• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    塔里木新元古代裂谷盆地基底结构与演化

    陈利新 贾承造 邬光辉 黄少英 杨率 陈永权 苏洲

    陈利新, 贾承造, 邬光辉, 黄少英, 杨率, 陈永权, 苏洲, 2024. 塔里木新元古代裂谷盆地基底结构与演化. 地球科学, 49(10): 3445-3458. doi: 10.3799/dqkx.2023.150
    引用本文: 陈利新, 贾承造, 邬光辉, 黄少英, 杨率, 陈永权, 苏洲, 2024. 塔里木新元古代裂谷盆地基底结构与演化. 地球科学, 49(10): 3445-3458. doi: 10.3799/dqkx.2023.150
    Chen Lixin, Jia Chengzao, Wu Guanghui, Huang Shaoying, Yang Shuai, Chen Yongquan, Su Zhou, 2024. Basement Architecture and Evolution of Neoproterozoic Tarim Rift Basin. Earth Science, 49(10): 3445-3458. doi: 10.3799/dqkx.2023.150
    Citation: Chen Lixin, Jia Chengzao, Wu Guanghui, Huang Shaoying, Yang Shuai, Chen Yongquan, Su Zhou, 2024. Basement Architecture and Evolution of Neoproterozoic Tarim Rift Basin. Earth Science, 49(10): 3445-3458. doi: 10.3799/dqkx.2023.150

    塔里木新元古代裂谷盆地基底结构与演化

    doi: 10.3799/dqkx.2023.150
    基金项目: 

    国家自然科学重点基金项目 91955204

    国家自然科学重点基金项目 4224100017

    中国石油天然气股份有限公司科技重大专项 2018E-1806

    详细信息
      作者简介:

      陈利新(1978-),男,高级工程师,主要从事碳酸盐岩油气藏地质研究及管理工作. ORCID:0009-0003-9929-9726. E-mail:chenlx-tlm@petrochina.com.cn

    • 中图分类号: P581

    Basement Architecture and Evolution of Neoproterozoic Tarim Rift Basin

    • 摘要: 沉积盆地基底结构与演化是盆地动力学研究的重要内容,针对塔里木板块新元古代变质基底与裂谷盆地成因机制问题,综合新元古代年代学与地球化学资料研究其基底结构、构造环境与演化.结果表明,南、北塔里木地块拼合于1.9~1.8 Ga,早新元古代沉积岩系与古元古代火成岩系于780~750 Ma形成统一的变质基底,并经历多期构造-热事件作用形成南北差异的复杂变质基底结构.新元古代具有950~900 Ma、860~840 Ma、830~800 Ma、780~760 Ma的多期前展式俯冲作用,760~720 Ma、670~610 Ma的多期后撤俯冲作用,形成了转换期在约760 Ma的前展-后撤俯冲构造旋回.新元古代前展式俯冲控制了变质基底的演变,后撤俯冲控制了大陆裂谷盆地的演化,具有不同于经典威尔逊旋回的成盆动力学机制与演化过程.

       

    • 图  1  塔里木板块构造示意图(a);塔中-塔北地震剖面示前寒武系基底结构(b)

      图a据Wu et al.2021)修改;寒武系之下地震成像差,早期研究仅解释黄色线之间的坳陷,但剖面结构与塔中三维地震揭示深部可能还有更深大裂陷槽,红色虚线示可能断层

      Fig.  1.  Schematic map showing the Neoproterozoic age data and Cryogenian rifts in the Tarim Craton (a); the seismic cross the central Tarim Basin showing the Late Neoproterozoic rifts (b)

      图  2  塔里木阿克苏、叶城、库鲁克塔格晚新元古代沉积岩地层柱状对比

      据Zhou et al.2022)修改

      Fig.  2.  Stratigraphic columns and correlation of Late Neoproterozoic sedimentary rocks in Aksu, Yecheng and Kuruktag

      图  3  塔里木板块航磁ΔT等值线平面图

      据Yang et al.2018)和Wu et al.(2020). Ku.库鲁克塔格;XZR.新藏路;TSK.塔什库尔干;XXG.许许沟

      Fig.  3.  The aeromagnetic ΔT contour diagram and tectonic division in the Tarim craton

