Using Stochastic Inverse Modeling Method to Obtain Probabilistic Capture Zones of a Spring in a Complex Fracture Aquifer
-
摘要: 出于精度考量,研究场地尺度水文地质特征时,采用随机模拟技术建立多个满足场地有限地质信息的情景模型,可以较为有效地表征含(隔)水层结构,并描述目标泉点的捕集区域.但通常受条件限制,场地中的实际钻孔数量可能难以满足随机建模的数据密度要求.基于地面地质分析和一定量的实际钻孔资料,同时借助详实的瞬变电磁物探数据,在物探测点处构建虚拟钻孔,进而建立若干关于地层结构的随机模型(情景模型);采用PEST参数自动识别程序筛选符合水位观测值的情景模型,并复核这些模型的地层结构,以保证情景模型的合理性.基于74个钻孔数据点(包含虚拟钻孔)的转移概率马尔科夫链(T-PORGS)共生成503个情景模型,以场地范围内9个地下水位观测点的数据为基准,通过PEST最终筛选出67个可以描述场地水文地质特征的模型,最后由筛选出的模型统计得到目标泉点的概率捕集区域.该建模流程可以在钻孔数据缺乏时,完成场地尺度的随机建模,并获得有效的场地水文地质信息.Abstract: Generating a series of stochastic models (realizations) by applying stochastic inverse modeling method is sometimes an efficient way to improve hydrogeological cognition accuracy of a site, such as obtaining a more clarity aquifer structure or a probabilistic capture zone of a spring. However, the borehole data size often cannot meet the requirements of stochastic modeling in a general project. Considering geological analysis result and borehole data, it may be a rational and effective method to translate geophysical prospecting (TEM) points into virtual boreholes to solve the data shortage problem. Using the PEST program, stochastic models established through practical boreholes and virtual boreholes can be screened with groundwater level data as the reference. The stratigraphic structure of the filtered models is then checked artificially to guarantee model geological rationality. In this paper, a total of 503 realizations are generated by using a transition probability Markov chain (T-PORGS) based on 74 data points (including virtual boreholes). With data from 9 groundwater observation points within the site as a benchmark, 67 models that effectively describe the hydrogeological characteristics of the site are selected through PEST. Finally, the probabilistic capture zones of the target spring in a fracture aquifer are calculated from these selected models. This modeling process enables stochastic modeling at a site scale even in the absence of sufficient borehole data, providing valuable hydrogeological information for the site.
-
Key words:
- transition probability Markov chain /
- T-PROGS /
- PEST /
- fracture aquifer /
- probabilistic capture zone /
- hydrogeology
-
图 3 建模区简化的岩性剖面
钻孔岩性层标号与简述:ZKl:a.混凝土、碎石土;b.强风化砂质板岩与板岩互层;c.弱-中风化砂岩、砂质板岩;d.砂质板岩与板岩互层. ZK2:a.第四系土层;b.中-强风化板岩;c.砂岩;d.砂岩与板岩互层. ZK3:a.第四系土层;c.中-强风化砂岩、板岩;d.强风化板岩;e.砂质板岩,局部夹砂岩、石英砂岩.ZK4:a.第四系土层;d.强风化板岩;e.砂岩夹中风化板岩. ZK5:a.第四系土层;b.强-全风化板岩,局部有砂质板岩夹层;c.砂岩、石英砂岩局部夹砂质板岩;d.弱-中风化板岩;e.砂岩、石英砂岩局部夹砂质板岩;f.炭质页岩. ZK6:a.混凝土、碎石土;d.强风化板岩;e.弱-中风化石英砂岩、砂岩、板岩、砂质板岩;f.炭质页岩. ZK9:a.第四系土层;d.强风化板岩;e.板岩、砂质板岩,底部含石英砂岩;f.炭质页岩
Fig. 3. Brief lithologic profiles in the modeling area
-
Amiri, V., Sohrabi, N., Li, P. Y., et al., 2023. Estimation of Hydraulic Conductivity and Porosity of a Heterogeneous Porous Aquifer by Combining Transition Probability Geostatistical Simulation, Geophysical Survey, and Pumping Test Data. Environment, Development and Sustainability, 25(8): 7713-7736. https://doi.org/10.1007/s10668-022-02368-6 Anderman, E. R., Hill, M. C., 2000. MODFLOW-2000, the U. S. Geological Survey Modular Ground-Water Model Documentation of the Hydrogeologic-Unit Flow (HUF) Package, Open-File Report 00-342. USGS Numbered Series, Denver. Banta, E. R., Provost, A. M., 2008. User Guide for HUFPrint, a Tabulation and Visualization Utility for the