A Paleogeographic Reconstruction of the South China during the Ordovician-Devonian Constrained by Multiple Geographic Indicators
-
摘要: 华南板块有丰富的古生代生物重大演化事件的地层记录,因而是研究古地理环境变化与生物演化的天然实验室.但这一时期华南的古地理位置存在较大争议.综合利用古地磁、古生物演化事件、古地理环境变化等指标,对古生代中期华南板块不同古地理重建模型进行评价.表明现有模型很难吻合以上大多数指标.基于奥陶纪末期真极移事件以及古地磁结果,我们建立了奥陶纪末‒泥盆纪4个不同时期的华南古地理重建新模型.该模型表明华南与冈瓦那大陆的关系是动态的,具有从近到远又由远及近的运动过程.此模型可以很好地吻合华南现有古生物、古地磁及古地理环境变化等数据,为后期研究古生代地理环境与生物演化的关系提供了更准确的古地理重建基础.Abstract: South China Block is a natural laboratory for the study of paleogeographic environmental changes and biological evolution since it has myriad records of major biological evolutionary events in the Paleozoic. However, the paleogeographic location of South China during this period remains controversial. In this paper it selects and evaluates different paleogeographic reconstruction models of the South China Block in the Middle Paleozoic by using of the paleomagnetic data, paleontological evolution pattern, paleogeographic environmental changes and other indicators. It is difficult for the existing models to match most of these indicators. On the basis of the newly proposed paleogeographic reconstruction of South China at the end of Ordovician based on true polar wandering, it established the paleogeographic location model of South China at four different periods from the Late Ordovician to Devonian. The model shows that the relationship between South China and the Gondwana is dynamically evolving, with a movement from near to far and from far to near. Moreover, this model can well match the existing data of paleomagnetism, paleontology, tectonic evolution and paleogeographic environment changes in South China, which provides a high accuracy paleogeographic reconstruction for the further study of the Paleozoic environment and paleontological evolution in South China.
-
图 3 华南地区盔甲鱼类的种属亲缘关系与地史分布
据Zhu and Gai(2006);Shan et al.(2022)
Fig. 3. Species affinities and temporal distribution of galeaspids in South China
图 4 华南地区陆生维管植物种属亲缘关系与地史分布图以及属的数目变化
据王怿等(2010);Xue et al.(2018);Pawlik et al.(2020)
Fig. 4. Species affinities and temporal distribution of terrestrial vascular plants in South China
图 5 华南板块志留纪‒中泥盆世的古地理位置重建.
a.440 Ma华南板块的重建位置,据Jing et al.(2022),印支板块演化参考Liu et al.(2021),红色为奥陶纪末期真极移事件;b.本文435 Ma华南板块的重建位置;c.400 Ma华南板块的重建位置;d.380 Ma华南板块的重建位置;奥陶纪塔里木板块古地磁结果O3T,奥陶纪华北板块古地磁结果O2N,奥陶纪华北板块古地磁结果O3N,华南板块真极移事件古地磁极点O3S、S1RS,来自小溪组华南板块423 Ma古地磁极点S3XS,华南板块志留纪兰多维列世古地磁极点S1RS、S1HS,460~440 Ma塔里木板块古地磁极点S12T,志留纪塔里木板块古地磁结果S23T,志留纪塔里木板块古地磁结果D12S,泥盆纪华南板块古地磁结果D3S,泥盆纪华南板块古地磁结果D2S,泥盆纪华南板块古地磁结果D23N,泥盆纪华北板块古地磁结果
Fig. 5. Reconstruction of the Silurian-Middle Devonian paleogeographic position of the South China Block
表 1 460~370 Ma重建所用的古地磁极点
Table 1. 460‒370 Ma paleopoles used for reconstruction
陆块 极点名称 年龄(Ma) Lat Long dp dm Q 参考文献 O2S 450 45.8 11.3 2.4 4.2 7 Han et al., 2015 S1RS 438 ‒17.9 20.3 4.2 4.2 6 Jing et al., 2022 华南 D12S 400 36.1 231.4 6.5 12.5 5 D2S* 385 41.3 247.7 3.0 3.0 7 Xian et al., 2019 D3S 360 45.4 234.1 3.3 6.6 5 O2T 460 33.7 5.0 2.7 4.0 6 塔里木 S12T 433 ‒19.1 352.9 5.5 5.5 6 S23T 432 ‒12.1 338.4 4.1 7.1 6 O2N 460 ‒27.9 130.4 9.2 9.2 6 华北 O3N 450 ‒31.5 147.7 7.0 7.0 7 SN 440~420 ‒60.1 159.0 11.2 11.2 7 D23N 390~360 ‒56.0 156.0 9.2 9.2 6 460 16.9 17.1 14.6 15.4 6 450 14.9 17.0 2.4 2.4 6 440 ‒43.3 12.0 18.5 18.6 6 430 ‒47.4 13.0 15.1 17.1 6 冈瓦纳 420 ‒49.8 15.5 14.9 13.1 6 Wu et al., 2023 410 ‒51.5 16.6 15.4 13.6 6 400 ‒53.3 13.7 18.4 15.1 6 390 ‒42.3 10.2 22.7 14.0 6 380 ‒25.7 10.4 15.3 9.8 6 注:*根据 Jing et al.(2022) ,极点进行12°逆时针旋转.表 2 本文重建中地块/大陆的欧垃圾旋转参数
Table 2. Euler rotation parameters for the blocks/continents in our reconstruction
