.03 0.70 0.01 10 10.16 10.16 202 1.56 0.19
      OG6# 0.76 0.14 0.17 0.70 0.03 10 50.40 22.86 75 1.70 0.26
      OG7# 0.37 0.22 0.02 0.70 0.01 10 50.40 22.86 75 1.70 0.23
      OG8# 0.27 0.43 0.02 0.70 0.05 10 12.19 12.19 188 1.61 0.28
      OG9# 0.31 0.37 0.03 0.70 0.06 10 19.81 19.81 134 1.80 0.32
      OG10# 0.75 0.46 0.39 0.70 0.26 10 41.40 14.73 73 1.22 0.29
      OG11# 0.52 0.31 0.09 0.70 0.06 10 40.00 18.29 117 1.63 0.30
      OG12# 0.47 0.26 0.04 0.70 0.02 10 86.85 32.00 87 2.30 0.35
      OG13# 0.68 0.28 0.19 0.70 0.08 10 73.55 28.45 68 2.00 0.38
      OG14# 0.54 0.38 0.07 0.70 0.05 10 73.55 28.45 68 2.00 0.35
      OG15# 0.39 0.30 0.05 0.70 0.05 10 73.55 28.45 68 2.00 0.35
      OG16# 0.75 0.14 0.17 0.70 0.03 10 73.55 28.45 68 2.00 0.31
      OG17# 0.24 0.43 0.02 0.70 0.07 10 71.00 28.45 63 1.98 0.37
      OG18# 0.42 0.22 0.03 0.70 0.02 10 75.55 37.08 65 2.50 0.36
      OG19# 0.65 0.19 0.05 0.70 0.01 10 75.55 37.08 65 2.50 0.33
      OG20# 0.53 0.30 0.27 0.70 0.22 10 34.00 8.13 73 0.83 0.19
      OG21# 0.58 0.27 0.12 0.70 0.06 10 23.50 11.68 190 1.59 0.29
      A3 1.12 0.40 1.79 0.61 0.65 9 3.00 3.00 291 1.48 0.45
      A4 0.26 0.38 0.27 0.61 1.18 9 5.84 5.84 274 1.56 0.54
      A5 0.65 0.14 0.99 0.61 0.34 9 13.85 13.85 226 1.80 0.48
      A6 0.30 0.60 0.20 0.61 0.96 9 23.75 23.75 166 2.09 0.69
      A7 0.44 0.68 0.37 0.61 1.06 9 1.15 1.15 302 1.43 0.48
      A8 0.61 0.42 0.87 0.61 0.97 9 8.51 8.51 258 1.64 0.54
      A9 0.43 0.39 0.47 0.61 0.85 9 6.10 6.10 272 1.57 0.51
      A10 0.31 0.45 0.21 0.61 0.72 9 6.10 6.10 272 1.57 0.49
      MR1# 0.36 0.16 0.08 0.61 0.06 9 1.15 1.15 302 1.43 0.27
      MR2# 0.42 0.26 0.06 0.61 0.06 9 6.10 6.10 272 1.57 0.29
      MR3# 0.70 0.13 0.20 0.61 0.04 9 8.51 8.51 258 1.64 0.28
      MR4# 0.49 0.32 0.15 0.61 0.14 9 23.75 23.75 166 2.09 0.47
      MR5# 0.48 0.21 0.12 0.61 0.07 9 13.85 13.85 226 1.80 0.35
      MR6# 0.39 0.33 0.06 0.61 0.07 9 5.84 5.84 274 1.56 0.31
      MR7# 0.85 0.12 0.47 0.61 0.07 9 3.00 3.00 291 1.48 0.29
      下载: 导出CSV
    • Cannon, S. H., 2000. Debris-Flow Response of Southern California Catchments Burned by Wildfire. In Proceedings of Second International Conference on Debris-Flow Hazards Mitigation. Brookfield, VT, 45-52.
