• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    应用随机模拟方法确定复杂裂隙含水层中泉点的捕集区域

    徐梓矿 徐世光 张世涛

    徐梓矿, 徐世光, 张世涛, 2024. 应用随机模拟方法确定复杂裂隙含水层中泉点的捕集区域. 地球科学, 49(10): 3723-3735. doi: 10.3799/dqkx.2023.148
    引用本文: 徐梓矿, 徐世光, 张世涛, 2024. 应用随机模拟方法确定复杂裂隙含水层中泉点的捕集区域. 地球科学, 49(10): 3723-3735. doi: 10.3799/dqkx.2023.148
    Xu Zikuang, Xu Shiguang, Zhang Shitao, 2024. Using Stochastic Inverse Modeling Method to Obtain Probabilistic Capture Zones of a Spring in a Complex Fracture Aquifer. Earth Science, 49(10): 3723-3735. doi: 10.3799/dqkx.2023.148
    Citation: Xu Zikuang, Xu Shiguang, Zhang Shitao, 2024. Using Stochastic Inverse Modeling Method to Obtain Probabilistic Capture Zones of a Spring in a Complex Fracture Aquifer. Earth Science, 49(10): 3723-3735. doi: 10.3799/dqkx.2023.148

    应用随机模拟方法确定复杂裂隙含水层中泉点的捕集区域

    doi: 10.3799/dqkx.2023.148
    基金项目: 

    云南联合基金项目 U1502231

    详细信息
      作者简介:

      徐梓矿(1990-),男,博士研究生,从事水文地质、地热、地下水环境方面研究.ORCID:0000-0001-7210-3592.E-mail:xzk99882008@vip.qq.com

      通讯作者:

      张世涛,ORCID: 0000-0002-8901-9255,E-mail: taogezhang@hotmail.com

    • 中图分类号: P641

    Using Stochastic Inverse Modeling Method to Obtain Probabilistic Capture Zones of a Spring in a Complex Fracture Aquifer

    • 摘要: 出于精度考量,研究场地尺度水文地质特征时,采用随机模拟技术建立多个满足场地有限地质信息的情景模型,可以较为有效地表征含(隔)水层结构,并描述目标泉点的捕集区域.但通常受条件限制,场地中的实际钻孔数量可能难以满足随机建模的数据密度要求.基于地面地质分析和一定量的实际钻孔资料,同时借助详实的瞬变电磁物探数据,在物探测点处构建虚拟钻孔,进而建立若干关于地层结构的随机模型(情景模型);采用PEST参数自动识别程序筛选符合水位观测值的情景模型,并复核这些模型的地层结构,以保证情景模型的合理性.基于74个钻孔数据点(包含虚拟钻孔)的转移概率马尔科夫链(T-PORGS)共生成503个情景模型,以场地范围内9个地下水位观测点的数据为基准,通过PEST最终筛选出67个可以描述场地水文地质特征的模型,最后由筛选出的模型统计得到目标泉点的概率捕集区域.该建模流程可以在钻孔数据缺乏时,完成场地尺度的随机建模,并获得有效的场地水文地质信息.

       

    • 图  1  主要建模步骤

      Fig.  1.  The major modeling steps

      图  2  场地概况、实物工作量与地质构造

      Fig.  2.  Conceptual representation of the modeling area, TEM lines & scanning points, boreholes, and geological structural outlines

      图  3  建模区简化的岩性剖面

      钻孔岩性层标号与简述:ZKl:a.混凝土、碎石土;b.强风化砂质板岩与板岩互层;c.弱-中风化砂岩、砂质板岩;d.砂质板岩与板岩互层. ZK2:a.第四系土层;b.中-强风化板岩;c.砂岩;d.砂岩与板岩互层. ZK3:a.第四系土层;c.中-强风化砂岩、板岩;d.强风化板岩;e.砂质板岩,局部夹砂岩、石英砂岩.ZK4:a.第四系土层;d.强风化板岩;e.砂岩夹中风化板岩. ZK5:a.第四系土层;b.强-全风化板岩,局部有砂质板岩夹层;c.砂岩、石英砂岩局部夹砂质板岩;d.弱-中风化板岩;e.砂岩、石英砂岩局部夹砂质板岩;f.炭质页岩. ZK6:a.混凝土、碎石土;d.强风化板岩;e.弱-中风化石英砂岩、砂岩、板岩、砂质板岩;f.炭质页岩. ZK9:a.第四系土层;d.强风化板岩;e.板岩、砂质板岩,底部含石英砂岩;f.炭质页岩

      Fig.  3.  Brief lithologic profiles in the modeling area

      图  4  建模区沿岩层走向的简化岩性剖面

      Fig.  4.  A brief lithologic profile of strike direction in the modeling area

      图  5  全67个模型不同岩性单元的渗透系数及模型的未加权残差平方和

      Fig.  5.  Hydraulic conductivity of lithologic units (materials) in all 67 realizations and the unweighted residual sum of squares of 67 realizations