旋转的大陆 年龄(Ma) 欧拉极(Euler pole) 欧拉旋转角(Euler angle) 参考大陆 华南板块 450~440 ‒1.8 127.3 30.9 435 28.0 120.8 40.2 400 21.6 ‒4.7 ‒23.2 380 42.3 71.2 ‒44.5 掸泰地块 450~380 3.7 ‒4.6 ‒40.6 印支地块 400 ‒0.3 ‒78.1 ‒103.2 380 2.8 ‒83.8 ‒89.7 塔里木地块 450~440 35.2 74.6 31.2 435 47.4 66.5 36.7 400 58.2 54.7 46.9 380 62.0 47.9 53.3 华北板块 450 53.2 119.5 ‒130.3 North West Africa 440 59.7 120.7 ‒105.8 435 62.8 102.5 ‒103.5 400 47.6 91.3 ‒81.7 380 43.2 99.5 ‒97.7 澳大利亚板块 450~380 ‒28.1 293.2 52.1 阿拉伯地块 450~380 26.2 11.2 ‒14.2 马达加斯加地块 450~380 ‒14.9 277.6 15.7 印度板块 450~380 26.7 37.3 ‒69.4 南羌塘地块 450~380 30.2 45.5 ‒63.0 东南极板块 450~380 ‒12.4 326.2 53.3 南美板块 450~380 53.0 325.0 51.0 -
Andreev, P. S., Sansom, I. J., Li, Q., et al., 2022. The Oldest Gnathostome Teeth. Nature, 609(7929): 964-968. https://doi.org/10.1038/s41586-022-05166-2 Baranov, V. V., Qiao, L., Blodgett, R. B., 2021. Givetian Stringocephalid Brachiopods from Eastern Yunnan of Southwest China with Notes on Global Distribution of the Family Stringocephalidae. Palaeoworld, 30(1): 44-61. https://doi.org/10.1016/j.palwor.2020.03.005 Bond, D. P. G., Grasby, S. E., 2020. Late Ordovician Mass Extinction Caused by Volcanism, Warming, and Anoxia, not Cooling and Glaciation. Geology, 48(8): 777-781. https://doi.org/10.1130/g47377.1 Burrett, C., Zaw, K., Meffre, S., et al., 2014. The Configuration of Greater Gondwana—Evidence from LA-ICP-MS, U-Pb Geochronology of Detrital Zircons from the Palaeozoic and Mesozoic of Southeast Asia and China. Gondwana Research, 26(1): 31-51. https://doi.org/10.1016/j.gr.2013.05.020 Capel, E., Cleal, C. J., Xue, J. Z., et al., 2022. The Silurian-Devonian Terrestrial Revolution: Diversity Patterns and Sampling Bias of the Vascular Plant Macrofossil Record. Earth-Science Reviews, 231: 104085. https://doi.org/10.1016/j.earscirev.2022.104085 Chen, H., Tian, M., Wu, G. L., et al., 2014. The Early Paleozoic Alkaline and Mafic Magmatic Events in Southern Qinling Belt, Central China: Evidences for the Break-up of the Paleo-Tethyan Ocean. Geological Review, 60(6): 1437-1452 (in Chinese with English abstract). Chen, Y., Gai, Z. K., Li, Q., et al., 2022. A New Family of Galeaspids (Jawless Stem-Gnathostomata) from the Early Silurian of Chongqing, Southwestern China. Acta Geologica Sinica-English Edition, 96(2): 430-439. https://doi.org/10.1111/1755-6724.14909 Cheng, H. G., Li, X. Q., Yuan, H. L., et al., 2009. Strontium Isotopic Compositional Characteristics of Devonian Wrist Foot Fossils from Longmenshan and Their Paleoenvironmental Significance. Geochimica, 38(2): 187-194 (in Chinese with English abstract). Copper, P., 2002. Silurian and Devonian Reefs: 80 Million Years of Global Greenhouse between Two Ice Ages. SEPM (Society for Sedimentary Geology), 72: 181-238. https://doi.org/10.2110/pec.02.72.0181 Copper, P., Jin, J. S., 2012. Early Silurian (Aeronian) East Point Coral Patch Reefs of Anticosti Island, Eastern Canada: First Reef Recovery from the Ordovician/Silurian Mass Extinction in Eastern Laurentia. Geosciences, 2(2): 64-89. https://doi.org/10.3390/geosciences2020064 Deng, Y. Y., Fan, J. X., Zhang, S. H., et al., 2021. Timing and Patterns of the Great Ordovician Biodiversification Event and Late Ordovician Mass Extinction: Perspectives from South China. Earth-Science Reviews, 220: 103743. https://doi.org/10.1016/j.earscirev.2021.103743 Ding, L., Kapp, P., Cai, F. L., et al., 2022. Timing and Mechanisms of Tibetan Plateau Uplift. Nature Reviews Earth & Environment, 3(10): 652-667. https://doi.org/10.1038/s43017-022-00318-4 El-Tabakh, M., Mory, A., Schreiber, B. C., et al., 2004. Anhydrite Cements after Dolomitization of Shallow Marine Silurian Carbonates of the Gascoyne Platform, Southern Carnarvon Basin, Western Australia. Sedimentary Geology, 164(1-2): 75-87. https://doi.org/10.1016/j.sedgeo.2003.09.003 Fan, J. X., Shen, S. Z., Erwin, D. H., et al., 2020. A High-Resolution Summary of Cambrian to Early Triassic Marine Invertebrate Biodiversity. Science, 367(6475): 272-277. https://doi.org/10.1126/science.aax4953 Fang, D., Jin, G., Jiang, L., et al., 1996. Paleozoic Paleomagnetic Results and the