• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    新疆东部平原区地下水无机污染物空间分布、源解析及健康风险评价

    丁启振 周殷竹 周金龙 曾妍妍 孙英 韩双宝 刘江涛

    丁启振, 周殷竹, 周金龙, 曾妍妍, 孙英, 韩双宝, 刘江涛, 2024. 新疆东部平原区地下水无机污染物空间分布、源解析及健康风险评价. 地球科学, 49(11): 4008-4021. doi: 10.3799/dqkx.2023.152
    引用本文: 丁启振, 周殷竹, 周金龙, 曾妍妍, 孙英, 韩双宝, 刘江涛, 2024. 新疆东部平原区地下水无机污染物空间分布、源解析及健康风险评价. 地球科学, 49(11): 4008-4021. doi: 10.3799/dqkx.2023.152
    Ding Qizhen, Zhou Yinzhu, Zhou Jinlong, Zeng Yanyan, Sun Ying, Han Shuangbao, Liu Jiangtao, 2024. Spatial Distribution, Source Apportionment and Health Risk Assessment of Inorganic Pollutant in Groundwater in Eastern Plain of Xinjiang. Earth Science, 49(11): 4008-4021. doi: 10.3799/dqkx.2023.152
    Citation: Ding Qizhen, Zhou Yinzhu, Zhou Jinlong, Zeng Yanyan, Sun Ying, Han Shuangbao, Liu Jiangtao, 2024. Spatial Distribution, Source Apportionment and Health Risk Assessment of Inorganic Pollutant in Groundwater in Eastern Plain of Xinjiang. Earth Science, 49(11): 4008-4021. doi: 10.3799/dqkx.2023.152

    新疆东部平原区地下水无机污染物空间分布、源解析及健康风险评价

    doi: 10.3799/dqkx.2023.152
    基金项目: 

    国家科技基础资源调查专项“第三次新疆综合科学考察”项目“吐哈盆地水资源调查和承载力评估” 2021xjkk1000

    详细信息
      作者简介:

      丁启振(1998-),男,博士研究生,主要研究方向为干旱区地下水水质演化. ORCID:0000-0003-4304-3628. E-mail:1650655141@qq.com

      通讯作者:

      周金龙,ORCID:0000-0001-5055-0252. E-mail:zjzhoujl@163.com

    • 中图分类号: P641

    Spatial Distribution, Source Apportionment and Health Risk Assessment of Inorganic Pollutant in Groundwater in Eastern Plain of Xinjiang

    • 摘要: 地下水是新疆东部平原区主要的、甚至唯一的饮用水源,地下水中无机组分的污染情况及其对人体健康的负面影响尚不明晰.对该区域183组地下水样品中常见无机组分浓度进行测定,运用GIS技术揭示污染物空间分布特征,以正定矩阵分解模型(PMF)进行源解析,基于USEPA健康风险评价模型的蒙特卡洛模拟(MCS)和PMF耦合量化潜在来源的健康风险.新疆东部平原区地下水水质主要受SO42‒和Cl的影响,分别有30.60%和17.49%的地下水超过国家生活饮用水标准限值(250 mg·L‒1),高值点集中位于巴里坤县三塘湖镇、高昌区东南部和鄯善县东部.PMF解析出溶滤‒蒸发浓缩作用、含水层岩性、农业活动、生物地球化学作用、氧化还原环境和地质环境背景6个地下水无机组分的潜在来源,贡献率分别为82.43%、7.64%、6.87%、1.96%、0.80%和0.30%.健康风险评价结果表明:Cl是危害人体健康的主要无机污染物,成人和儿童的非致癌风险可忽略不计,溶滤‒蒸发浓缩作用对区内成人和儿童非致癌风险的贡献率均 > 95.00%,考虑饮用水安全,应选择Cl地下水高值区为主要污染管理区.