      Cannon, S. H., 2001. Debris-Flow Generation from Recently Burned Watersheds. Environmental and Engineering Geoscience, 7(4): 321-341. https://doi.org/10.2113/gseegeosci.7.4.321
      Cannon, S. H., Gartner, J. E., 2007. Wildfire-Related Debris Flow from a Hazards Perspective. In: Jakob, M., Hungr, O., eds., Debris-flow Hazards and Related Phenomena. Springer, Berlin, Heidelberg: 363-385. https://doi.org/10.1007/3-540-27129-5_15
      Cannon, S. H., Gartner, J. E., Wilson, R. C., et al., 2008. Storm Rainfall Conditions for Floods and Debris Flows from Recently Burned Areas in Southwestern Colorado and Southern California. Geomorphology, 96(3-4): 250-269. https://doi.org/10.1016/j.geomorph.2007.03.019
      Cerdà, A., 1998. Changes in Overland Flow and Infiltration after a Rangeland Fire in a Mediterranean Scrubland. Hydrological Processes, 12(7): 1031-1042. https://doi.org/10.1002/(sici)1099-1085(19980615)12: 71031: aid-hyp636>3.3.co;2-m doi: 10.1002/(sici)1099-1085(19980615)12:71031:aid-hyp636>3.3.co;2-m
      Dekker, L. W., Ritsema, C. J., 1994. How Water Moves in a Water Repellent Sandy Soil. 1. Potential and Actual Water Repellency. Water Resources Research, 30(9): 2507-2517. https://doi.org/10.1029/94WR00749
      Doerr, S. H., Ferreira, A. J. D., Walsh, R. P. D., et al., 2003. Soil Water Repellency as a Potential Parameter in Rainfall-Runoff Modelling: Experimental Evidence at Point to Catchment Scales from Portugal. Hydrological Processes, 17(2): 363-377. https://doi.org/10.1002/hyp.1129
      Doerr, S. H., Shakesby, R. A., MacDonald, L. H., 2009. Soil Water Repellency: A Key Factor in Post-Fire Erosion? In: Cerda', A., Robichaud, P. R., eds., Restoration Strategies after Forest Fire. Science Publishers, Enfield, 197-223.
      Fan, G. S., Xing, R. X., Zhang, M. B., 2012. Experimental Study on Permeability of the Sandy Gravel Media with Different Gradation. Journal of Taiyuan University of Technology, 43(3): 373-378(in Chinese with English abstract). doi: 10.3969/j.issn.1007-9432.2012.03.028
      Gonzales, D. A., Stahr, D. W., Kirkham, R. M., 2002. Geologic Map of the Hermosa Quadrangle, La Plata County, Colorado. Colorado Geological Survey Open-File Report 02-1.
      Gabet, E. J., 2003. Post-Fire Thin Debris Flows: Sediment Transport and Numerical Modelling. Earth Surface Processes and Landforms, 28(12): 1341-1348. https://doi.org/10.1002/esp.590
      Gartner, J. E., Santi, P. M., Cannon, S. H., 2015. Predicting Locations of Post-Fire Debris-Flow Erosion in the San Gabriel Mountains of Southern California. Natural Hazards, 77(2): 1305-1321. https://doi.org/10.1007/s11069-015-1656-3
      Gartner, J. E., Cannon, S. H., Santi, P. M., 2014. Empirical Models for Predicting Volumes of Sediment Deposited by Debris Flows and Sediment-Laden Floods in the Transverse Ranges of Southern California. Engineering Geology, 176: 45-56. https://doi.org/10.1016/j.enggeo.2014.04.008
      Guzzetti, F., Peruccacci, S., Rossi, M., et al., 2008. The Rainfall Intensity: Duration Control of Shallow Landslides and Debris Flows: An Update. Landslides, 5(1): 3-17. https://doi.org/10.1007/s10346-007-0112-1
      Hu, X. W., Jin, T., Yin, W. Q., et al., 2020. The Characteristics of Forest Fire Burned Area and Susceptibility Assessment of Post-Fire Debris Flow in Jingjiu Township, Xichang City. Journal of Engineering Geology, 28(4): 762-771(in Chinese with English abstract).