Tectonic Significance of Tarim Plate. Acta Geophysica Sinica, 39: 522-532. Finney, S. C., Berry, W. B. N., Cooper, J. D., et al., 1999. Late Ordovician Mass Extinction: A New Perspective from Stratigraphic Sections in Central Nevada. Geology, 27(3): 215. https://doi.org/10.1130/0091-7613(1999)0270215: lomean>2.3.co;2 doi: 10.1130/0091-7613(1999)0270215:lomean>2.3.co;2 Fortey, R. A., Cocks, L. R. M., 1986. Marginal Faunal Belts and Their Structural Implications, with Examples from the Lower Palaeozoic. Journal of the Geological Society, 143(1): 151-160. https://doi.org/10.1144/gsjgs.143.1.0151 Fortey, R. A., Cocks, L. R. M., 2003. Palaeontological Evidence Bearing on Global Ordovician-Silurian Continental Reconstructions. Earth-Science Reviews, 61(3/4): 245-307. https://doi.org/10.1016/S0012-8252(02)00115-0 Gai, Z. K., Jiang, W. Y., Zhao, W. J., et al., 2022. Redescription of the Sanqiaspidae (Galeaspida) from the Lower Devonian of South China and Its Biostratigraphic Significance. Palaeobiodiversity and Palaeoenvironments, 102(1): 173-191. https://doi.org/10.1007/s12549-021-00486-z Gai, Z. K., Lu, L. W., Zhao, W. J., et al., 2018. New Polybranchiaspiform Fishes (Agnatha: Galeaspida) from the Middle Palaeozoic of China and Their Ecomorphological Implications. PLoS One, 13(9): e0202217. https://doi.org/10.1371/journal.pone.0202217 Gensel, P. G., 2008. The Earliest Land Plants. Annual Review of Ecology, Evolution, and Systematics, 39: 459-477. doi: 10.1146/annurev.ecolsys.39.110707.173526 Gerrienne, P., Servais, T., Vecoli, M., 2016. Plant Evolution and Terrestrialization during Palaeozoic Times—The Phylogenetic Context. Review of Palaeobotany and Palynology, 227: 4-18. https://doi.org/10.1016/j.revpalbo.2016.01.004 Gibling, M. R., Davies, N. S., 2012. Palaeozoic Landscapes Shaped by Plant Evolution. Nature Geoscience, 5: 99-105. https://doi.org/10.1038/ngeo1376 Golonka, J., 2000. Cambrian-Neogene Plate Tectonic Maps. Wydawnictwo Uniwersytetu Jagiellońskiego, Kraków, 125: 36. Han, Z. R., Yang, Z. Y., Tong, Y. B., et al., 2015. New Paleomagnetic Results from Late Ordovician Rocks of the Yangtze Block, South China, and Their Paleogeographic Implications. Journal of Geophysical Research (Solid Earth), 120(7): 4759-4772. https://doi.org/10.1002/2015JB012005 Hao, S., Xue, J., 2013. The Early Devonian Posongchong Flora of Yunnan: A Contribution to an Understanding of the Evolution and Early Diversification of Vascular Plants. Science Press, Beijing. Haq, B. U., Schutter, S. R., 2008. A Chronology of Paleozoic Sea-Level Changes. Science, 322(5898): 64-68. https://doi.org/10.1126/science.1161648 Harper, D. A. T., Zhan, R. B., Jin, J. S., 2015. The Great Ordovician Biodiversification Event: Reviewing Two Decades of Research on Diversity's Big Bang Illustrated by Mainly Brachiopod Data. Palaeoworld, 24(1-2): 75-85. https://doi.org/10.1016/j.palwor.2015.03.003 He, X. Y., Chen, J. Q., 2006. Classification of Ordovician and Silurian Coral, Biostratigraphy and Biopalaeogeography in the Yangtze Region. Earth Science Frontiers, 13(6): 145-152 (in Chinese with English abstract). Hu, Z. W., Li, Y., Li, B. K., H., et al., 2015. A Review and Progress of Strontium Isotopic Composition of Seawater since the Phanerozoic. Advance Earth Science, 30(1): 37-49 (in Chinese with English abstract). Huang, B. C., Yan, Y. G., Piper, J. D. A., et al., 2018. Paleomagnetic Constraints on the Paleogeography of the East Asian Blocks during Late Paleozoic and Early Mesozoic Times. Earth-Science Reviews, 186: 8-36. https://doi.org/10.1016/j.earscirev.2018.02.004 Huang, J. Y., Liang, K., Wang, Y., et al., 2020. The Jiwozhai Patch Reef: A Palaeobiodiversity Hotspot in Middle Givetian (Devonian) of South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 556: 109895. https://doi.org/10.1016/j.palaeo.2020.109895 Huang, S. J., Shi, H., Zhang, M., et