       

    • 图  1  新疆东部平原区地理位置、地层分布(a),2020年的土地利用类型、地下水等水位线、取样点分布(b),水文地质剖面(c.改自陈鲁, 2014; 白铭等, 2015)

      Fig.  1.  Geographical location and stratigraphic distribution of the eastern Xinjiang plain (a), land use types, groundwater contour and sampling points distribution in 2020 (b), hydrogeological profile (c. modified from Chen (2014) and Bai et al.(2015))

      图  2  地下水中TDS(a)、TH(b)、pH(c)、Cl(d)、SO42‒(e)、Fe(f)、F(g)、NO3(h)、NH4+(i)、NO2(j)空间分布

      Fig.  2.  Horizontal distribution of TDS(a), TH(b), pH(c), Cl(d), SO42‒(e), Fe(f), F(g), NO3(h), NH4+(i), NO2(j) in groundwater

      图  3  地下水无机组分的来源解析

      模型中各因素的贡献率(a)、各组分对因素的贡献率(b)、因素贡献率与Pearson相关分析(c)

      Fig.  3.  Source apportionment of inorganic components in groundwater

      图  4  地下水NO3与Cl (a)、(NO3)/(Na+)与(Cl)/(Na+)(b)的关系

      Fig.  4.  Relation diagrams of NO3 and Cl (a), (NO3)/(Na+) and (Cl)/(Na+)(b) in groundwater

      图  5  地下水危险系数概率分布,包括Cl(a)、SO42‒(b)、Fe(c)、NH4+(d)、NO3(e)、NO2(f)、F(g), 危险指数HI(h)

      Fig.  5.  Probability distribution of hazard quotient (HQ), including Cl(a), SO42‒(b), Fe(c), NH4+(d), NO3(e), NO2(f), F(g), hazard index HI(h)

      图  6  成人(a)和儿童(b)饮水暴露途径下健康风险参数敏感性

      Fig.  6.  Sensitivity of health risk parameters in adults (a) and children (b) by water exposure routes

      图  7  潜在污染源对成人(a)和儿童(b)健康风险的贡献

      Fig.  7.  Contribution of potential sources of pollution to health risks for adults (a) and children (b)

      表  1  风险评估模型中的暴露因子参数

      Table  1.   Exposure factor parameters in risk assessment model

      暴露因素 类型 人群 参考文献
      成人 儿童
      BW(kg) 对数正态 LN(57.03, 1.10) LN(16.68, 1.48) (Mukherjee et al., 2022)
      IR(L/d) 对数正态 LN(1.23, 0.27) (1.12, 0.27) (Soleimani et al., 2022)
      L(a) 均匀分布 U (0, 70) U (0, 10) (Lei et al., 2022)
      RfD[mg/(kg·d)] F (0.06) 1, NO3 (1.6) 1, NO2(0.1)1, Cl (0.1)1,
      SO42‒ (120)1, Fe (0.3) 1, NH4+(1.0)2
      1(Lei et al., 2022)
      2(赵政阳, 2021)
      下载: 导出CSV

      表  2  地下水无机组分的描述性统计(N=183)

      Table  2.   Descriptive statistics of inorganic components in groundwater (N=183)

      指标 最小值 最大值 平均值 标准差 中间值 变异系数(%) 检出限 检出率(%) Ⅲ类限值a 超标率(%)
      pH 6.85 8.93 7.83 0.39 7.89 5.0 0.01 100.00 6.5≤pH≤8.5 2.19
      TDS 90.17 6 499.88 895.90 1 194.55 428.60 133.3 0.1 100.00 1 000 25.14
      TH 38.67 3 542.80 328.88 419.26 192.00 127.5 0.1 100.00 450 18.03
      Cl 5.22 2 637.50 193.06 383.63 49.60 198.7 0.1 100.00 250 17.49
      SO42‒ 3.07 2 302.38 302.69 432.35 96.10 142.8 0.1 100.00 250 30.60
      F < 0.01 3.46 0.56 0.54 0.37 96.5 0.01 98.91 1 15.30
      Fe < 0.01 1.57 0.09 0.21 0.03 223.6 0.01 98.91 0.3 6.56
      NO3-N < 0.2 57.48 3.94 7.11 1.57 180.4 0.2 92.35 20/10a 3.83/7.65
      NH4+-N < 0.02 7.88 0.19 0.69 0.04 370.4 0.02 73.77 0.5 4.92
      NO2-N < 0.002 2.00 0.04 0.19 0.01 430.8 0.002 87.43 1 1.09
      注:除pH外,其余组分单位均为mg·L‒1;限值来自《地下水质量标准》(GB/T 14848-2017),a限值来自《生活饮用水卫生标准》(GB/T 5749-2022).
      下载: 导出CSV

