In Situ Trace Elements and Sulfur Isotope Analysis of Pyrite from Zaozigou Gold Deposit: Implications for Ore Genesis
-
摘要: 早子沟金矿是西秦岭造山带的一个代表性金矿床,其成矿物质来源和矿床类型存在较大争议.对该矿床不同类型的黄铁矿进行了详细的显微结构观察,并开展了LA⁃ICP⁃MS原位微量元素和硫同位素分析,以探讨成矿物质来源,深化对矿床成因的认识.黄铁矿至少可以分为3个世代(Py1、Py2和Py3),其中Py2和Py3为主要的载金矿物.Py1具有高Pb与低Ag、Au、W、Tl的特点,δ34S值为-7.4‰~-5.8‰;Py2的Au、As、Ag、W含量较高,Tl含量较低,δ34S值为-16.6‰~-4.2‰,Au主要以固溶体金(Au+)的形式存在;Py3具有高Sb、Tl与低W、Bi的特征,δ34S值为-25.2‰~-20.1‰.Au以固溶体金、纳米粒子金的形式存在.研究结果表明,早子沟金矿金的沉淀富集可能与水-岩反应以及流体沸腾作用相关,早子沟金矿应该属于造山型金矿床.Abstract: Zaozigou is a representative gold deposit in West Qinling orogenic belt. The source of ore-forming materials and the genetic type of the deposit are still in debate. The microstructure, trace elements and sulfur isotopes of gold-bearing pyrite were analyzed by LA-ICP-MS to constrain the source of ore-forming materials and ore genesis. Pyrite can be divided into at least three generations (Py1, Py2 and Py3), of which Py2 and Py3 are the main gold-bearing minerals. Py1 is characterized by high Pb and low Ag, Au, W, and Tl contents. The δ34S values of Py1 range from -7.4‰ to -5.8‰. The Au, As, Ag, and W contents of Py2 are relatively high, while the Tl content is relatively low. The δ34S values of Py2 range from -16.6‰ to -4.2 ‰, and Au mainly exists in the form of solid solution (Au+). Py3 has high contents of Sb and Tl, and low contents of W and Bi. The δ34S values of Py3 vary from -25.2‰ to -20.1‰. The gold occurs as structurally bound gold and nanoparticles. The study indicates that the precipitation and enrichment of gold in the Zaozigou gold deposit may be related to water-rock interactions and fluid boiling. The Zaozigou gold deposit should be classified as an orogenic type gold deposit.
-
Key words:
- pyrite texture /
- trace element /
- sulfur isotope /
- Zaozigou gold deposit /
- ore deposit
-
图 3 早子沟金矿典型野外及手标本照片
a.蚀变板岩型矿石;b.板岩沿层理发生团块状硅化,硅化部位发育有自形黄铁矿;c. 蚀变脉岩型矿石中发育有石英辉锑矿细脉,脉岩内含有黄铁矿、毒砂;d.板岩中发育有黄铁矿石英脉,脉体局部膨大,发育有石英晶洞;e. 板岩中的石英辉锑矿脉被晚期较为纯净的晚期石英脉切穿;f.石英闪长玢岩与板岩接触带,其中发育有磁铁矿、磁黄铁矿与黄铜矿脉.矿物代号:Py.黄铁矿;Apy.毒砂;Snt.辉锑矿;Mag.磁铁矿;Po.磁黄铁矿;Ccp.黄铜矿
Fig. 3. Typical field and hand specimen photos of Zaozigou gold deposit
图 4 不同阶段典型黄铁矿的显微结构