al., 2002. Global Correlation of Devonian Strontium Isotope Evolution Curve and Dating of Marine Strata in Longmen Mountain. Progress in Natural Science, 12(9): 945-951 (in Chinese). doi: 10.3321/j.issn:1002-008X.2002.09.010 Jing, X. Q., Yang, Z. Y., Mitchell, R. N., et al., 2022. Ordovician-Silurian True Polar Wander as a Mechanism for Severe Glaciation and Mass Extinction. Nature Communications, 13(1): 7941. https://doi.org/10.1038/s41467-022-35609-3 Karas, C., Nürnberg, D., Bahr, A., et al., 2017. Pliocene Oceanic Seaways and Global Climate. Scientific Reports, 7: 39842. https://doi.org/10.1038/srep39842 Kuznetsov, V. G., Zhuravleva, L. M., 2019. Geological and Biological Reasons for the Cessation of Reef Formation: Evidence from the Paleozoic. Lithology and Mineral Resources, 54(2): 93-102. https://doi.org/10.1134/S0024490219020056 Le Hir, G., Donnadieu, Y., Goddéris, Y., et al., 2011. The Climate Change Caused by the Land Plant Invasion in the Devonian. Earth and Planetary Science Letters, 310(3-4): 203-212. https://doi.org/10.1016/j.epsl.2011.08.042 Li, B. C., Feng, L. P., Wang, Q., et al., 2018. Advances in the Study of Stable Strontium Isotopes in Marine Geochemical Cycles. Geological Science and Technology Information, 37(4): 100-105 (in Chinese with English abstract). Li, P. W., Rui, G., Cui, J. W., et al., 2004. Paleomagnetic Analysis of Eastern Tibet: Implications for the Collisional and Amalgamation History of the Three Rivers Region, SW China. Journal of Asian Earth Sciences, 24(3): 291-310. https://doi.org/10.1016/j.jseaes.2003.12.003 Li, Y. L., Li, S. Z., Zhang, G. W., 2022. Composition of the Qinling Mianliu Suture Zone and the Evolution of the Paleocean Basin. Geology of China, 29(2): 129-134 (in Chinese with English abstract). Liu, J. L., Chen, X. Y., Fan, W. K., et al., 2021. Dynamics of Closure of the Proto-Tethys Ocean: A Perspective from the Southeast Asian Tethys Realm. Earth-Science Reviews, 222: 103829. https://doi.org/10.1016/j.earscirev.2021.103829 Liu, M., Chen, D. Z., Jiang, L., et al., 2022. Oceanic Anoxia and Extinction in the Latest Ordovician. Earth and Planetary Science Letters, 588: 117553. https://doi.org/10.1016/j.epsl.2022.117553 Marshall, J. E. A., Zhu, H., Wellman, C. H., et al., 2017. Provincial Devonian Spores from South China, Saudi Arabia and Australia. Revue de Micropaléontologie, 60(3): 403-409. doi: 10.1016/j.revmic.2016.10.003 Meng, X. Y., Zhu, M., Gai, Z. K., 2021. Redescription of Nochelaspis Maeandrine, the Largest Eugaleaspiform from the Lower Devonian of Qujing, Yunnan. Vertebrata Palasiatica, 59(4): 257-272. Metcalfe, I., 2011. Palaeozoic-Mesozoic History of SE Asia. Geological Society, London, Special Publications, 355(1): 7-35. https://doi.org/10.1144/SP355.2 Metcalfe, I., 2013. Gondwana Dispersion and Asian Accretion: Tectonic and Palaeogeographic Evolution of Eastern Tethys. Journal of Asian Earth Sciences, 66: 1-33. https://doi.org/10.1016/j.jseaes.2012.12.020 Mjlhau, B., Mistiaen, B., Brice, D., et al., 2020. Comparative Faunal Content of Strunian (Devonian) between Etaoucun (Guilin, Guangxi, South China) and the Stratotype Area (Etroeungt, Avesnois, North of France). Palaeontology and Historical Geology. CRC Press, Boca Raton, 79-94. https://doi.org/10.1201/9781003079538-7 Munnecke, A., Calner, M., Harper, D. A. T., et al., 2010. Ordovician and Silurian Sea-Water Chemistry, Sea Level, and Climate: A Synopsis. Palaeogeography, Palaeoclimatology, Palaeoecology, 296(3/4): 389-413. https://doi.org/10.1016/j.palaeo.2010.08.001 Pawlik, Ł., Buma, B., Šamonil, P., et al., 2020. Impact of Trees and Forests on the Devonian Landscape and Weathering Processes with Implications to the Global Earth's System Properties: A Critical Review. Earth-Science Reviews, 205: 103200. https://doi.org/10.1016/j.earscirev.2020.103200 