      图  4  塔里木盆地前南华系变质基底结构图

      据邬光辉等(2012)、Yang et al.2018)和Wu et al.2021)修改

      Fig.  4.  The geological map of the crystalline basement in the Tarim Basin

      图  5  塔里木板块1 100~500 Ma碎屑和岩浆锆石的εHf(t)与U-Pb年龄对比(据Wu et al.,2021

      Fig.  5.  Plots of εHf(t) versus U-Pb ages of 1 100-500 Ma detrital and magmatic zircons in the Tarim craton (after Wu et al., 2021)

      图  6  塔里木板块新元古代演化模式

      a.塔里木外围950~900 Ma北部大洋俯冲;b.约850 Ma俯冲作用下的岛弧提供了阿克苏地区南华系长英质碎屑物源;c. 820~800 Ma前展俯冲达到高峰期,岩浆活动逐渐从塔里木外围向塔里木内部推进,形成俯冲后的弧后盆地与主要物源;d. 780~760 Ma变质基底形成,塔里木出现广泛的隆升,岩浆活动遍及塔里木中部与南部;e. ~760 Ma转向后撤俯冲,造成地幔柱上涌与地壳减薄,在塔里木板块产生广泛的裂谷作用,形成巨厚南华系-震旦系裂谷建造

      Fig.  6.  Schematic diagram of the Neoproterozoic showing advancing and retreating subduction evolution of the Tarim craton

      图  7  塔里木晚新元古代裂谷盆地构造-沉积演化剖面

      Fig.  7.  A tectonic-sedimentary evolution model of the Late Neoproterozoic Tarim rift basin

