Geological Reserves Estimation of Fault-Controlled Fracturing Reservoirs in Tight and Low-Permeability Sandstones
-
摘要: 断缝体油藏是鄂尔多斯盆地南缘彬长地区当前工作重点,具有储集类型多样和圈闭类型复杂的特点,以容积法计算地质储量的难点是合理确定有效厚度下限标准和含油面积.基于断缝体油藏的成因及储层特征,参考裂缝型油藏和致密油藏提出其地质储量计算的容积法及相关参数确定方法,并以JH17井区断缝体油藏为例说明实际操作和潜在问题.分析认为,断缝体油藏总体上为致密油藏,在断层附近可能局部具有构造油藏特征和明显油水界面.确定有效厚度下限标准可结合储集类型和局部油藏类型因素,资料有限时,裂缝发育性储层可考虑采用裂缝欠发育的次级储层的有效厚度下限标准的岩性、物性和饱和度参数.含油面积与断缝体范围和油气充注强度相关,需考虑断缝体油藏中明显油水界面和边部致密油分布情况,并兼顾断缝体的储层“甜点”特性和沿断层走向连通性强的特征.据此方法计算断缝体油藏实例的地质储量,发现其储量丰度可达43×104 t/km2,约为研究区非断缝体油藏的3倍.Abstract: Fault-controlled fracturing reservoirs have become the focused object of exploration and development in Binchang area on the southern margin of Ordos Basin, which usually show diverse reservoir types and complex trap types. Consequently, it is difficult for their geological reserves estimation by volumetric method to reasonably determine the scope of oil-bearing area and the lower limit of effective thickness. An improved volumetric method, referring to those for fractured reservoir and tight oil reservoir, was proposed for the geological reserves estimation, on the basis of the reservoir origin and its features. The ways to determine their related parameters were analyzed. Then the example of fault-controlled fracturing reservoirs from well block JH17 in Binchang area was used to demonstrate the process and some potential issues. It is believed that fault-controlled fracturing reservoirs show the features of tight oil reservoir as a whole, with the local features of structural reservoir and typical water-oil contact near fault surfaces. The lower limit of effective thickness can be determined by considering the factors of reservoir types and local oil-reservoir types. In the case of limited data, fracturing reservoirs can refer to some parameters of the lower limit for the secondary reservoirs with less fractures, such as those of lithology, porosity, permeability and saturation. The scope of oil-bearing area is related to that of fault-controlled fracturing body and the strength of hydrocarbon emplacement. Its determination should consider the distributions of the typical water-oil contact and the tight oil, as well as the "sweet spot" feature and the excellent connectivity along fault strike of fault-controlled fracturing body. According to the scheme, the geological reserves were estimated for the instance of fault-controlled fracturing reservoirs, with a reserves abundance of up to 43×104 t/km2, about three times that of other types of reservoir in the study area.
-
表 1 彬长地区JH17井区断缝体实例有效厚度下限
Table 1. Lower limit of effective thickness of one fault-controlled fracturing body of well block JH17 in Binchang area
油层分类 岩性 物性 含油性 电性 孔隙度(%) 渗透率(10-3 μm2) 含油饱和度(%) 含油级别 GR(API) ILD(Ω·m) AC(μs/m) 孔隙型 细砂岩 ≥5 ≥0.1 > 25 油迹以上 < 100 > 50 ≥210 孔缝型 > 30 ≥240 裂缝型 > 10 ≥280 -
Agosta, F., Alessandroni, M., Antonellini, M., et al., 2010. From Fractures to Flow: A Field-Based Quantitative Analysis of an Outcropping Carbonate Reservoir. Tectonophysics, 490(3-4): 197-213. https://doi.org/10.1016/j.tecto.2010.05.005 Agosta, F., Aydin, A., 2006. Architecture and Deformation Mechanism of a Basin-Bounding Normal Fault in Mesozoic Platform Carbonates, Central Italy. Journal of Structural Geology, 28(8): 1445-1467. https://doi.org/10.1016/j.jsg.2006.04.006 Agosta, F., Prasad, M., Aydin, A., 2007. Physical Properties of Carbonate Fault Rocks, Fucino Basin (Central Italy): Implications