a. 黄铁矿Py1呈自形多孔状,粒径为0.1~2.0 mm,常呈团块状发育,周围地层发生强烈硅化;b. 黄铁矿Py2a呈他形多孔状,被表面相对平滑,呈自形-半自形的黄铁矿Py2b包围,可见后期毒砂插入黄铁矿颗粒;c. 黄铁矿Py2呈浸染状分布,部分黄铁矿发育有多孔状核部(Py2a);d. 石英闪长玢岩内发育在蚀变黑云母中的黄铁矿Py2c未见明显环带;e. 黑云母发生绿泥石化、方解石化,沿解理发育有黄铁矿,毒砂;f. 石英辉锑矿脉穿插早期毒砂黄铁矿脉;g. 发育在石英脉中的半自形黄铁矿Py3中可见明显的增生环带,多由核部黄铁矿Py3a、幔部黄铁矿Py3b与边部宽为10~50 μm的黄铁矿增生环带Py3c组成;h. 核部黄铁矿Py3a多呈自形集合体产出,各颗粒边界较为清晰,幔部黄铁矿呈半自形;i. 发育在石英脉中的网脉状黄铁矿、辉锑矿.矿物代号:Py.黄铁矿;Apy.毒砂;Snt.辉锑矿;Q.石英;Chl.绿泥石;Cal.方解石
Fig. 4. Reflective microscope characteristics of typical pyrite in Zaozigou gold deposit
图 9 早子沟金矿不同世代黄铁矿的微量元素相关图解
a. Au⁃As;b. Ni⁃Co Ag⁃Au;c. Ag⁃Au;d. Pb⁃Au;e. Cu⁃Au;f. Sb⁃Au;Au在黄铁矿中的饱和度曲线引自Reich et al.(2005)
Fig. 9. Correlation diagrams of trace elements of pyrite of different generations in Zaozigou gold deposit
表 1 早子沟金矿不同世代黄铁矿的LA⁃ICP⁃MS微量元素微区分析结果(10-6)
Table 1. LA⁃ICP⁃MS trace element microanalysis results of pyrite of different generations in Zaozigou gold deposit (10-6)
样品类型 样品号 Co Ni Cu Zn As Se Mo Ag Sn Sb Au Pb Bi Tl W Co/Ni Py1 ZZG-1-6-01 41.3 7.40 13.0 0.66 10.6 3.49 0.26 0.07 0.00 17.5 0.06 79.7 5.32 0.02 0.04 5.57 ZZG-1-6-02 125 15.3 136 1.15 20.2 0.00 0.23 0.19 0.00 27.9 0.09 146 12.5 0.03 0.00 8.21 ZZG-1-6-03 0.00 0.13 570 207 7.97 2.26 0.44 0.23 0.00 7.86 0.04 33.7 0.52 0.00 0.00 0.03 ZZG-1-6-04 47.4 17.5 19.0 0.47 18.5 0.00 0.73 0.14 0.00 21.8 0.05 182 8.25 0.03 0.00 2.72 ZZG-1-6-05 10.9 15.4 141 6.87 701 9.01 0.09 0.60 0.12 89.6 0.22 473 1.63 0.34 0.38 0.71 ZZG-1-6-06 99.8 53.9 44.1 7.03 367 0.00 0.21 0.35 0.33 143 0.14 471 1.65 0.54 0.79 1.85 ZZG-1-6-07 105 30.7 36.9 6.08 316 3.49 0.00 0.42 0.36 88.7 0.06 419 1.62 0.23 0.44 3.44 ZZG-1-6-08 239 261 26.9 5.66 119 0.54 0.08 0.26 0.28 55.1 0.06 385 1.45 0.20 0.45 0.92 ZZG-1-6-09 0.00 1.10 23.6 1.71 8.16 0.00 0.63 0.01 0.03 3.54 0.01 12.1 0.18 0.00 0.00 0.00 ZZG-1-6-10 136 96.5 38.6 8.15 343 0.00 0.00 0.21 0.04 86.5 0.11 363 2.05 0.25 0.24 1.41 ZZG-1-6-11 39.4 15.1 23.6 1.07 295 0.00 0.01 0.23 0.08 61.5 0.05 355 1.57 0.06 0.07 2.61 ZZG-1-6-12 33.6 100 23.6 1.08 459 0.30 0.03 0.21 0.11 51.0 0.09 310 2.64 0.03 0.06 0.33 ZZG-1-6-13 2.91 2.93 31.7 2.28 353 14.6 0.00 0.26 0.00 84.6 0.04 578 0.48 0.02 0.08 0.99 ZZG-1-6-14 56.9 35.4 37.3 2.96 212 11.2 0.01 0.36 0.17 87.3 0.11 610 0.44 0.11 0.11 1.61 ZZG-1-6-15 35.2 25.5 24.2 3.03 118 20.6 0.00 0.20 2.71 55.3 0.08 434 0.30 0.14 2.88 1.38 ZZG-1-6-16 6.28 