Peng, H. P., Liu, F., Zhu, H. C., 2016. Morphology and Ultrastructure of Middle Devonian Dispersed Megaspores from Qujing, Yunnan, Southwest China. Review of Palaeobotany and Palynology, 234: 110-124. https://doi.org/10.1016/j.revpalbo.2016.08.010 Peters, S. E., Ausich, W. I., 2008. A Sampling-Adjusted Macroevolutionary History for Ordovician-Early Silurian Crinoids. Paleobiology, 34(1): 104-116. https://doi.org/10.1666/07035.1 Prabhat, P., Rahaman, W., Lathika, N., et al., 2022. Modern-Like Deep Water Circulation in Indian Ocean Caused by Central American Seaway Closure. Nature Communications, 13(1): 7561. https://doi.org/10.1038/s41467-022-35145-0 Qiu, Z., Wei, H. Y., Tian, L., et al., 2022. Different Controls on the Hg Spikes Linked the Two Pulses of the Late Ordovician Mass Extinction in South China. Scientific Reports, 12(1): 5195. https://doi.org/10.1038/s41598-022-08941-3 Rasmussen, C. M., Kröger, B., Nielsen, M. L., et al., 2019. Cascading Trend of Early Paleozoic Marine Radiations Paused by Late Ordovician Extinctions. Proceedings of the National Academy of Sciences, 116(15): 7207-7213. https://doi.org/10.1073/pnas.1821123116 Riding, R., 2002. Structure and Composition of Organic Reefs and Carbonate Mud Mounds: Concepts and Categories. Earth-Science Reviews, 58(1/2): 163-231. https://doi.org/10.1016/S0012-8252(01)00089-7 Rong, J. Y., Fan, J. X., Miller, A. I., et al., 2007. Dynamic Patterns of Latest Proterozoic-Palaeozoic-Early Mesozoic Marine Biodiversity in South China. Geological Journal, 42(3-4): 431-454. https://doi.org/10.1002/gj.1073 Rong, J. Y., Huang, B., 2019. An Indicator of the Onset of the End Ordovician Mass Extinction in South China: The Manosia Brachiopod Assemblage and Its Diachronous Distribution. Acta Geologica Sinica, 93(3): 509-527 (in Chinese with English abstract). Saupe, E. E., Qiao, H. J., Donnadieu, Y., et al., 2020. Extinction Intensity during Ordovician and Cenozoic Glaciations Explained by Cooling and Palaeogeography. Nature Geoscience, 13: 65-70. https://doi.org/10.1038/s41561-019-0504-6 Schmitz, B., Harper, D. A. T., Peucker-Ehrenbrink, B., et al., 2008. Asteroid Breakup Linked to the Great Ordovician Biodiversification Event. Nature Geoscience, 1: 49-53. https://doi.org/10.1038/ngeo.2007.37 Shan, X. R., Gai, Z. K., Lin, X. H., et al., 2022. The Oldest Eugaleaspiform Fishes from the Silurian Red Beds in Jiangxi, South China and Their Stratigraphic Significance. Journal of Asian Earth Sciences, 229: 105187. https://doi.org/10.1016/j.jseaes.2022.105187 Shan, X. R., Zhao, W. J., Gai, Z. K., 2023. A New Species of Jiangxialepis (Galeaspida) from the Lower Telychian (Silurian) of Jiangxi and Its Biostratigraphic Significance. Acta Geologica Sinica-English Edition, 97(2): 393-403. https://doi.org/10.1111/1755-6724.15009 Shen, J. H., Pearson, A., Henkes, G. A., et al., 2018. Improved Efficiency of the Biological Pump as a Trigger for the Late Ordovician Glaciation. Nature Geoscience, 11: 510-514. https://doi.org/10.1038/s41561-018-0141-5 Shu, L. S., 2012. An Analysis of Principal Features of Tectonic Evolution in South China Block. Geological Bulletin of China, 31(7): 1035-1053 (in Chinese with English abstract). Spencer, C. J., Davies, N. S., Gernon, T. M., et al., 2022. Composition of Continental Crust Altered by the Emergence of Land Plants. Nature Geoscience, 15: 735-740. https://doi.org/10.1038/s41561-022-00995-2 Stigall, A. L., Edwards, C. T., Freeman, R. L., et al., 2019. Coordinated Biotic and Abiotic Change during the Great Ordovician Biodiversification Event: Darriwilian Assembly of Early Paleozoic Building Blocks. Palaeogeography, Palaeoclimatology, Palaeoecology, 530: 249-270. https://doi.org/10.1016/j.palaeo.2019.05.034 Sun, W. D., Liao, R. Q., 2020. The End Ordovician Mass Extinction Induced by Rapid Glaciation. Chinese Science Bulletin, 65(6): 431-433 (in