    • Bhat, G. M., Craig, J., Hafiz, M., et al., 2012. Geology and Hydrocarbon Potential of Neoproterozoic-Cambrian Basins in Asia: An Introduction. Geological Society, London, Special Publications, 366(1): 1-17. https://doi.org/10.1144/SP366.15
      Cawood, P. A., Strachan, R. A., Pisarevsky, S. A., et al., 2016. Linking Collisional and Accretionary Orogens during Rodinia Assembly and Breakup: Implications for Models of Supercontinent Cycles. Earth and Planetary Science Letters, 449: 118-126. https://doi.org/10.1016/j.epsl.2016.05.049
      Chen, H. J., Chen, Y. J., Ripley, E. M., et al., 2017. Isotope and Trace Element Studies of the Xingdi Ⅱ Mafic-Ultramafic Complex in the Northern Rim of the Tarim Craton: Evidence for Emplacement in a Neoproterozoic Subduction Zone. Lithos, 278/279/280/281: 274-284. https://doi.org/10.1016/j.lithos.2017.01.014
      Collins, A. S., Pisarevsky, S. A., 2005. Amalgamating Eastern Gondwana: The Evolution of the Circum-Indian Orogens. Earth Science Reviews, 71(3): 229-270. https://doi.org/10.1016/j.earscirev.2005.02.004
      Craig, J., Thurow, J., Thusu, B., et al., 2009. Global Neoproterozoic Petroleum Systems: The Emerging Potential in North Africa. Geological Society, London, Special Publications, 326(1): 1-25. https://doi.org/10.1144/sp326.1
      Dal Zilio, L., Faccenda, M., Capitanio, F., 2018. The Role of Deep Subduction in Supercontinent Breakup. Tectonophysics, 746: 312-324. https://doi.org/10.1016/j.tecto.2017.03.006
      Ge, R. F., Zhu, W. B., Wilde, S. A., et al., 2014. Neoproterozoic to Paleozoic Long-Lived Accretionary Orogeny in the Northern Tarim Craton. Tectonics, 33(3): 302-329. https://doi.org/10.1002/2013TC003501
      Guo, Z. J., Yin, A., Robinson, A., et al., 2005. Geochronology and Geochemistry of Deep-Drill-Core Samples from the Basement of the Central Tarim Basin. Journal of Asian Earth Sciences, 25(1): 45-56. https://doi.org/10.1016/j.jseaes.2004.01.016
      He, J. W., Zhu, W. B., Ge, R. F., et al., 2014. Detrital Zircon U-Pb Ages and Hf Isotopes of Neoproterozoic Strata in the Aksu Area, Northwestern Tarim Craton: Implications for Supercontinent Reconstruction and Crustal Evolution. Precambrian Research, 254: 194-209. https://doi.org/10.1016/j.precamres.2014.08.016
      He, J. Y., Xu, B., Li, D., 2019. Newly Discovered Early Neoproterozoic (ca. 900 Ma) Andesitic Rocks in the Northwestern Tarim Craton: Implications for the Reconstruction of the Rodinia Supercontinent. Precambrian Research, 325: 55-68. doi: 10.1016/j.precamres.2019.02.018
      He, Z. Y., Zhang, Z. M., Zong, K. Q., et al., 2012. Neoproterozoic Granulites from the Northeastern Margin of the Tarim Craton: Petrology, Zircon U-Pb Ages and Implications for the Rodinia Assembly. Precambrian Research, 212/213: 21-33. https://doi.org/10.1016/j.precamres.2012.04.014
      Huang, Z. Y., Long, X. P., Wang, X. C., et al., 2017. Precambrian Evolution of the Chinese Central Tianshan Block: Constraints on Its Tectonic Affinity to the Tarim Craton and Responses to Supercontinental Cycles. Precambrian Research, 295: 24-37. https://doi.org/10.1016/j.precamres.2017.04.014
      Jia, C. Z., 1997. Structural Characteristics and Oil and Gas in Tarim Basin, China. Petroleum Industry Press, Beijing(in Chinese with English abstract).
      Li, S. T., Ren, J. Y., Xing, F. C., et al., 2012. Dynamic Processes of the Paleozoic Tarim Basin and Its Significance for Hydrocarbon Accumulation—A Review and Discussion. Journal of Earth Science, 23(4): 381-394. https://doi.org/10.1007/s12583-012-0262-5