      表  3  基于蒙特卡罗模拟的非致癌健康风险参数统计

      Table  3.   Statistics of non-carcinogenic health risk parameters based on Monte Carlo simulation

      风险 指标 均值(中位数) 标准偏差 95%置信区间
      成人 儿童 成人 儿童 成人 儿童
      HQ Cl- 7.78E-06(6.39E-07) 1.69E-04(1.48E-05) 1.88E-04 5.32E-03 (4.09E-06, 1.15E-05) (6.47E-05, 2.73E-04)
      SO42- 1.56E-08(1.06E-09) 1.49E-07(2.20E-08) 9.85E-07 1.63E-06 (-3.72E-09, 3.49E-08) (1.17E-07, 1.81E-07)
      Fe 1.44E-09(9.83E-11) 2.77E-08(2.13E-09) 4.90E-08 6.17E-07 (4.80E-10, 2.40E-09) (1.56E-08, 3.98E-08)
      NH4+ 9.36E-10(4.90E-11) 1.37E-08(1.05E-09) 4.02E-08 2.71E-07 (1.48E-10, 1.72E-09) (8.43E-09, 1.09E-08)
      NO3- 7.86E-08(3.99E-09) 7.39E-07(8.49E-08) 3.85E-06 1.45E-05 (3.28E-09, 1.54E-07) (4.56E-07, 1.02E-06)
      NO2- 2.70E-10(1.54E-11) 1.12E-07(5.47E-09) 5.28E-09 3.33E-06 (1.66E-10, 3.73E-10) (4.66E-08, 1.77E-07)
      F- 2.83E-08(4.80E-09) 5.79E-07(1.02E-07) 5.09E-07 9.55E-06 (1.83E-08, 3.82E-08) (3.92E-07, 7.66E-07)
      HI HQ 7.91E-06(6.49E-07) 1.71E-04(1.50E-05) 1.93E-04 5.35E-03 (4.11E-06, 1.17E-05) (6.57E-05, 2.75E-04)
      下载: 导出CSV
    • Ali, S., Ali, H., Pakdel, M., et al., 2022. Spatial Analysis and Probabilistic Risk Assessment of Exposure to Fluoride in Drinking Water Using GIS and Monte Carlo Simulation. Environmental Science and Pollution Research International, 29(4): 5881-5890. https://doi.org/10.1007/s11356-021-16075-8
      Bai, F., Zhou, J. L., Zeng, Y. Y., 2022. Hydrochemical Characteristics and Quality of Groundwater in the Plains of the Turpan Basin. Arid Zone Research, 39(2): 419-428 (in Chinese with English abstract).
      Bai, M., Zhang, J., Li, X. X., et al., 2015. Distribution Characteristic of Groundwater Storage in Santanghu Basin of Balikun County, Xinjiang. Xinjiang Geology, 33(2): 270-274 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-8845.2015.02.023
      Chen, L., 2014. The Study of Regional Hydrogeological Conditions and Groundwater Circulation in Turpan Basin (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      Chen, L., Wang, G. C., Hu, F. S., et al., 2014. Groundwater Hydrochemistry and Isotope Geochemistry in the Turpan Basin, North Western China. Journal of Arid Land, 6(4): 378-388. https://doi.org/10.1007/s40333-013-0249-9
      Chen, Z. Q., Ma, T., Chen, L. Z., et al., 2023. Distribution and Formation of Shallow Groundwater with High Fluoride in Houtao Plain. Earth Science, 48(10): 3856-3865 (in Chinese with English abstract).
      Gulgundi, M. S., Shetty, A., 2019. Source Apportionment of Groundwater Pollution Using Unmix and Positive Matrix Factorization. Environmental Processes, 6(2): 457-473. https://doi.org/10.1007/s40710-019-00373-y
      Guo, X. R., Zuo, R., Shan, D., et al., 2017. Source Apportionment of Pollution in Groundwater Source Area Using Factor Analysis and Positive Matrix Factorization Methods. Human and Ecological Risk Assessment, 23(6): 1417-1436. https://doi.org/10.1080/10807039.2017.1322894
      Han, L. L., Wang, H. L., Ge, L. H., et al., 2023. Transition of Source/Sink Processes and Fate of Ammonium in Groundwater along with Redox Gradients. Water Research, 231: 119600. https://doi.org/10.1016/j.watres.2023.119600