Hydrogeologic-Unit Flow (HUF) Package of MODFLOW. U. S. Geological Survey, U. S. Department of the Interior. Carle, S. F., 1999. T-PROGS: Transition Probability Geostatistical Software, Version 2.1. Department of Land. Air and Water Resources, University of California, Davis. Carle, S. F., Fogg, G. E., 1996. Transition Probability-Based Indicator Geostatistics. Mathematical Geology, 28(4): 453-476. https://doi.org/10.1007/BF02083656 Carle, S. F., Fogg, G. E., 1997. Modeling Spatial Variability with One and Multidimensional Continuous-Lag Markov Chains. Mathematical Geology, 29(7): 891-918. https://doi.org/10.1023/A: 1022303706942 doi: 10.1023/A:1022303706942 Doherty, J., Brebber, L., Whyte, P., 2004. PEST, Model-Independent Parameter Estimation-User Manual. 5th Edition. Watermark Numerical Computing, Brisbane, Australia. Gao, W., Zhou, F., Dong, Y. J., et al., 2014. PEST-Based Multi-Objective Automatic Calibration of Hydrologic Parameters for HSPF Model. Journal of Natural Resources, 29(5): 855-867(in Chinese with English abstract). Goovaerts, P., 2001. Geostatistical Modelling of Uncertainty in Soil Science. Geoderma, 103(1/2): 3-26. https://doi.org/10.1016/s0016-7061(01)00067-2 He, F., Wu, J. C., 2003. Markov Chain-Based Multi-Indicator Geostatistical Model. Hydrogeology and Engineering Geology, 30(5): 28-32(in Chinese with English abstract). Jarray, H., Zammouri, M., Ouessar, M., 2020. Assessment of Groundwater Salinization Using PEST and Sensitivity Analysis: Case of Zeuss-Koutine and Mio-Plio-Quaternary Aquifers. Arabian Journal of Geosciences, 13(19): 999. https://doi.org/10.1007/s12517-020-05976-6 Koch, J., He, X., Jensen, K. H., et al., 2014. Challenges in Conditioning a Stochastic Geological Model of a Heterogeneous Glacial Aquifer to a Comprehensive Soft Data Set. Hydrology and Earth System Sciences, 18(8): 2907-2923. https://doi.org/10.5194/hess-18-2907-2014 Krumbein, W. C., 1968. Fortran Ⅳ Program for Simulation of Transgression and Regression with Continuous-Time Markov Models. University of Kansas State Geological Survey, 1-18. Langousis, A., Kaleris, V., Kokosi, A., et al., 2018. Markov Based Transition Probability Geostatistics in Groundwater Applications: Assumptions and Limitations. Stochastic Environmental Research and Risk Assessment, 32(7): 2129-2146. https://doi.org/10.1007/s00477-017-1504-y Lee, S. Y., Carle, S. F., Fogg, G. E., 2007. Geologic Heterogeneity and a Comparison of Two Geostatistical Models: Sequential Gaussian and Transition Probability-Based Geostatistical Simulation. Advances in Water Resources, 30(9): 1914-1932. https://doi.org/10.1016/j.advwatres.2007.03.005 Lin, C., Harbaugh, J. W., 1984. Graphic Display of Two- and Three-Dimensional Markov Computer Models in Geology. Van Nostrand Reinhold, New York. Luo, F., Du, S. H., Huang, Y., et al., 2022. Determining the Boundary of the Jiali-Palongzangbu Tectonic Mélange Belt Based on Airborne Geophysical Prospecting and Its Engineering Geological Risk. Earth Science, 47(3): 779-793 (in Chinese with English abstract). Ma, L., Deng, H., Yan, Y. S., et al., 2022. Hydrofacies Simulation Based on Transition Probability Geostatistics Using Electrical Resistivity Tomography and Borehole Data. Hydrogeology Journal, 30(7): 2117-2134. https://doi.org/10.1007/s10040-022-02539-9 Manchuk, J. G., Deutsch, C. V., 2012. A Flexible Sequential