      Li, S. Z., Zhao, S. J., Liu, X., et al., 2018. Closure of the Proto-Tethys Ocean and Early Paleozoic Amalgamation of Microcontinental Blocks in East Asia. Earth-Science Reviews, 186: 37-75. https://doi.org/10.1016/j.earscirev.2017.01.011
      Li, X. Q., Ding, H. K., Peng, P., et al., 2021. Provenance of Silurian Kepingtage Formation in Tazhong Area, Tarim Basin: Evidence from Detrital Zircon U-Pb Geochronology. Earth Science, 46(8): 2819-2831(in Chinese with English abstract).
      Li, Y. J., Song, W. J., Wu, G. Y., et al., 2005. The Concealed Jinning Granodiorite and Diorite in the Central Tarim Basin. Science in China(Ser. D), 35(2): 97-104(in Chinese).
      Li, Z. X., Bogdanova, S. V., Collins, A. S., et al., 2008. Assembly, Configuration, and Break-up History of Rodinia: A Synthesis. Precambrian Research, 160(1-2): 179-210. https://doi.org/10.1016/j.precamres.2007.04.021
      Luo, J. H., Zhou, D. W., Liu, Y. Q., et al., 2007. Age Determination and Its Geological Significance of the Epimetamorphic Rocks on the Southwestern Margin of the Tarim Basin. Journal of Stratigraphy, 31(4): 391-394(in Chinese with English abstract). doi: 10.3969/j.issn.0253-4959.2007.04.011
      Ma, B. S., Tian, W. Z., Wu, G. H., et al., 2022. The Subduction-Related Great Unconformity in the Tarim Intracraton, NW China. Global and Planetary Change, 215: 103883. https://doi.org/10.1016/j.gloplacha.2022.103883
      Merdith, A. S., Williams, S. E., Brune, S., et al., 2019. Rift and Plate Boundary Evolution across Two Supercontinent Cycles. Global and Planetary Change, 173: 1-14. https://doi.org/10.1016/j.gloplacha.2018.11.006
      Merle, O., 2011. A Simple Continental Rift Classification. Tectonophysics, 513(1): 88-95. https://doi.org/10.1016/j.tecto.2011.10.004
      Nance, R. D., Murphy, J. B., Santosh, M., 2014. The Supercontinent Cycle: A Retrospective Essay. Gondwana Research, 25(1): 4-29. https://doi.org/10.1016/j.gr.2012.12.026
      Wang, C., Liu, L., Wang, Y. H., et al., 2015. Recognition and Tectonic Implications of an Extensive Neoproterozoic Volcano-Sedimentary Rift Basin along the Southwestern Margin of the Tarim Craton, Northwestern China. Precambrian Research, 257: 65-82. https://doi.org/10.1016/j.precamres.2014.11.022
      Wang, C., Wang, C., Liu, L., et al., 2013. Provenance and Ages of the Altyn Complex in Altyn Tagh: Implications for the Early Neoproterozoic Evolution of Northwestern China. Precambrian Research, 230: 193-208. https://doi.org/10.1016/j.precamres.2013.02.003
      Wu, G. H., 2016. The Structural Characteristics of Carbonate Recks and Their Effects on Hydrocarbon Exploration in Craton Basin. Science Press, Beijing(in Chinese).
      Wu, G. H., Li, H. W., Xu, Y. L., et al., 2012. The Tectonothermal Events, Architecture and Evolution of Tarim Craton Basement Palaeo-Uplifts. Acta Petrologica Sinica, 28(8): 2435-2452(in Chinese with English abstract).
      Wu, G. H., Xiao, Y., He, J. Y., et al., 2019. Geochronology and Geochemistry of the Late Neoproterozoic A-Type Granitic Clasts in the Southwestern Tarim Craton: Petrogenesis and Tectonic Implications. International Geology Review, 61(3): 280-295. https://doi.org/10.1080/00206814.2017.1423521
      Wu, G. H., Xiao, Y., Liu, W., et al., 2018. Ca. 850 Ma Magmatic Event in the Tarim Craton: Age, Geochemistry and Its Implications for the Assemblage of the Rodinia Supercontinent. Precambrian Research, 305, 489-503. doi: 10.1016/j.precamres.2017.10.020
      Wu, G. H., Yang, S., Liu, W., et al., 2021. Switching from Advancing to Retreating Subduction in the Neoproterozoic Tarim Craton, NW China: Implications for Rodinia Breakup. Geoscience Frontiers, 12(1): 161-171. https://doi.org/10.1016/j.gsf.2020.03.013