Chinese). Thanh, T. D., Janvier, P., Phuong, T. H., 1996. Fish Suggests Continental Connections between the Indochina and South China Blocks in Middle Devonian Time. Geology, 24(6): 571. https://doi.org/10.1130/0091-7613(1996)0240571: fsccbt>2.3.co;2 doi: 10.1130/0091-7613(1996)0240571:fsccbt>2.3.co;2 Torsvik, T. H., Cocks, L. R. M., 2013. Chapter 2 New Global Palaeogeographical Reconstructions for the Early Palaeozoic and Their Generation. Geological Society, London, Memoirs, 38(1): 5-24. https://doi.org/10.1144/m38.2 Torsvik, T. H., Müller, R. D., Van der Voo, R., et al., 2008. Global Plate Motion Frames: Toward a Unified Model. Reviews of Geophysics, 46(3): e2007rg000227. https://doi.org/10.1029/2007rg000227 Trotter, J. A., Williams, I. S., Barnes, C. R., et al., 2008. Did Cooling Oceans Trigger Ordovician Biodiversification? Evidence from Conodont Thermometry. Science, 321(5888): 550-554. https://doi.org/10.1126/science.1155814 Turnau, E., Zavialova, N., Prejbisz, A., 2009. Wall Ultrastructure in Some Dispersed Megaspores and Seed-Megaspores from the Middle Devonian of Northern Poland. Review of Palaeobotany and Palynology, 156(1/2): 14-33. https://doi.org/10.1016/j.revpalbo.2008.07.009 Van der Voo, R., 1990. The Reliability of Paleomagnetic Data. Tectonophysics, 184(1): 1-9. https://doi.org/10.1016/0040-1951(90)90116-P Veevers, J. J., 2004. Gondwanaland from 650-500 Ma Assembly through 320 Ma Merger in Pangea to 185-100 Ma Breakup: Supercontinental Tectonics via Stratigraphy and Radiometric Dating. Earth-Science Reviews, 68(1-2): 1-132. https://doi.org/10.1016/j.earscirev.2004.05.002 Veizer, J., Ala, D., Azmy, K., et al., 1999. 87Sr/86Sr, Δ13C and Δ18O Evolution of Phanerozoic Seawater. Chemical Geology, 161(1-3): 59-88. https://doi.org/10.1016/S0009-2541(99)00081-9 Wan, Y., Zhang, T. S., Lan, G. Z., et al., 1997. Silurian Reef and Paleoenvironmental Evolution in Southeastern Sichuan-Northern Guizhou Region. Acta Sedimentologica Sinica, 15(S1): 106-113 (in Chinese with English abstract). Wang, D. M., Xiong, C. H., 2014. Advances in Evolution, Paleogeography and Paleoenvironment of Early Terrestrial Vascular Plants in China. Acta Palaeontologica Sinica, 53(1): 101-107 (in Chinese with English abstract). Wang, G. X., Wei, X., Luan, X. C., et al., 2020. Constraining the Biotic Transitions across the End-Ordovician Mass Extinction in South China: Bio- and Chemostratigraphy of the Wulipo Formation in the Meitan Area of Northern Guizhou. Geological Journal, 55(9): 6399-6411. https://doi.org/10.1002/gj.3816 Wang, J. P., Li, Y., Cheng, L., et al., 2014. Paleozoic Reef in South China Plate and Its Palaeogeographic Control Factors. Acta Palaeontologica Sinica, 53(1): 121-131. Wang, W., Cawood, P. A., Pandit, M. K., et al., 2021. Fragmentation of South China from Greater India during the Rodinia-Gondwana Transition. Geology, 49(2): 228-232. https://doi.org/10.1130/g48308.1 Wang, Y., Rong, J., Tang, P., et al., 2021. Characteristics of Major Hiatus in Middle Paleozoic Rocks of South China and Their Significance of Geotectonics. Science China Earth Sciences, 51(2): 218-240 (in Chinese). Wang, Y., Wang, J., Xu, H. H., et al., 2010. The Evolution of Paleozoic Vascular Land Plant Diversity of South China. Science China Earth Sciences, 40(9): 1181-1190 (in Chinese). Wang, Y., Xu, H. H., 2009. A Review of Silurian Terrestrial Plants in China. Acta Palaeontologica Sinica, (3): 453-464 (in Chinese with English abstract). Wei, X., Zhan, R. B., 2018. A New Trilobite Species Anacaenaspis Yanpingensis from the Late Langdovian Ludan of Silurian South China and Its Biopalaeogeographic Significance. Abstracts of the 12th National Congress and 29th Annual Conference of the Paleontological Society of China, Zhengzhou (in Chinese with English abstract). Wu, F. Y., Wan, B., Zhao, L., et al., 2020. Tethyan Geodynamics. Acta