      图  6  水位拟合效果较好的5个情景模型

      Fig.  6.  The five realizations with better head calibration results

      图  7  水位拟合程度较好的4个情景模型的南北向剖面

      Fig.  7.  North-south profiles of the four well fitted realizations

      图  8  以67个模型(a)和24个模型(b)计算所得泉点的概率捕集区

      Fig.  8.  Probabilistic capture zone calculated statistically from all 67 realizations (a) and 24 realizations (b)

    • Amiri, V., Sohrabi, N., Li, P. Y., et al., 2023. Estimation of Hydraulic Conductivity and Porosity of a Heterogeneous Porous Aquifer by Combining Transition Probability Geostatistical Simulation, Geophysical Survey, and Pumping Test Data. Environment, Development and Sustainability, 25(8): 7713-7736. https://doi.org/10.1007/s10668-022-02368-6
      Anderman, E. R., Hill, M. C., 2000. MODFLOW-2000, the U. S. Geological Survey Modular Ground-Water Model Documentation of the Hydrogeologic-Unit Flow (HUF) Package, Open-File Report 00-342. USGS Numbered Series, Denver.
      Banta, E. R., Provost, A. M., 2008. User Guide for HUFPrint, a Tabulation and Visualization Utility for the Hydrogeologic-Unit Flow (HUF) Package of MODFLOW. U. S. Geological Survey, U. S. Department of the Interior.
      Carle, S. F., 1999. T-PROGS: Transition Probability Geostatistical Software, Version 2.1. Department of Land. Air and Water Resources, University of California, Davis.
      Carle, S. F., Fogg, G. E., 1996. Transition Probability-Based Indicator Geostatistics. Mathematical Geology, 28(4): 453-476. https://doi.org/10.1007/BF02083656
      Carle, S. F., Fogg, G. E., 1997. Modeling Spatial Variability with One and Multidimensional Continuous-Lag Markov Chains. Mathematical Geology, 29(7): 891-918. https://doi.org/10.1023/A: 1022303706942 doi: 10.1023/A:1022303706942
      Doherty, J., Brebber, L., Whyte, P., 2004. PEST, Model-Independent Parameter Estimation-User Manual. 5th Edition. Watermark Numerical Computing, Brisbane, Australia.
      Gao, W., Zhou, F., Dong, Y. J., et al., 2014. PEST-Based Multi-Objective Automatic Calibration of Hydrologic Parameters for HSPF Model. Journal of Natural Resources, 29(5): 855-867(in Chinese with English abstract).
      Goovaerts, P., 2001. Geostatistical Modelling of Uncertainty in Soil Science. Geoderma, 103(1/2): 3-26. https://doi.org/10.1016/s0016-7061(01)00067-2
      He, F., Wu, J. C., 2003. Markov Chain-Based Multi-Indicator Geostatistical Model. Hydrogeology and Engineering Geology, 30(5): 28-32(in Chinese with English abstract).
      Jarray, H., Zammouri, M., Ouessar, M., 2020. Assessment of Groundwater Salinization Using PEST and Sensitivity Analysis: Case of Zeuss-Koutine and Mio-Plio-Quaternary Aquifers. Arabian Journal of Geosciences, 13(19): 999. https://doi.org/10.1007/s12517-020-05976-6
      Koch, J., He, X., Jensen, K. H., et al., 2014. Challenges in Conditioning a Stochastic Geological Model of a Heterogeneous Glacial Aquifer to a Comprehensive Soft Data Set. Hydrology and Earth System Sciences, 18(8): 2907-2923. https://doi.org/10.5194/hess-18-2907-2014
      Krumbein, W. C., 1968. Fortran Ⅳ Program for Simulation of Transgression and Regression with Continuous-Time Markov Models. University of Kansas State Geological Survey, 1-18.
      Langousis, A., Kaleris, V., Kokosi, A., et al., 2018. Markov Based Transition Probability Geostatistics in Groundwater Applications: Assumptions and Limitations. Stochastic Environmental Research and Risk Assessment, 32(7): 2129-2146. https://doi.org/10.1007/s00477-017-1504-y
      Lee, S. Y., Carle, S. F., Fogg, G. E., 2007. Geologic Heterogeneity and a Comparison of Two Geostatistical Models: Sequential Gaussian and Transition Probability-Based Geostatistical Simulation. Advances in Water Resources, 30(9): 1914-1932. https://doi.org/10.1016/j.advwatres.2007.03.005
      Lin, C., Harbaugh, J. W., 1984. Graphic Display of Two- and Three-Dimensional Markov Computer Models in Geology. Van Nostrand Reinhold, New York.
      Luo, F., Du, S. H., Huang, Y., et al., 2022. Determining the Boundary of the Jiali-Palongzangbu Tectonic Mélange Belt Based on Airborne Geophysical Prospecting and Its Engineering Geological Risk. Earth Science, 47(3): 779-793 (in Chinese with English abstract).