      Huston, R., Chan, Y. C., Chapman, H., et al., 2012. Source Apportionment of Heavy Metals and Ionic Contaminants in Rainwater Tanks in a Subtropical Urban Area in Australia. Water Research, 46(4): 1121-1132. https://doi.org/10.1016/j.watres.2011.12.008
      Jiang, W. J., Wang, G. C., Sheng, Y. Z., et al., 2016. Enrichment and Sources of Nitrogen in Groundwater in the Turpan-Hami Area, North Western China. Exposure and Health, 8(3): 389-400. https://doi.org/10.1007/s12403-016-0209-7
      Khan, S., Cao, Q., Zheng, Y. M., et al., 2008. Health Risks of Heavy Metals in Contaminated Soils and Food Crops Irrigated with Wastewater in Beijing, China. Environmental Pollution, 152(3): 686-692. https://doi.org/10.1016/j.envpol.2007.06.056
      Lei, M., Zhou, J. L., Zhou, Y. Z., et al., 2022. Spatial Distribution, Source Apportionment and Health Risk Assessment of Inorganic Pollutants of Surface Water and Groundwater in the Southern Margin of Junggar Basin, Xinjiang, China. Journal of Environmental Management, 319: 115757. https://doi.org/10.1016/j.jenvman.2022.115757
      Leong, J. Y. C., Chong, M. N., Poh, P. E., et al., 2017. Longitudinal Assessment of Rainwater Quality under Tropical Climatic Conditions in Enabling Effective Rainwater Harvesting and Reuse Schemes. Journal of Cleaner Production, 143: 64-75. https://doi.org/10.1016/j.jclepro.2016.12.149
      Li, D. N., Gao, X. B., Wang, Y. X., et al., 2018. Diverse Mechanisms Drive Fluoride Enrichment in Groundwater in Two Neighboring Sites in Northern China. Environmental Pollution, 237: 430-441. https://doi.org/10.1016/j.envpol.2018.02.072
      Li, T. D., Liu, Y., 2022. Optimize Ecological Environment and Ensure People's Health. Earth Science, 47(10): 3477-3490 (in Chinese with English abstract).
      Liang, X. J., Xiao, C. L., Sheng, H. X., et al., 2007. Migration and Transformation of Ammonia-Nitrite-Nitrates in Groundwater in the City of Jilin. Journal of Jilin University (Earth Science Edition), 37(2): 335-340, 345 (in Chinese with English abstract).
      Liu, J. T., Peng, Y. M., Li, C. S., et al., 2021. An Investigation into the Hydrochemistry, Quality and Risk to Human Health of Groundwater in the Central Region of Shandong Province, North China. Journal of Cleaner Production, 282: 125416. https://doi.org/10.1016/j.jclepro.2020.125416
      Liu, L. N., Wu, J. H., He, S., et al., 2022. Occurrence and Distribution of Groundwater Fluoride and Manganese in the Weining Plain (China) and Their Probabilistic Health Risk Quantification. Exposure and Health, 14(2): 263-279. https://doi.org/10.1007/s12403-021-00434-4
      Lu, M. A., 2007. Multistage Evolution of the Basin-and-Range Structure of the Eastern Section of the Tianshan Mountains (Dissertation). Institute of Geology, China Earthquake Administration, Beijing (in Chinese with English abstract).
      Luan, F. J., Zhou, J. L., Jia, R. L., et al., 2016. Analysis and Evaluation of Groundwater Quality in the Plain Areas of Barkol-Yiwu Basin, Xinjiang. Journal of Xinjiang Agricultural University, 39(3): 253-258 (in Chinese with English abstract). doi: 10.3969/j.issn.1007-8614.2016.03.014