for Fault Seal in Platform Carbonates. Geofluids, 7(1): 19-32. https://doi.org/10.1111/ j.1468-8123.2006.00158.x doi: 10.1111/j.1468-8123.2006.00158.x Choi, J. H., Edwards, P., Ko, K., et al., 2016. Definition and Classification of Fault Damage Zones: A Review and a New Methodological Approach. Earth-Science Reviews, 152: 70-87. https://doi.org/10.1016/j.earscirev.2015.11.006 Cui, B. W., Zhao, Y., Zhang, G., et al., 2022. Estimation Method and Application for OOIP of Gulong Shale Oil in Songliao Basin. Petroleum Geology & Oilfield Development in Daqing, 41(3): 14-23 (in Chinese with English abstract). Dorsey, M. T., Rockwell, T. K., Girty, G. H., et al., 2021. Evidence of Hydrothermal Fluid Circulation Driving Elemental Mass Redistribution in an Active Fault Zone. Journal of Structural Geology, 144: 104269. https://doi.org/10.1016/j.jsg.2020.104269 Gong, F., Song, Y. C., Zeng, L. B., et al., 2023. The Heterogeneity of Petrophysical and Elastic Properties in Carbonate Rocks Controlled by Strike-Slip Fault: A Case Study from Yangjikan Outcrop in the Tarim Basin. Journal of Petroleum Science and Engineering, 220: 111170. https://doi.org/10.1016/j.petrol.2022.111170 Guo, B. W., Yu, F. S., Wang, Y. F., et al., 2022. Quantitative Prediction of Palaeo-Uplift Reservoir Control and Favorable Reservoir Formation Zones in Lufeng Depression. Advances in Geo-Energy Research, 6(5): 426-437. https://doi.org/10.46690/ager.2022.05.07 Guo, J. X., Dai, Q. D., Xu, W., 2001. Discussion on Fine Computing Method of Reserves—Taking Fluvial Facies Reservoirs as Example. Oil & Gas Recovery Techinology, 8(3): 31-33 (in Chinese with English abstract). He, F. Q., Liang, C. C., Lu, C., et al., 2020. Identification and Description of Fault-Fracture Bodies in Tight and Low Permeability Reservoirs in Transitional Zone at the South Margin of Ordos Basin. Oil & Gas Geology, 41(4): 710-718 (in Chinese with English abstract). He, F. Q., Qi, R., Yuan, C. Y., et al., 2022. Further Understanding of the Relationship between Fault Characteristic and Hydrocarbon Accumulation in Binchang Area, Ordos Basin. Earth Science, 49(11): 4082-4097 (in Chinese with English abstract). Jeanne, P., Guglielmi, Y., Cappa, F., 2012. Multiscale Seismic Signature of a Small Fault Zone in a Carbonate Reservoir: Relationships between Vp Imaging, Fault Zone Architecture and Cohesion. Tectonophysics, 554-557: 185-201. https://doi.org/10.1016/j.tecto.2012.05.012 Jiang, R. Z., Qiao, X., He, J. X., et al., 2016. A New Method to Calculate Shale Gas Geological Reserves. Natural Gas Geoscience, 27(4): 699-705 (in Chinese with English abstract). Kang, Z. Y., Chen, C., Li, L., et al., 2023. Evaluation Method of Bedrock Formation Resistivity and Macroscopic Fracture Porosity. Petroleum Geology & Oilfield Development in Daqing, 42(4): 122-130 (in Chinese with English abstract). Lei, M., Chen, T., Han, Q. F., et al., 2023. A New Method for Calculating Fracture Porosity Based on Conventional Logging Data. Earth Science, 48(7): 2678-2689 (in Chinese with English abstract). Li, Y. T., Qi, L. X., Zhang, S. N., et al., 2019. Characteristics and Development Mode of the Middle and Lower Ordovician Fault-Karst Reservoir in Shunbei Area, Tarim Basin. Acta Petrolei Sinica, 40(12): 1470-1484 (in Chinese with English abstract). doi: 10.7623/syxb201912006 Liu, J. L., Hu, Z. Q., Liu, Z. Q., et al., 2021. Gas Pool Sweet Spot Models and Their Forming Mechanism in the