Petrologica Sinica, 36(6): 1627-1674 (in Chinese with English abstract). doi: 10.18654/1000-0569/2020.06.01 Wu, L., Huang, W. T., Liang, H. Y., et al., 2022. Paleomagnetism of the Guanyang Devonian Sedimentary Successions in Guangxi Province, South China. Gondwana Research, 105: 143-159. https://doi.org/10.1016/j.gr.2021.09.004 Wu, S. C., Yang, Y. J., Xu, Y. X., et al., 2023. A Fossil Oceanic Lithosphere Preserved inside a Continent. Geology, 51 (2): 204-208. https://doi.org/10.1130/g50656.1 Xian, H. B., Zhang, S. H., Li, H. Y., et al., 2019. How did South China Connect to and Separate from Gondwana? New Paleomagnetic Constraints from the Middle Devonian Red Beds in South China. Geophysical Research Letters, 46(13): 7371-7378. https://doi.org/10.1029/2019gl083123 Xu, Y. J., Liang, X., Cawood, P. A., et al., 2022. Revisiting the Paleogeographic Position of South China in Gondwana by Geochemistry and U-Pb Ages of Detrital Monazite Grains from Cambrian Sedimentary Rocks. Lithos, 430: 106879. https://doi.org/10.1016/j.lithos.2022.106879 Xue, J. Z., 2012. Lochkovian Plants from the Xitun Formation of Yunnan, China, and Their Palaeophytogeographical Significance. Geological Magazine, 149(2): 333-344. https://doi.org/10.1017/S001675681100077X Xue, J. Z., Hao, S. G., 2014. Phylogeny, Episodic Evolution and Geographic Distribution of the Silurian-Early Devonian Vascular Plants: Evidences from Plant Megafossils. Journal of Palaeogeography, 16(6): 861-877 (in Chinese with English abstract). Xue, J. Z., Huang, P., Ruta, M., et al., 2015. Stepwise Evolution of Paleozoic Tracheophytes from South China: Contrasting Leaf Disparity and Taxic Diversity. Earth-Science Reviews, 148: 77-93. https://doi.org/10.1016/j.earscirev.2015.05.013 Xue, J. Z., Huang, P., Wang, D. M., et al., 2018. Silurian-Devonian Terrestrial Revolution in South China: Taxonomy, Diversity, and Character Evolution of Vascular Plants in a Paleogeographically Isolated, Low-Latitude Region. Earth-Science Reviews, 180: 92-125. https://doi.org/10.1016/j.earscirev.2018.03.004 Xue, J. Z., Wang J. S., Li B, X., et al., 2022. Origin and Early Evolution of Land Plants and the Effects on Earth's Environments. Earth Science, 47(10): 3648-3664 (in Chinese with English abstract). Yan, C. L., Shu, L. S., Faure, M., et al., 2019. Time Constraints on the Closure of the Paleo-South China Ocean and the Neoproterozoic Assembly of the Yangtze and Cathaysia Blocks: Insight from New Detrital Zircon Analyses. Gondwana Research, 73: 175-189. https://doi.org/10.1016/j.gr.2019.03.018 Yang, S. C., Hu, W. X., Wang, X. L., et al., 2019. Duration, Evolution, and Implications of Volcanic Activity across the Ordovician-Silurian Transition in the Lower Yangtze Region, South China. Earth and Planetary Science Letters, 518: 13-25. https://doi.org/10.1016/j.epsl.2019.04.020 Yang, Z. Y., Sun, Z. M., Yang, T., et al., 2004. A Long Connection (750-380 Ma) between South China and Australia: Paleomagnetic Constraints. Earth and Planetary Science Letters, 220(3/4): 423-434. https://doi.org/10.1016/S0012-821X(04)00053-6 Zhan, R. B., Harper, D. A. T., 2006. Biotic Diachroneity during the Ordovician Radiation: Evidence from South China. Lethaia, 39(3): 211-226. https://doi.org/10.1080/00241160600799770 Zhan, R. B., Jin, J. S., Liu, J. B., 2013. Investigation on the Great Ordovician Biodiversification Event (GOBE): Review and Prospect. Chinese Science Bulletin, 58(33): 3357-3371 (in Chinese). doi: 10.1360/972013-19 Zhan, R. B., Zhang, Y. D., Yuan, W. W., 2007. A New Concept of Life Processes on Earth: The Ordovician Biological Radiation. Progress in Natural Science, 17(8): 9 (in Chinese). Zhang, S., Zhu, H., Meng, X., 2001. New Paleomagnetic Results from the Devonian-Carboniferous Successions in the Southern Yangtze Block and Their Paleogeographic Implications. Acta Geologica Sinica, 75: 