      Ma, L., Deng, H., Yan, Y. S., et al., 2022. Hydrofacies Simulation Based on Transition Probability Geostatistics Using Electrical Resistivity Tomography and Borehole Data. Hydrogeology Journal, 30(7): 2117-2134. https://doi.org/10.1007/s10040-022-02539-9
      Manchuk, J. G., Deutsch, C. V., 2012. A Flexible Sequential Gaussian Simulation Program: USGSIM. Computers & Geosciences, 41: 208-216. https://doi.org/10.1016/j.cageo.2011.08.013
      Marquardt, D. W., 1963. An Algorithm for Least-Squares Estimation of Nonlinear Parameters. Journal of the Society for Industrial and Applied Mathematics, 11(2): 431-441. https://doi.org/10.1137/0111030
      Park, Y. J., Sudicky, E. A., McLaren, R. G., et al., 2004. Analysis of Hydraulic and Tracer Response Tests within Moderately Fractured Rock Based on a Transition Probability Geostatistical Approach. Water Resources Research, 40(12): W12404. https://doi.org/10.1029/2004wr003188
      Piccinini, L., Fabbri, P., Pola, M., et al., 2017. An Example of Aquifer Heterogeneity Simulation to Modeling Well-Head Protection Areas. Italian Journal of Engineering Geology and Environment, Special Issue: 103-115. doi: 10.4408/IJEGE.2017-01.S-10
      Politis, D. N., 1994. Markov Chains in Many Dimensions. Advances in Applied Probability, 26(3): 756-774. https://doi.org/10.2307/1427819
      Siena, M., Riva, M., 2020. Impact of Geostatistical Reconstruction Approaches on Model Calibration for Flow in Highly Heterogeneous Aquifers. Stochastic Environmental Research and Risk Assessment, 34(10): 1591-1606. https://doi.org/10.1007/s00477-020-01865-2
      Sun, Q., Shao, J. L., Wang, Y. L., et al., 2019. Research on Appropriate Borehole Density for Establishing Reliable Geological Model Based on Quantitative Uncertainty Analysis. Arabian Journal of Geosciences, 12(13): 410. https://doi.org/10.1007/s12517-019-4533-7
      Sun, Q., Shao, J. L., Cui, Y. L., et al., 2019. Numerical Simulations of Groundwater Based on Three-Dimensional Stochastic Hydrogeologic Structure Model: A Case Study from West Liaohe Plain. Geoscience, 33(2): 451-460(in Chinese with English abstract).
      Teramoto, E. H., Engelbrecht, B. Z., Gonçalves, R. D., et al., 2021. Probabilistic Backward Location for the Identification of Multi-Source Nitrate Contamination. Stochastic Environmental Research and Risk Assessment, 35(4): 941-954. https://doi.org/10.1007/s00477-020-01966-y
      Wang, X. C., Deng, X. H., Chen, X. D., et al., 2021. Application Effect of TEM Based on High Temperature Superconducting Sensor in Qingchengzi Ore-Concentrated Area. Earth Science, 46(5): 1871-1880(in Chinese with English abstract).
      Xie, J., Liu, Y., Li, X. Q., et al., 2021. The Application of Opposing Coils Transient Electromagnetics in the Detection of Karst Subsidence Area. Coal Geology & Exploration, 49(3): 212-218, 226(in Chinese with English abstract).
      Yao, C. C., Wei, J. H., 2015. Case Study of Parameter Auto-Calibration of Distributed Parameter Model Based on Condor Algorithm. South-to-North Water Transfers and Water Science & Technology, 13(4): 733-736, 770(in Chinese with English abstract).
      高伟, 周丰, 董延军, 等, 2014. 基于PEST的HSPF水文模型多目标自动校准研究. 自然资源学报, 29(5): 855-867.
      何芳, 吴吉春, 2003. 基于马尔可夫链的多元指示地质统计模型. 水文地质工程地质, 30(5): 28-32.
      罗锋, 杜世回, 黄勇, 等, 2022. 基于航空物探的嘉黎-帕隆藏布构造混杂岩带边界厘定及其工程地质风险. 地球科学, 47(3): 779-793. doi: 10.3799/dqkx.2022.028
      孙倩, 邵景力, 崔亚莉, 等, 2019. 基于三维随机水文地质结构模型的地下水流数值模拟: 以西辽河平原为例. 现代地质, 33(2): 451-460.
      王兴春, 邓晓红, 陈晓东, 等, 2021. 基于高温超导的瞬变电磁法在青城子矿集区的应用. 地球科学, 46(5): 1871-1880. doi: 10.3799/dqkx.2020.383
      谢嘉, 刘洋, 李兴强, 等, 2021. 等值反磁通瞬变电磁法在岩溶塌陷区探测应用. 煤田地质与勘探, 49(3): 212-218, 226.
      姚晨晨, 魏加华, 2015. 基于Condor的模型参数自动识别实例研究. 南水北调与水利科技, 13(4): 733-736, 770.
    • dqkxzx-49-10-3723-附图2.zip
      dqkxzx-49-10-3723-附图1.zip
    • 加载中
    图(8)
    计量
    • 文章访问数:  246
    • HTML全文浏览量:  151
    • PDF下载量:  28
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-08-16
    • 网络出版日期:  2024-11-08
    • 刊出日期:  2024-10-25

    目录

      /

      返回文章
      返回