Gaussian Simulation Program: USGSIM. Computers & Geosciences, 41: 208-216. https://doi.org/10.1016/j.cageo.2011.08.013 Marquardt, D. W., 1963. An Algorithm for Least-Squares Estimation of Nonlinear Parameters. Journal of the Society for Industrial and Applied Mathematics, 11(2): 431-441. https://doi.org/10.1137/0111030 Park, Y. J., Sudicky, E. A., McLaren, R. G., et al., 2004. Analysis of Hydraulic and Tracer Response Tests within Moderately Fractured Rock Based on a Transition Probability Geostatistical Approach. Water Resources Research, 40(12): W12404. https://doi.org/10.1029/2004wr003188 Piccinini, L., Fabbri, P., Pola, M., et al., 2017. An Example of Aquifer Heterogeneity Simulation to Modeling Well-Head Protection Areas. Italian Journal of Engineering Geology and Environment, Special Issue: 103-115. doi: 10.4408/IJEGE.2017-01.S-10 Politis, D. N., 1994. Markov Chains in Many Dimensions. Advances in Applied Probability, 26(3): 756-774. https://doi.org/10.2307/1427819 Siena, M., Riva, M., 2020. Impact of Geostatistical Reconstruction Approaches on Model Calibration for Flow in Highly Heterogeneous Aquifers. Stochastic Environmental Research and Risk Assessment, 34(10): 1591-1606. https://doi.org/10.1007/s00477-020-01865-2 Sun, Q., Shao, J. L., Wang, Y. L., et al., 2019. Research on Appropriate Borehole Density for Establishing Reliable Geological Model Based on Quantitative Uncertainty Analysis. Arabian Journal of Geosciences, 12(13): 410. https://doi.org/10.1007/s12517-019-4533-7 Sun, Q., Shao, J. L., Cui, Y. L., et al., 2019. Numerical Simulations of Groundwater Based on Three-Dimensional Stochastic Hydrogeologic Structure Model: A Case Study from West Liaohe Plain. Geoscience, 33(2): 451-460(in Chinese with English abstract). Teramoto, E. H., Engelbrecht, B. Z., Gonçalves, R. D., et al., 2021. Probabilistic Backward Location for the Identification of Multi-Source Nitrate Contamination. Stochastic Environmental Research and Risk Assessment, 35(4): 941-954. https://doi.org/10.1007/s00477-020-01966-y Wang, X. C., Deng, X. H., Chen, X. D., et al., 2021. Application Effect of TEM Based on High Temperature Superconducting Sensor in Qingchengzi Ore-Concentrated Area. Earth Science, 46(5): 1871-1880(in Chinese with English abstract). Xie, J., Liu, Y., Li, X. Q., et al., 2021. The Application of Opposing Coils Transient Electromagnetics in the Detection of Karst Subsidence Area. Coal Geology & Exploration, 49(3): 212-218, 226(in Chinese with English abstract). Yao, C. C., Wei, J. H., 2015. Case Study of Parameter Auto-Calibration of Distributed Parameter Model Based on Condor Algorithm. South-to-North Water Transfers and Water Science & Technology, 13(4): 733-736, 770(in Chinese with English abstract). 高伟, 周丰, 董延军, 等, 2014. 基于PEST的HSPF水文模型多目标自动校准研究. 自然资源学报, 29(5): 855-867. 何芳, 吴吉春, 2003. 基于马尔可夫链的多元指示地质统计模型. 水文地质工程地质, 30(5): 28-32. 罗锋, 杜世回, 黄勇, 等, 2022. 基于航空物探的嘉黎-帕隆藏布构造混杂岩带边界厘定及其工程地质风险. 地球科学, 47(3): 779-793. doi: 10.3799/dqkx.2022.028 孙倩, 邵景力, 崔亚莉, 等, 2019. 基于三维随机水文地质结构模型的地下水流数值模拟: 以西辽河平原为例. 现代地质, 33(2): 451-460. 王兴春, 邓晓红, 陈晓东, 等, 2021. 基于高温超导的瞬变电磁法在青城子矿集区的应用. 地球科学, 46(5): 1871-1880. doi: 10.3799/dqkx.2020.383 谢嘉, 刘洋, 李兴强, 等, 2021. 等值反磁通瞬变电磁法在岩溶塌陷区探测应用. 煤田地质与勘探, 49(3): 212-218, 226. 姚晨晨, 魏加华, 2015. 基于Condor的模型参数自动识别实例研究. 南水北调与水利科技, 13(4): 733-736, 770. -
dqkxzx-49-10-3723-附图2.zip
dqkxzx-49-10-3723-附图1.zip
-