      Wu, G. H., Yang, S., Meert, J., et al., 2020. Two Phases of Paleoproterozoic Orogenesis in the Tarim Craton: Implications for Columbia Assembly. Gondwana Research, 83: 201-216. https://doi.org/10.1016/j.gr.2020.02.009
      Wu, G. H., Zhang, B. S., Su, W., et al., 2009. Detrital Zircon U-Pb Ages and Its Significance of Silurian from Tazhong Area in Tarim Basin. Chinese Journal of Geology, 44(3): 1025-1035(in Chinese with English abstract). doi: 10.3321/j.issn:0563-5020.2009.03.019
      Wu, H. X., Zhang, F. Q., Dilek, Y., et al., 2022. Mid-Neoproterozoic Collision of the Tarim Craton with the Yili-Central Tianshan Block towards the Final Assembly of Supercontinent Rodinia: A New Model. Earth Science Reviews, 228: 103989. https://doi.org/10.1016/j.earscirev.2022.103989
      Xiao, Y., Wu, G. H., Vandyk, T. M., et al., 2019. Geochronological and Geochemical Constraints on Late Cryogenian to Early Ediacaran Magmatic Rocks on the Northern Tarim Craton: Implications for Tectonic Setting and Affinity with Gondwana. International Geology Review, 61(17): 2100-2117. https://doi.org/10.1080/00206814.2019.1581847
      Xu, B., Xiao, S., Zou, H., et al., 2009. SHRIMP Zircon U-Pb Age Constraints on Neoproterozoic Quruqtagh Diamictites in NW China. Precambrian Research, 168(3/4): 247-258. https://doi.org/10.1016/j.precamres.2008.10.008
      Xu, Z. Q., He, B. Z., Zhang, C. L., et al., 2013a. Tectonic Framework and Crustal Evolution of the Precambrian Basement of the Tarim Block in NW China: New Geochronological Evidence from Deep Drilling Samples. Precambrian Research, 235: 150-162. https://doi.org/10.1016/j.precamres.2013.06.001
      Xu, B., Zou, H. B., Chen, Y., et al., 2013b. The Sugetbrak Basalts from Northwestern Tarim Block of Northwest China: Geochronology, Geochemistry and Implications for Rodinia Breakup and Ice Age in the Late Neoproterozoic. Precambrian Research, 236: 214-226. https://doi.org/10.1016/j.precamres.2013.07.009
      Yang, H. J., Wu, G. H., Kusky, T. M., et al., 2018. Paleoproterozoic Assembly of the North and South Tarim Terranes: New Insights from Deep Seismic Profiles and Precambrian Granite Cores. Precambrian Research, 305: 151-165. https://doi.org/10.1016/j.precamres.2017.11.015
      Ye, X. T., Zhang, C. L., 2020. Advances in Meso- to Neoproterozoic Stratigraphy of the Southwestern Tarim. Geological Survey and Research, 43(2): 161-168(in Chinese with English abstract).
      Young, G. M., 2013. Precambrian Supercontinents, Glaciations, Atmospheric Oxygenation, Metazoan Evolution and an Impact That may have Changed the Second Half of Earth History. Geoscience Frontiers, 4(3): 247-261. doi: 10.1016/j.gsf.2012.07.003
      Zhang, C. L., Li, H. K., Wang, H. Y., 2012. A Review on Precambrian Tectonic Evolution of Tarim Block; Possibility of Interaction between Neoproterozoic Plate Subduction and Mantle Plume. Geological Review, 58(5): 923-936(in Chinese with English abstract). doi: 10.3969/j.issn.0371-5736.2012.05.014
      Zhang, C. L., Li, Z. X., Li, X. H., et al., 2009. Neoproterozoic Mafic Dyke Swarms at the Northern Margin of the Tarim Block, NW China: Age, Geochemistry, Petrogenesis and Tectonic Implications. Journal of Asian Earth Sciences, 35(2): 167-179. https://doi.org/10.1016/j.jseaes.2009.02.003
      Zhang, C. L., Ye, X. T., Zou, H. B., et al., 2016. Neoproterozoic Sedimentary Basin Evolution in Southwestern Tarim, NW China: New Evidence from Field Observations, Detrital Zircon U-Pb Ages and Hf Isotope Compositions. Precambrian Research, 280: 31-45. https://doi.org/10.1016/j.precamres.2016.04.011