Xu 2 Member in Xinchang Area, Western Sichuan Depression, Sichuan Basin. Oil & Gas Geology, 42(4): 852-862 (in Chinese with English abstract). Liu, Z. F., Liu, Z. Q., Guo, Y. L., et al., 2021. Concept and Geological Model of Fault-Fracture Reservoir and Their Application in Seismic Fracture Prediction: A Case Study on the Xu 2 Member Tight Sandstone Gas Pool in Xinchang Area, Western Sichuan Depression in Sichuan Basin. Oil & Gas Geology, 42(4): 973-980 (in Chinese with English abstract). Liu, Z. Q., Xu, S. L., Liu, J. L., et al., 2020. Enrichment Laws of Deep Tight Sandstone Gas Reservoirs in the Western Sichuan Depression, Sichuan Basin. Natural Gas Industry, 40(2): 31-40 (in Chinese with English abstract). Lu, X. B., Wang, Y., Yang, D. B., et al., 2020. Characterization of Paleo-Karst Reservoir and Faulted Karst Reservoir in Tahe Oilfield, Tarim Basin, China. Advances in Geo-Energy Research, 4(3): 339-348. https://doi.org/10.46690/ager.2020.03.11 Luo, Q., 2011. Transporting and Sealing Capacity of Fault Belt and Its Controlling on Reservoir. Petroleum Geology & Experiment, 33(5): 474-479 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-6112.2011.05.006 Luo, Y., Wang, Y. Z., Liu, H. P., et al., 2020. Overpressure Controlling Factors for Tectonic Fractures in Near-Source Tight Reservoirs in the Southwest Ordos Basin, China. Journal of Petroleum Science and Engineering, 188: 106818. https://doi.org/10.1016/j.petrol.2019.106818 Ma, Q. Y., Zeng, L. B., Xu, X. H., et al., 2022. Internal Architecture of Strike-Slip Fault Zone and Its Control over Reservoirs in the Xiaoerbulake Section, Tarim Basin. Oil & Gas Geology, 43(1): 69-78 (in Chinese with English abstract). Meng, Y. J., Chen, H. H., Luo, Y., et al., 2023. Architecture of Intraplate Strike-Slip Fault Zones in the Yanchang Formation, Southern Ordos Basin, China: Characterization and Implications for Their Control on Hydrocarbon Enrichment. Journal of Structural Geology, 170: 104851. https://doi.org/10.1016/j.jsg.2023.104851 Pan, M. X., 2016. The Research of Precise Calculation of Geological Reserves Based on Sedimentary Microfacies (Dissertation). Northeast Petroleum University, Daqing (in Chinese with English abstract). Qi, L. X., Yun, L., Cao, Z. C., et al., 2021. Geological Reserves Assessment and Petroleum Exploration Targets in Shunbei Oil & Gas Field. Xinjiang Petroleum Geology, 42(2): 127-135 (in Chinese with English abstract). Song, J. J., Sun, J. M., Wang, M., et al., 2018. Research Progress in the Internal Structure of the Fault. Progress in Geophysics, 33(5): 1956-1966 (in Chinese with English abstract). Sun, Z. Q., Zhao, K. L., Zhao, J. X., et al., 2021. Characteristics of Chang 6-Chang 8 Reservoirs and the Effect of Diagenesis on Pore Densification in Binxian-Changwu Area, Ordos Basin, China. Journal of Chengdu University of Technology (Science & Technology Edition), 48(5): 591-598 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-9727.2021.05.08 Torabi, A., Berg, S. S., 2011. Scaling of Fault Attributes: A Review. Marine and Petroleum Geology, 28(8): 1444-1460. https://doi.org/10.1016/j.marpetgeo.2011.04.003 Wang, W., Fan, R., Li, C. Y., et al., 2021. Exploration and Prediction of Promising Fault-Fracture Reservoirs in the Xujiahe Formation, Northeastern Sichuan Basin. Oil & Gas Geology, 42(4): 992-1001 (in Chinese with English abstract). Xin, L., 2016. Reserve Calculation of Carbonate Fracture-Vuggy