      Hu, X. W., Wang, Y., Yang, Y., 2018. Research Actuality and Evolution Mechanism of Post-Fire Debris Flow. Journal of Engineering Geology, 26(6): 1562-1573(in Chinese with English abstract).
      Kean, J. W., Staley, D. W., Cannon, S. H., 2011. In Situ Measurements of Post-Fire Debris Flows in Southern California: Comparisons of the Timing and Magnitude of 24 Debris-Flow Events with Rainfall and Soil Moisture Conditions. Journal of Geophysical Research Earth Surface, 116(4): F4019. https://doi.org/10.1029/2011JF002005
      Key, C. H., Benson, N. C., 2006. Landscape Assessment (LA) Sampling and Analysis Methods. In: Lutes, D. C., Keane, R. E., Caratti, J. F., eds., FIREMON: Fire Effects Monitoring and Inventory System. USDA Forest Service, Rocky Mountain Research Station, Fort Collins, Co., 1-55.
      Lavee, H., Kutiel, P., Segev, M., et al., 1995. Effect of Surface Roughness on Runoff and Erosion in a Mediterranean Ecosystem: The Role of Fire. Geomorphology, 11(3): 227-234. https://doi.org/10.1016/0169-555X(94)00059-Z
      Lemmnitz, C., Kuhnert, M., Bens, O., et al., 2008. Spatial and Temporal Variations of Actual Soil Water Repellency and Their Influence on Surface Runoff. Hydrological Processes, 22(12): 1976-1984. https://doi.org/10.1002/hyp.6782
      Liu, T. Q., Wang, B. G., Zhang, J. S., et al., 2021. Variation Law and Influencing Factors of Soil Saturated Hydraulic Conductivity in Jianghan Plain. Earth Science, 46(2): 671-682(in Chinese with English abstract).
      Mataix-Solera, J., Cerdà, A., Arcenegui, V., et al., 2011. Fire Effects on Soil Aggregation: A Review. Earth-Science Reviews, 109(1/2): 44-60. https://doi.org/10.1016/j.earscirev.2011.08.002
      Meyer, G. A., Wells, S. G., 1997. Fire-Related Sedimentation Events on Alluvial Fans, Yellowstone National Park, U. S. A.. SEPM Journal of Sedimentary Research, 67: 776-791. https://doi.org/10.1306/d426863a-2b26-11d7-8648000102c1865d
      McPhee, J. A., 1989. The Control of Nature. Farrar, Straus and Giroux, New York.
      Min, L. L., Yu, J. J., 2010. Progress in the Research of Soil Water Repellency and Its Influences on Overland Flow Generation. Progress in Geography, 29(7): 855-860(in Chinese with English abstract).
      Mitchell, P. B., Humphreys, G. S., 1987. Litter Dams and Microterraces Formed on Hillslopes Subject to Rainwash in the Sydney Basin, Australia. Geoderma, 39(4): 331-357. https://doi.org/10.1016/0016-7061(87)90052-8
      Nyman, P., Sheridan, G. J., Smith, H. G., et al., 2011. Evidence of Debris Flow Occurrence after Wildfire in Upland Catchments of South-East Australia. Geomorphology, 125(3): 383-401. https://doi.org/10.1016/j.geomorph.2010.10.016
      Nyman, P., Smith, H., Sherwin, C., et al., 2015. Predicting Sediment Delivery from Debris Flows after Wildfire. Geomorphology, 250: 173-186. https://doi.org/10.1016/j.geomorph.2015.08.023
      Parise, M., Cannon, S. H., 2012. Wildfire Impacts on the Processes That Generate Debris Flows in Burned Watersheds. Natural Hazards, 61(1): 217-227. https://doi.org/10.1007/s11069-011-9769-9
      Shi, Z. M., Wu, B., Zheng, H. C., et al., 2022. State of the Art on Prevention and Control Measures and Impact Model for Debris Flow. Earth Science, 47(12): 4339-4349(in Chinese with English abstract).