3.05 38.3 1.17 433 19.2 0.01 0.28 0.09 87.6 0.13 410 0.81 0.03 0.00 2.06 ZZG-1-6-17 48.9 26.5 36.2 0.63 323 12.5 0.04 0.34 0.01 79.6 0.13 400 1.08 0.04 0.00 1.85 ZZG-1-6-18 7.04 5.58 29.7 1.39 161 0.00 0.00 0.29 0.11 82.2 0.09 593 0.10 0.04 0.02 1.26 ZZG-1-6-19 764 595 38.2 0.97 464 7.07 0.03 0.30 0.00 83.6 0.13 441 10.2 0.08 0.11 1.28 ZZG-1-6-20 5.08 8.93 23.2 0.79 301 2.95 0.00 0.14 0.00 59.3 0.06 403 0.34 0.01 0.02 0.57 平均值 90.3 65.9 67.7 13.0 251 5.36 0.14 0.25 0.22 63.7 0.09 355 2.66 0.11 0.28 1.37 Py2a ZZG-1-5-01 90.4 1 454 56.3 132 8 575 13.9 0.02 0.20 0.34 45.4 0.11 81.0 5.33 0.17 11.7 0.06 ZZG-1-5-04 21.5 842 57.5 3.30 6 473 27.0 0.53 0.85 0.01 67.8 0.39 110 5.45 0.15 1.05 0.03 ZZG-1-5-08 54.7 1 187 47.5 45.8 4 556 56.7 0.07 0.56 0.29 74.9 0.13 92.5 6.85 0.13 1.64 0.05 ZZG-1-5-10 80.4 2082 47.5 16.7 7 099 0.00 0.26 0.56 0.00 52.1 0.34 90.0 7.93 0.14 1.98 0.04 ZZG-1-5-13 98.1 399 92.1 4.44 25 780 0.00 0.07 0.73 0.19 44.4 0.04 147 2.63 0.15 9.09 0.25 ZZG-1-5-15 26.4 164 52.5 37.0 25 786 0.00 0.03 0.26 0.08 29.9 0.25 41.4 0.55 0.08 10.9 0.16 ZZGJ-4-02 442 346 232 1.17 27 775 2.70 4.41 8.70 0.77 388 8.15 193 8.60 1.81 3.08 1.27 ZZGJ-4-03 387 207 67.1 3.70 5 749 25.5 0.41 3.10 0.30 71.7 2.47 642 23.3 0.07 0.12 1.87 ZZGJ-4-04 120 399 104 1.47 6 487 20.1 0.13 4.78 0.10 112 5.89 490 4.74 0.42 1.11 0.30 ZZGJ-4-10 436 537 404 1.67 51 070 6.25 6.30 15.0 5.13 1 188 6.45 434 14.5 5.34 15.2 0.81 平均值 176 762 116 24.7 16 935 15.2 1.22 3.47 0.72 207 2.42 232 7.99 0.85 5.58 0.23 Py2b ZZG-1-5-02 31.6 80.6 154 38.4 13 605 0.00 0.02 0.25 0.00 15.0 0.66 17.2 0.28 0.03 15.4 0.39 ZZG-1-5-03 41.5 105 193 1.58 14 508 0.00 0.00 0.36 0.04 12.5 1.57 27.0 0.50 0.04 41.6 0.39 ZZG-1-5-05 3.60 8.66 111 4.41 10 433 0.00 0.00 0.17 0.11 19.1 1.26 16.6 0.15 0.02 6.56 0.42 ZZG-1-5-06 22.7 48.2 132 0.87 18 639 0.00 0.01 0.29 0.01 25.3 1.06 29.7 0.34 0.04 26.0 0.47 ZZG-1-5-07 18.2 30.3 144 1.15 10 244 2.56 0.00 0.67 0.00 17.6 1.06 19.0 0.37 0.03 18.1 0.60 ZZG-1-5-09 27.8 68.0 139 1.64 16 254 0.00 0.02 0.63 0.03 26.5 0.49 31.0 1.13 0.06 5.03 0.41 ZZG-1-5-11 19.8 66.5 32.9 1.01 17 041 11.7 0.16 1.15 0.00 40.1 0.66 78.4 0.58 0.05 6.67 0.30 ZZG-1-5-12 14.3 89.6 46.3 12.2 18 573 0.00 0.00 0.33 0.10 36.2 0.51 49.4 0.57 0.11 12.7 