      Zhang, C. L., Zou, H. B., Li, H. K., et al., 2013. Tectonic Framework and Evolution of the Tarim Block in NW China. Gondwana Research, 23(4): 1306-1315. https://doi.org/10.1016/j.gr.2012.05.009
      Zhang, J., Zhang, C. L., Li, H. K., et al., 2014. Revisit to Time and Tectonic Environment of the Aksu Blueschist Terrane in Northern Tarim, NW China: New Evidence from Zircon U-Pb Age and Hf Isotope. Acta Petrologica Sinica, 30(11): 3357-3365(in Chinese with English abstract).
      Zhang, J. X., Li, H. K., Meng, F. C., et al., 2011. Polyphase Tectonothermal Events Recorded in "Metamorphic Basement" from the Altyn Tagh, the Southeastern Margin of the Tarim Basin, Western China: Constraint from U-Pb Zircon Geochronology. Acta Petrologica Sinica, 27(1): 23-46(in Chinese with English abstract).
      Zhang, N., Dang, Z., Huang, C., et al., 2018. The Dominant Driving Force for Supercontinent Breakup: Plume Push or Subduction Retreat? Geoscience Frontiers, 9(4): 997-1007. https://doi.org/10.1016/j.gsf.2018.01.010
      Zhang, Y. G., Yao, X. Z., Wang, J., et al., 2022. U-Pb Ages and Europium Anomalies of Detrital Zircons from Sediments in the West Kunlun Orogenic Belt: Implications for the Proto-Tethys Ocean Evolution. Journal of Earth Science. https://doi.org/10.1007/s12583-022-1671-8
      Zhou, X. J., Tian, W. Z., Wu, G. H., et al., 2022. Geochemistry and U-Pb-Hf Zircon Systematics of Cryogenian Syn-Rift Magmatic Rocks from the Subsurface of the Tarim Craton: Implications for Subduction-Related Continental Rifting. Precambrian Research. https://10.1016/j.precamres.2022.106733 doi: 10.1016/j.precamres.2022.106733
      Zhu, W. B., Zheng, B. H., Shu, L. S., et al., 2011. Neoproterozoic Tectonic Evolution of the Precambrian Aksu Blueschist Terrane, Northwestern Tarim, China: Insights from LA-ICP-MS Zircon U-Pb Ages and Geochemical Data. Precambrian Research, 185(3/4): 215-230. https://doi.org/10.1016/j.precamres.2011.01.012
      Zou, C. N., Zhai, G. M., Zhang, G. Y., et al., 2015. Formation, Distribution, Potential and Prediction of Global Conventional and Unconventional Hydrocarbon Resources. Petroleum Exploration and Development, 42(1): 14-28. https://doi.org/10.1016/S1876-3804(15)60002-7
      Zou, Y. R., Ta, J., Xing, Z. Y., et al., 2014. Evolution of Sedimentary Basins in Tarim during Neoproterozoic-Paleozoic. Earth Science, 39(8): 1200-1216(in Chinese with English abstract).
      贾承造, 1997. 中国塔里木盆地构造特征与油气. 北京: 石油工业出版社.
      李祥权, 丁洪坤, 彭鹏, 等, 2021. 塔里木盆地塔中志留系柯坪塔格组物源示踪: 碎屑锆石U-Pb年代学证据. 地球科学, 46(8): 2819-2831.
      李曰俊, 宋文杰, 吴根耀, 等, 2005. 塔里木盆地中部隐伏的晋宁期花岗闪长岩和闪长岩. 中国科学(D辑: 地球科学), 35(2): 97-104.
      罗金海, 周鼎武, 柳益群, 等, 2007. 塔里木盆地西南缘浅变质岩的时代确定及其地质意义. 地层学杂志, 31(4): 391-394.
      邬光辉, 2016. 克拉通碳酸盐岩构造与油气: 以塔里木盆地为例. 北京: 科学出版社.
      邬光辉, 李浩武, 徐彦龙, 等, 2012. 塔里木克拉通基底古隆起构造-热事件及其结构与演化. 岩石学报, 28(8): 2435-2452.
      邬光辉, 张宝收, 苏文, 等, 2009. 塔中地区志留系碎屑锆石测年及其地质意义. 地质科学, 44(3): 1025-1035.
      叶现韬, 张传林, 2020. 塔里木西南中-新元古界研究进展. 地质调查与研究, 43(2): 161-168.
      张传林, 李怀坤, 王洪燕, 2012. 塔里木地块前寒武纪地质研究进展评述. 地质论评, 58(5): 923-936.
      张健, 张传林, 李怀坤, 等, 2014. 再论塔里木北缘阿克苏蓝片岩的时代和成因环境: 来自锆石U-Pb年龄、Hf同位素的新证据. 岩石学报, 30(11): 3357-3365.
      张建新, 李怀坤, 孟繁聪, 等, 2011. 塔里木盆地东南缘(阿尔金山)"变质基底" 记录的多期构造热事件: 锆石U-Pb年代学的制约. 岩石学报, 27(1): 23-46.
      邹亚锐, 塔吉古丽, 邢作云, 等, 2014. 塔里木新元古代-古生代沉积盆地演化. 地球科学, 39(8): 1200-1216.
    • 加载中
    图(7)
    计量
    • 文章访问数:  1114
    • HTML全文浏览量:  344
    • PDF下载量:  426
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-01-17
    • 网络出版日期:  2024-11-08
    • 刊出日期:  2024-10-25

    目录

      /

      返回文章
      返回