      Luan, F. J., Zhou, J. L., Jia, R. L., et al., 2017. Hydrochemical Characteristics and Formation Mechanism of Groundwater in Plain Areas of Barkol-Yiwu Basin, Xinjiang. Environmental Chemistry, 36(2): 380-389 (in Chinese with English abstract).
      Ma, W. C., Tai, L. Y., Qiao, Z., et al., 2018. Contamination Source Apportionment and Health Risk Assessment of Heavy Metals in Soil around Municipal Solid Waste Incinerator: A Case Study in North China. Science of the Total Environment, 631: 348-357. https://doi.org/10.1016/j.scitotenv.2018.03.011
      Morisset, T., Ramirez-Martinez, A., Wesolek, N., et al., 2013. Probabilistic Mercury Multimedia Exposure Assessment in Small Children and Risk Assessment. Environment International, 59: 431-441. https://doi.org/10.1016/j.envint.2013.07.003
      Mukherjee, I., Singh, U. K., 2022. Environmental Fate and Health Exposures of the Geogenic and Anthropogenic Contaminants in Potable Groundwater of Lower Ganga Basin, India. Geoscience Frontiers, 13(3): 101365. https://doi.org/10.1016/j.gsf.2022.101365
      Paatero, P., Tapper, U., 1994. Positive Matrix Factorization: A Non-Negative Factor Model with Optimal Utilization of Error Estimates of Data Values. Environmetrics, 5(2): 111-126. https://doi.org/10.1002/env.3170050203
      Ramesh, R., Subramanian, M., Lakshmanan, E., et al., 2021. Human Health Risk Assessment Using Monte Carlo Simulations for Groundwater with Uranium in Southern India. Ecotoxicology and Environmental Safety, 226: 112781. https://doi.org/10.1016/j.ecoenv.2021.112781
      Raza, M., Hussain, F., Lee, J. Y., et al., 2017. Groundwater Status in Pakistan: A Review of Contamination, Health Risks, and Potential Needs. Critical Reviews in Environmental Science and Technology, 47(18): 1713-1762. https://doi.org/10.1080/10643389.2017.1400852
      Rodvang, S. J., Mikalson, D. M., Ryan, M. C., 2004. Changes in Ground Water Quality in an Irrigated Area of Southern Alberta. Journal of Environmental Quality, 33(2): 476-487. https://doi.org/10.2134/jeq2004.4760
      Soleimani, H., Nasri, O., Ghoochani, M., et al., 2022. Groundwater Quality Evaluation and Risk Assessment of Nitrate Using Monte Carlo Simulation and Sensitivity Analysis in Rural Areas of Divandarreh County, Kurdistan Province, Iran. International Journal of Environmental Analytical Chemistry, 102(10): 2213-2231. https://doi.org/10.1080/03067319.2020.1751147
      Veizis, I. E., Cotton, C. U., 2007. Role of Kidney Chloride Channels in Health and Disease. Pediatric Nephrology, 22(6): 770-777. https://doi.org/10.1007/s00467-006-0355-4
      Wang, G. X., Cheng, G. D., 2000. The Distributing Regularity of Fluorine and Its Environmental Characteristics in Arid Area of Northwest China. Scientia Geographica Sinica, 20(2): 153-159 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0690.2000.02.011
      Yang, M. R., Li, F. X., Huang, C. Y., et al., 2023. VOC Characteristics and Their Source Apportionment in a Coastal Industrial Area in the Yangtze River Delta, China. Journal of Environmental Sciences, 127: 483-494. https://doi.org/10.1016/j.jes.2022.05.041