0.16 ZZG-1-5-14 7.68 35.0 36.5 1.51 15 669 0.00 0.03 0.15 0.06 20.4 0.39 27.0 0.25 0.06 17.1 0.22 ZZGJ-4-01 57.9 73.4 109 1.22 11 375 16.6 1.66 1.71 0.38 194 1.29 63.4 1.53 0.85 2.36 0.79 ZZGJ-4-05 409 404 296 1.26 57 351 12.0 53.6 5.32 0.16 291 7.02 400 8.90 1.76 2.88 1.01 ZZGJ-4-06 8.14 13.4 698 0.71 27 375 0.22 0.44 2.10 3.01 257 1.84 90.6 1.71 0.38 68.4 0.61 ZZGJ-4-07 0.45 0.72 530 0.44 23 332 0.00 0.05 2.35 0.42 106 8.33 66.0 0.86 0.11 0.26 0.62 ZZGJ-4-08 91.2 142 483 0.69 49 846 4.80 2.65 5.96 0.59 123 12.1 175 5.49 0.55 0.65 0.64 ZZGJ-4-09 25.2 30.9 512 0.62 24 622 2.78 0.45 2.41 0.64 130 4.34 63.5 1.63 0.35 1.24 0.82 平均值 51.9 79.8 241 4.51 21 924 3.37 3.94 1.59 0.37 87.5 2.84 76.9 1.62 0.30 15.0 0.65 Py2c ZZK8531-1-01 112 105 16.4 1.57 7 129 0.00 0.09 0.53 0.16 84.6 2.10 52.5 0.47 0.19 3.72 1.07 ZZK8531-1-02 16.7 14.4 2.23 0.63 6 063 0.00 0.00 0.08 0.06 5.52 2.16 1.73 0.08 0.02 0.01 1.16 ZZK8531-1-03 44.7 32.4 11.5 0.97 5 555 0.00 0.03 0.57 1.42 70.1 2.82 39.1 1.71 0.16 35.6 1.38 平均值 57.9 50.6 10.0 1.06 6 249 0.00 0.04 0.39 0.55 53.4 2.36 31.1 0.75 0.12 13.1 1.14 Py3a ZZGJ-7-01 63.6 174 63.5 6.84 2 235 28.4 0.07 0.17 0.07 961 0.21 35.6 0.06 34.7 0.03 0.36 ZZGJ-7-02 59.5 143 43.8 6.08 1 086 14.4 0.04 0.12 0.03 713 0.20 30.6 0.08 29.4 0.02 0.41 ZZGJ-7-03 58.5 51.0 75.0 3.37 1 854 24.6 0.07 0.25 0.00 994 0.11 39.3 0.02 41.8 0.03 1.15 ZZGJ-7-04 23.7 63.2 25.4 2.30 1 034 0.00 0.01 0.03 0.01 721 0.04 13.7 0.01 33.7 0.02 0.38 ZZGJ-7-11 1.54 0.25 1.76 0.35 120 66.4 0.01 0.00 0.02 29.4 0.00 1.09 0.00 1.38 0.01 6.24 ZZGJ-7-12 3.32 192 4.08 0.10 179 19.1 0.00 0.02 0.00 19.2 0.03 1.72 0.00 0.45 0.00 0.02 ZZGJ-7-13 0.10 0.83 0.20 0.66 189 14.9 0.00 0.01 0.00 11.6 0.01 0.05 0.00 0.17 0.00 0.12 平均值 30.0 89.3 30.5 2.81 957 24.0 0.03 0.09 0.02 493 0.09 17.4 0.02 20.2 0.02 0.34 Py3b ZZGJ-7-05 8.05 47.6 12.8 2.01 6 132 14.0 0.01 0.05 0.02 968 0.08 13.7 0.02 22.4 0.00 0.17 ZZGJ-7-06 10.2 56.3 13.4 1.77 6 307 1.82 0.01 0.04 0.00 857 0.07 13.1 0.02 19.5 0.00 0.18 ZZGJ-7-07 11.0 121 11.0 1.25 5 860 15.7 0.01 0.04 0.05 854 0.12 14.6 0.01 23.6 0.01 0.09 ZZGJ-7-08 3.31 15.9 14.7 1.32 5 699 6.85 0.03 0.05 0.00 792 0.05 8.67 0.00 21.3 0.00 0.21 ZZGJ-7-09 2.21 0.61 11.0 1.07 3 582 0.00 0.04 0.02 0.00 521 0.02 3.39 0.00 