      Staley, D. M., Kean, J. W., Cannon, S. H., et al., 2013. Objective Definition of Rainfall Intensity-Duration Thresholds for the Initiation of Post-Fire Debris Flows in Southern California. Landslides, 10(5): 547-562. https://doi.org/10.1007/s10346-012-0341-9
      Tessler, N., Wittenberg, L., Malkinson, D., et al., 2008. Fire Effects and Short-Term Changes in Soil Water Repellency-Mt. Carmel, Israel. CATENA, 74(3): 185-191. https://doi.org/10.1016/j.catena.2008.03.002
      Tie, Y. B., Xu, R. G., Liu, H., et al., 2020. Study on the Characteristics and Formation Mechanism of the Typical Post-Fire Debris Flow in Lushan Area of Xichang City: A Case Study of 3# Branch on the Left Bank of Xiangshuigou. Geological Survey of China, 7(3): 82-88(in Chinese with English abstract).
      Wang, Y., Hu, X. W., Jin, T., et al., 2019. Material Initiation of Debris Flow Generation Processes after Hillside Fires. Journal of Engineering Geology, 27(6): 1415-1423(in Chinese with English abstract).
      Yin, C. J., Long, Y. Q., 2021. Study on the Rainwater Infiltration Law of Unsaturated Silt under Heavy Rain. Journal of Railway Science and Engineering, 18(1): 81-86(in Chinese with English abstract).
      Yu, B., Zhu, Y., Wang, T., et al., 2014. Prediction Model for Occurrence of Debris Flows in Channels with Runoff Initiation Mechanism. Journal of Engineering Geology, 22(3): 450-455(in Chinese with English abstract).
      Yu, B., Zhu, Y., Wang, T., et al., 2015. Research on the 10-Minute Rainfall Prediction Model for Debris Flows. Advances in Water Science, 26(3): 347-355(in Chinese with English abstract).
      樊贵盛, 邢日县, 张明斌, 2012. 不同级配砂砾石介质渗透系数的试验研究. 太原理工大学学报, 43(3): 373-378. doi: 10.3969/j.issn.1007-9432.2012.03.028
      胡卸文, 金涛, 殷万清, 等, 2020. 西昌市经久乡森林火灾火烧区特点及火后泥石流易发性评价. 工程地质学报, 28(4): 762-771.
      胡卸文, 王严, 杨瀛, 2018. 火后泥石流成灾特点及研究现状. 工程地质学报, 26(6): 1562-1573.
      刘天奇, 汪丙国, 张钧帅, 等, 2021. 江汉平原土壤饱和渗透系数变化规律及影响因素. 地球科学, 46(2): 671-682. doi: 10.3799/dqkx.2020.039
      闵雷雷, 于静洁, 2010. 土壤斥水性及其对坡面产流的影响研究进展. 地理科学进展, 29(7): 855-860.
      石振明, 吴彬, 郑鸿超, 等, 2022. 泥石流防治措施与冲击力研究进展. 地球科学, 47(12): 4339-4349. doi: 10.3799/dqkx.2022.376
      铁永波, 徐如阁, 刘洪, 等, 2020. 西昌市泸山地区典型火后泥石流特征与成因机制研究: 以响水沟左岸3#支沟为例. 中国地质调查, 7(3): 82-88.
      王严, 胡卸文, 金涛, 等, 2019. 火后泥石流形成过程的物源启动模式研究. 工程地质学报, 27(6): 1415-1423.
      印长俊, 龙勇齐, 2021. 强降雨条件下非饱和粉土雨水渗透规律研究. 铁道科学与工程学报, 18(1): 81-86.
      余斌, 朱渊, 王涛, 等, 2014. 沟床起动型泥石流预报研究. 工程地质学报, 22(3): 450-455.
      余斌, 朱渊, 王涛, 等, 2015. 沟床起动型泥石流的10 min降雨预报模型. 水科学进展, 26(3): 347-355.
    • 加载中
    图(13) / 表(4)
    计量
    • 文章访问数:  304
    • HTML全文浏览量:  87
    • PDF下载量:  37
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-12-30
    • 网络出版日期:  2024-11-08
    • 刊出日期:  2024-10-25

    目录

      /

      返回文章
      返回