303-313. doi: 10.1111/j.1755-6724.2001.tb00536.x Zhang, S. R., Shan, X. R., Gai, Z. K., 2023. New Findings of Huananaspid Fishes from the Lower Devonian in Nanning, Guangxi and Their Stratigraphic and Biogeographic Significances. Journal of Palaeogeography, 25(2): 341-355 (in Chinese with English abstract). Zhang, Y. Z., Wang, Y. J., Zhang, Y. H., et al., 2015. Neoproterozoic Assembly of the Yangtze and Cathaysia Blocks: Evidence from the Cangshuipu Group and Associated Rocks along the Central Jiangnan Orogen, South China. Precambrian Research, 269: 18-30. https://doi.org/10.1016/j.precamres.2015.08.003 Zhao, G. C., Wang, Y. J., Huang, B. C., et al., 2018. Geological Reconstructions of the East Asian Blocks: From the Breakup of Rodinia to the Assembly of Pangea. Earth-Science Reviews, 186: 262-286. https://doi.org/10.1016/j.earscirev.2018.10.003 Zhao, J. H., Yang, T., Wang, W., 2022. Orogenic Belt Resulting from Ocean-Continent Collision. Geology, 50(11): 1266-1269. https://doi.org/10.1130/g50337.1 Zhao, W. J., 2005. Galeaspid of the Middle Paleozoic in China and Its Palaeogeographic Significance. Journal of Paleogeography, 7(3): 305-320 (in Chinese with English abstract). Zhao, W. J., Zhu, M., 2014. A Review of the Silurian Fishes from China, with Comments on the Correlation of Fish-Bearing Strata. Earth Science Frontiers, 21(2): 185-202 (in Chinese with English abstract). Zhou, Z., Zhou, Z., Yuan, W., 2012. Late Ordovician (Hirnantian) "Mucronaspis (Songxites")-Dominant Trilobite Fauna from Northwestern Zhejiang, China. Memoirs of the Association of Australasian Palaeontologists, 42: 75-92. Zhu, M., Gai, Z. K., 2006. Phylogenetic Relationships of Galeaspids (Agnatha). Vertebrata Palasiatica, 44(1): 1-27. Zhu, M., Zhu, Y. A., Gai, Z. K., et al., 2022. How did Gnawed Vertebrates Originate and Rise?. Earth Science, 47(10): 3818-3820 (in Chinese with English abstract). Zhu, Y. A., Li, Q., Lu, J., et al., 2022. The Oldest Complete Jawed Vertebrates from the Early Silurian of China. Nature, 609(7929): 954-958. https://doi.org/10.1038/s41586-022-05136-8 陈虹, 田蜜, 武国利, 等, 2014. 南秦岭构造带内早古生代碱基性岩浆活动: 古特提斯洋裂解的证据. 地质论评, 60(6): 1437-1452. 程红光, 李心清, 袁洪林, 等, 2009. 龙门山泥盆纪腕足化石锶同位素组成特征及其古环境意义. 地球化学, 38(2): 187-194. 何心一, 陈建强, 2006. 扬子区奥陶纪, 志留纪四射珊瑚分类, 生物地层与生物古地理新认识. 地学前缘, 13(6): 145-152. 胡作维, 李云, 李北康, 等, 2015. 显生宙以来海水锶同位素组成研究的回顾与进展. 地球科学进展, 30(1): 37-49. 黄思静, 石和, 张萌, 等, 2002. 龙门山泥盆纪锶同位素演化曲线的全球对比及海相地层的定年. 自然科学进展, 12(9): 945-951. 李百蝉, 冯兰平, 王倩, 等, 2018. 稳定锶同位素在海洋地球化学循环中的研究进展. 地质科技情报, 37(4): 100-105. 李亚林, 李三忠, 张国伟, 2002. 秦岭勉略缝合带组成与古洋盆演化. 中国地质, 29(2) : 129-134. 戎嘉余, 黄冰, 2019. 华南奥陶纪末生物大灭绝的肇端标志‒腕足动物稀少贝组合(Manosia Assemblage)及其穿时分布. 地质学报, 93(3): 509-527. 舒良树, 2012. 华南构造演化的基本特征. 地质通报, 31(7): 1035-1053. 孙卫东, 廖仁强, 2020. 冰期快速形成导致奥陶纪末生物大灭绝. 科学通报, 65(6) : 431-433. 万云, 张廷山, 兰光志, 等, 1997. 川东南‒黔北地区志留纪生物礁与古环境演化. 沉积学报, 15(S1) : 106-113. 王德明, 熊聪慧, 2014. 中国早期陆生维管植物演化: 古地理和古环境研究进展. 古生物学报, 53(1) : 101-107. 王怿, 戎嘉余, 唐鹏, 等, 2021. 华南古生代中期地层界面的特征与大地构造意义. 中国科学: 地球科学, 51(2): 218-240. 王怿, 王军, 徐洪河, 等, 2010. 华南古生代陆生维管植物多样性演变. 中国科学: 地球科学, 40(9): 1181-1190. 王怿, 徐洪河, 2009. 中国志留纪陆生植物研究综述. 古生物学报, (3) : 453-464. 魏鑫, 詹仁斌, 2018. 华南志留纪兰多维列世鲁丹晚期一个三叶虫新种Anacaenaspis Yanpingensis及其生物古地理意义(英文). 郑州: 中国古生物学会第十二次全国会员代表大会暨第29届学术年会论文摘要集. 吴福元, 万博, 赵亮, 等, 2020. 特提斯地球动力学. 岩石学报, 36(6): 1627-1674. 薛进庄, 郝守刚, 2014. 志留纪‒早泥盆世维管植物的系统发育, 幕式演化和地理分布: 植物大化石证据. 古地理学报, 16(6): 861-877. 薛进庄, 王嘉树, 李炳鑫, 等, 2022. 陆地植物的起源、早期演化及地球环境效应. 地球科学, 47(10): 3648-3664. doi: 10.3799/dqkx.2022.332 詹仁斌, 靳吉锁, 刘建波, 2013. 奥陶纪生物大辐射研究: 回顾与展望. 科学通报, 58(33) : 3357-3371. 詹仁斌, 张元动, 袁文伟, 2007. 地球生命过程中的一个新概念-奥陶纪生物大辐射. 自然科学进展, 17(8): 9. 张淑荣, 山显任, 盖志琨, 2023. 广西南宁下泥盆统华南鱼类化石新发现及其地层和古地理意义. 古地理学报, 25(2): 341-355. 赵文金, 2005. 中国古生代中期盔甲鱼类及其古地理意义. 古地理学报, 7(3): 305-320. 赵文金, 朱敏, 2014. 中国志留纪鱼化石及含鱼地层对比研究综述. 地学前缘, 21(2): 185-202. 朱敏, 朱幼安, 盖志琨, 等, 2022. 有颌脊椎动物如何起源与崛起?. 地球科学, 47(10) : 3818-3820. doi: 10.3799/dqkx.2022.823 -