10.7 0.00 3.59 ZZGJ-7-10 4.67 9.02 11.7 1.44 5 285 90.9 0.03 0.04 0.00 789 0.03 6.74 0.00 19.6 0.00 0.52 ZZGJ-7-14 7.20 1.91 12.6 1.41 5 268 0.00 0.04 0.04 0.00 877 0.00 3.87 0.00 16.4 0.00 3.77 ZZGJ-7-16 7.21 2.10 14.9 1.61 5 483 3.84 0.00 0.04 0.09 1 098 0.02 3.76 0.00 21.2 0.00 3.44 平均值 6.73 31.8 12.7 1.49 5 452 16.6 0.02 0.04 0.02 844 0.05 8.48 0.01 19.3 0.00 0.21 Py3c ZZGJ-7-15 3.07 4.21 4.15 1.50 8 381 0.00 0.01 0.01 0.00 931 0.00 6.68 0.00 16.2 0.01 0.73 ZZGJ-7-17 1.30 0.27 3.69 2.25 10 589 0.00 0.04 0.00 0.04 1 275 0.01 5.56 0.00 20.7 0.00 4.84 ZZGJ-7-18 7.47 4.76 9.75 2.22 8 852 10.2 0.01 0.04 0.14 1 093 0.01 6.47 0.00 21.1 0.00 1.57 ZZGJ-7-19 0.29 0.40 0.71 2.32 10 844 0.00 0.00 0.00 0.00 1 268 0.00 4.78 0.00 25.2 0.00 0.71 ZZGJ-7-20 6.03 3.76 7.46 1.68 10 009 7.54 0.02 0.02 0.07 1 181 0.00 7.22 0.00 21.3 0.00 1.60 平均值 3.63 2.68 5.15 1.99 9 735 3.55 0.02 0.01 0.05 1 150 0.00 6.14 0.00 20.9 0.00 1.36 Table 2. Sulfide S isotope microanalysis results of Zaozigou gold deposit
硫化物类型 点号 34S/32S 2σ(10-6) δ34S(‰) Py1 ZZG-1-6-1 0.046 546 5 -6.5 ZZG-1-6-2 0.046 558 5 -6.3 ZZG-1-6-3 0.046 546 5 -6.5 ZZG-1-6-4 0.046 517 5 -7.1 ZZG-1-6-5 0.046 503 5 -7.4 ZZG-1-6-6 0.046 493 5 -7.3 ZZG-1-6-7 0.046 524 5 -6.6 ZZG-1-6-8 0.046 524 5 -6.6 ZZG-1-6-9 0.046 561 5 -5.8 ZZG-1-6-10 0.046 492 5 -7.3 ZZG-1-6-11 0.046 524 5 -6.6 平均值 0.046 526 5 -6.7 Py2a ZZG-1-5-1 0.046 416 7 -11.5 ZZG-1-5-2 0.046 445 5 -10.2 ZZG-1-5-3 0.046 314 16 -13.0 ZZG-1-5-4 0.046 366 4 -11.9 ZZG-1-5-5 0.046 379 6 -11.6 ZZG-1-5-13 0.046 358 5 -11.0 ZZG-1-5-14 0.046 432 7 -9.4 ZZG-1-5-15 0.046 378 7 -10.6 ZZGJ-4-1 0.046 281 8 -11.2 ZZGJ-4-2 0.046 287 6 -11.1 ZZGJ-4-3 0.046 269 539 -11.5 ZZGJ-4-4 0.046 259 6 -11.7 ZZGJ-4-5 0.046 270 5 -11.5 ZZGJ-4-6 0.046 267 6 -11.5 ZZGJ-4-16 0.046 330 7 -9.1 ZZGJ-4-17 0.046 279 5 -10.2 平均值 0.046 333 40 -11.0 Py2b ZZG-1-5-6 0.046 431 6 -9.8 ZZG-1-5-7 0.046 444 6 -9.6 ZZG-1-5-8 0.046 378 5 -11.0 ZZG-1-5-9 0.046 403 6 -10.4 ZZG-1-5-10 0.046 387 5 -10.8 ZZG-1-5-11 0.046 430 4 -9.4 ZZG-1-5-12 0.046 452 5 -9.0 ZZG-1-5-16 0.046 412 5 -9.5 ZZG-1-5-17 0.046 412 5 -9.5 ZZG-1-5-18 0.046 425 6 -9.2 ZZG-1-5-19 0.046 394 9 -9.9 ZZG-1-5-20 0.046 392 5 -9.9 ZZGJ-4-7 0.046 544 4 -5.0 ZZGJ-4-8 0.046 276 6 -10.7 ZZGJ-4-9 0.046 