      Yu, J. W., Zhou, J. L., Long, A. H., et al., 2019. A Comparative Study of Water Quality and Human Health Risk Assessment in Longevity Area and Adjacent Non-Longevity Area. International Journal of Environmental Research and Public Health, 16(19): 3737. https://doi.org/10.3390/ijerph16193737
      Yu, L., Zheng, T. Y., Yuan, R. Y., et al., 2022. APCS-MLR Model: A Convenient and Fast Method for Quantitative Identification of Nitrate Pollution Sources in Groundwater. Journal of Environmental Management, 314: 115101. https://doi.org/10.1016/j.jenvman.2022.115101
      Zanotti, C., Rotiroti, M., Fumagalli, L., et al., 2019. Groundwater and Surface Water Quality Characterization through Positive Matrix Factorization Combined with GIS Approach. Water Research, 159: 122-134. https://doi.org/10.1016/j.watres.2019.04.058
      Zhang, H., Cheng, S. Q., Li, H. F., et al., 2020. Groundwater Pollution Source Identification and Apportionment Using PMF and PCA-APCA-MLR Receptor Models in a Typical Mixed Land-Use Area in Southwestern China. Science of the Total Environment, 741: 140383. https://doi.org/10.1016/j.scitotenv.2020.140383
      Zhang, X. W., He, J. T., Huang, G. X., 2021. Iron and Manganese in Shallow Groundwater in Shijiazhuang: Distribution Characteristics and a Cause Analysis. Earth Science Frontiers, 28(4): 206-218 (in Chinese with English abstract).
      Zhang, Y., Sun, J. C., Huang, G. X., et al., 2011. A Preliminary Study of Natural Background Levels of Groundwater in the Zhujiang River Delta. Geology in China, 38(1): 190-196 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2011.01.020
      Zhao, Z. Y., 2021. Water Quality Investigation and Risk Assessment of Rural Water Sources in Northeast China (Dissertation). Harbin Institute of Technology, Harbin (in Chinese with English abstract).
      白凡, 周金龙, 曾妍妍, 2022. 吐鲁番盆地平原区地下水水化学特征及水质评价. 干旱区研究, 39(2): 419-428.
      白铭, 张静, 李续续, 等, 2015. 新疆巴里坤三塘湖盆地地下水赋存分布特征. 新疆地质, 33(2): 270-274. doi: 10.3969/j.issn.1000-8845.2015.02.023
      陈鲁, 2014. 吐鲁番盆地区域水文地质条件及地下水循环研究(博士学位论文). 北京: 中国地质大学.
      陈占强, 马腾, 陈柳竹, 等, 2023. 后套平原浅层高氟地下水分布及成因. 地球科学, 48(10): 3856-3865. doi: 10.3799/dqkx.2021.237
      李廷栋, 刘勇, 2022. 优化生态环境保障人民健康. 地球科学, 47(10): 3477-3490. doi: 10.3799/dqkx.2022.870
      梁秀娟, 肖长来, 盛洪勋, 等, 2007. 吉林市地下水中"三氮" 迁移转化规律. 吉林大学学报(地球科学版), 37(2): 335-340, 345.
      卢苗安, 2007. 天山东段盆山构造格局的多期演变(博士学位论文). 北京: 中国地震局地质研究所.
      栾风娇, 周金龙, 贾瑞亮, 等, 2016. 新疆巴里坤‒伊吾盆地平原区地下水质量评价及分析. 新疆农业大学学报, 39(3): 253-258. doi: 10.3969/j.issn.1007-8614.2016.03.014
      栾风娇, 周金龙, 贾瑞亮, 等, 2017. 新疆巴里坤‒伊吾盆地地下水水化学特征及成因. 环境化学, 36(2): 380-389.
      王根绪, 程国栋, 2000. 西北干旱区水中氟的分布规律及环境特征. 地理科学, 20(2): 153-159.
      张小文, 何江涛, 黄冠星, 2021. 石家庄地区浅层地下水铁锰分布特征及影响因素分析. 地学前缘, 28(4): 206-218.
      张英, 孙继朝, 黄冠星, 等, 2011. 珠江三角洲地区地下水环境背景值初步研究. 中国地质, 38(1): 190-196. doi: 10.3969/j.issn.1000-3657.2011.01.020
      赵政阳, 2021. 东北某地区村镇水源水质调查与健康风险评价(硕士学位论文). 哈尔滨: 哈尔滨工业大学.
    • 加载中
    图(7) / 表(3)
    计量
    • 文章访问数:  518
    • HTML全文浏览量:  93
    • PDF下载量:  37
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-07-04
    • 刊出日期:  2024-11-25

    目录

      /

      返回文章
      返回