Reservoirs Based on Volume Evaluation: A Case Study on the Block of Well Zhonggu 15, Central Uplift in Tarim Basin (Dissertation). China University of Petroleum, Beijing (in Chinese with English abstract). Yang, G. L., Ren, Z. L., He, F. Q., et al., 2022. Fault-Fracture Body Growth and Hydrocarbon Enrichment of the Zhenjing Area, the Southwestern Margin of the Ordos Basin. Oil & Gas Geology, 43(6): 1382-1396 (in Chinese with English abstract). Yang, T. Y., Fan, S. J., Chen, Y. Q., et al., 1998. Calculation Method for Oil and Natural Gas Reserves. Petroleum Industry Press, Beijing (in Chinese). Ye, D. Y., Liu, G. N., Gao, F., et al., 2021. A Multi-Field Coupling Model of Gas Flow in Fractured Coal Seam. Advances in Geo-Energy Research, 5(1): 104-118. https://doi.org/10.46690/ager.2021.01.10 Zhang, L., Wang, Z. Q., Zhang, L. Y., et al., 2009. A Discussion on Certain Issues Concerning Reserve Calculation of Igneous Reservoirs. Oil & Gas Geology, 30(2): 223-229 (in Chinese with English abstract). Zhang, W. B., Duan, T. Z., Li, M., et al., 2021. Architecture Characterization of Ordovician Fault-Controlled Paleokarst Carbonate Reservoirs in Tuoputai, Tahe Oilfield, Tarim Basin, NW China. Petroleum Exploration and Development, 48(2): 314-325 (in Chinese with English abstract). Zhao, K. Z., Zhang, L. J., Zheng, D. M., et al., 2015. A Reserve Calculation Method for Fracture-Cavity Carbonate Reservoirs in Tarim Basin, NW China. Petroleum Exploration and Development, 42(2): 251-256 (in Chinese with English abstract). 崔宝文, 赵莹, 张革, 等, 2022. 松辽盆地古龙页岩油地质储量估算方法及其应用. 大庆石油地质与开发, 41(3): 14-23. 国景星, 戴启德, 徐炜, 2001. 储量精细计算方法探讨: 以河流相储集层为例. 油气地质与采收率, 8(3): 31-33. doi: 10.3969/j.issn.1009-9603.2001.03.010 何发岐, 梁承春, 陆骋, 等, 2020. 鄂尔多斯盆地南缘过渡带致密‒低渗油藏断缝体的识别与描述. 石油与天然气地质, 41(4): 710-718. 何发岐, 齐荣, 袁春艳, 等, 2022. 鄂尔多斯盆地南部地区断裂构造与油气成藏关系再认识: 以彬长地区为例. 地球科学, 49(11): 4082-4097. doi: 10.3799/dqkx.2022.256 姜瑞忠, 乔欣, 何吉祥, 等, 2016. 页岩气地质储量计算新方法. 天然气地球科学, 27(4): 699-705. 康志勇, 陈昌, 李龙, 等, 2023. 基岩地层电阻率及宏观裂缝孔隙度评价方法. 大庆石油地质与开发, 42(4): 122-130. 雷明, 陈涛, 韩乾凤, 等, 2023. 一种基于常规测井资料计算碳酸盐岩储层裂缝孔隙度新方法. 地球科学, 48(7): 2678-2689. doi: 10.3799/dqkx.2022.202 李映涛, 漆立新, 张哨楠, 等, 2019. 塔里木盆地顺北地区中‒下奥陶统断溶体储层特征及发育模式. 石油学报, 40(12): 1470-1484. doi: 10.7623/syxb201912006 刘君龙, 胡宗全, 刘忠群, 等, 2021. 四川盆地川西坳陷新场须家河组二段气藏甜点模式及形成机理. 石油与天然气地质, 42(4): 852-862. 刘振峰, 刘忠群, 郭元岭, 等, 2021. "断缝体"概念、地质模式及其在裂缝预测中的应用——以四川盆地川西坳陷新场地区须家河组二段致密砂岩气藏为例. 石油与天然气地质, 42(4): 973-980. 刘忠群, 徐士林, 刘君龙, 等, 2020. 四川盆地川西坳陷深层致密砂岩气藏富集规律. 天然气工业, 40(2): 31-40. 罗群, 2011. 断裂带的输导与封闭性及其控藏特征. 石油实验地质, 33(5): 474-479. doi: 10.3969/j.issn.1001-6112.2011.05.006 马庆佑, 曾联波, 徐旭辉, 等, 2022. 塔里木盆地肖尔布拉克剖面走滑断裂带内部结构及控储模式. 石油与天然气地质, 43(1): 69-78. 潘明溪, 2016. 相控地质储量精细计算方法研究(硕士学位论文). 大庆: 东北石油大学. 漆立新, 云露, 曹自成, 等, 2021. 顺北油气田地质储量评估与油气勘探方向. 新疆石油地质, 42(2): 127-135. 宋佳佳, 孙建孟, 王敏, 等, 2018. 断层内部结构研究进展. 地球物理学进展, 33(5): 1956-1966. 孙志强, 赵凯莉, 赵俊兴, 等, 2021. 彬县‒长武地区长6‒长8储层特征及成岩作用对储层致密化的影响. 成都理工大学学报(自然科学版), 48(5): 591-598. doi: 10.3969/j.issn.1671-9727.2021.05.08 王威, 凡睿, 黎承银, 等, 2021. 川东北地区须家河组"断缝体"气藏有利勘探目标和预测技术. 石油与天然气地质, 42(4): 992-1001. 新立, 2016. 碳酸盐岩缝洞雕刻容积法储量计算研究——以塔中地区中古15井区为例(硕士学位论文). 北京: 中国石油大学. 杨桂林, 任战利, 何发岐, 等, 2022. 鄂尔多斯盆地西南缘镇泾地区断缝体发育特征及油气富集规律. 石油与天然气地质, 43(6): 1382-1396. 杨通佑, 范尚炯, 陈元千, 等, 1998. 石油及天然气储量计算方法. 北京: 石油工业出版社. 张玲, 王志强, 张丽艳, 等, 2009. 火成岩油气藏储量计算有关问题探讨. 石油与天然气地质, 30(2): 223-229. 张文彪, 段太忠, 李蒙, 等, 2021. 塔河油田托甫台区奥陶系断溶体层级类型及表征方法. 石油勘探与开发, 48(2): 314-325. 赵宽志, 张丽娟, 郑多明, 等, 2015. 塔里木盆地缝洞型碳酸盐岩油气藏储量计算方法. 石油勘探与开发, 42(2): 251-256. -