255 6 -11.2 ZZGJ-4-10 0.046 321 7 -9.8 ZZGJ-4-11 0.046 275 5 -10.7 ZZGJ-4-12 0.046 371 9 -8.7 ZZGJ-4-13 0.046 380 8 -8.1 ZZGJ-4-14 0.046 270 5 -10.4 ZZGJ-4-15 0.046 316 8 -9.4 平均值 0.046 379 6 -9.6 Py2c ZZG8531-2 0.048 279 8 -4.2 ZZG8531-3 0.048 208 9 -5.7 ZZG8531-5 0.047 668 9 -16.6 ZZG8531-8 0.047 696 8 -16.1 平均值 0.047 963 9 -10.7 Apy ZZG8531-1 0.047 492 7 -20.4 ZZG8531-4 0.047 567 5 -18.9 ZZG8531-6 0.047 679 6 -16.4 ZZG8531-7 0.047 444 5 -21.3 平均值 0.047 546 6 -19.2 Py3a ZZGJ-7-1 0.046 039 4 -21.9 ZZGJ-7-2 0.046 030 4 -22.1 ZZGJ-7-3 0.046 025 3 -22.2 ZZGJ-7-4 0.045 996 4 -22.6 ZZGJ-7-5 0.045 996 4 -22.6 ZZGJ-7-6 0.046 021 4 -22.1 平均值 0.046 018 4 -22.2 Py3b ZZGJ-7-7 0.046 060 7 -21.2 ZZGJ-7-8 0.046 067 6 -21.1 ZZGJ-7-9 0.046 012 4 -22.3 ZZGJ-7-10 0.045 947 5 -22.9 ZZGJ-7-11 0.045 933 5 -23.2 ZZGJ-7-12 0.046 047 6 -20.8 ZZGJ-7-13 0.045 990 6 -22.0 ZZGJ-7-14 0.045 975 6 -21.6 ZZGJ-7-15 0.045 959 6 -21.9 ZZGJ-7-18 0.045 917 4 -22.1 ZZGJ-7-19 0.045 980 5 -20.7 ZZGJ-7-21 0.046 008 5 -20.1 平均值 0.045 991 5 -21.7 Py3c ZZGJ-7-16 0.045 804 29 -25.2 ZZGJ-7-17 0.045 820 31 -24.8 ZZGJ-7-20 0.045 801 27 -24.5 平均值 0.045 808 29 -24.9 -
Cao, X. F., Mohamed, L. S. S., Lü, X. B., et al., 2012. Ore-Forming Process of the Zaozigou Gold Deposit: Constraints from Geological Characteristics, Gold Occurrence and Stable Isotope Compositions. Journal of Jilin University (Earth Science Edition), 42(4): 1039-1054(in Chinese with English abstract). Chen, L., Li, X. H., Li, J. W., et al., 2015. Extreme Variation of Sulfur Isotopic Compositions in Pyrite from the Qiuling Sediment-Hosted Gold Deposit, West Qinling Orogen, Central China: An in Situ SIMS Study with Implications for the Source of Sulfur. Mineralium Deposita, 50(6): 643-656. https://doi.org/10.1007/s00126-015-0597-9 Chen, R. L., Chen, Z. L., Wu, J. J., et al., 2018. Fluid Inclusions and S-Pb Isotopes in Zaozigou Gold Deposit, Hezuo in Gansu Province. Journal of Jilin University (Earth Science Edition), 48(1): 87-104(in Chinese with English abstract). Cox, S. F., Sun, S. S., Etheridge, M. A., et al., 1995. Structural and Geochemical Controls on the Development of Turbidite-Hosted Gold Quartz Vein Deposits, Wattle Gully Mine, Central Victoria, Australia. Economic Geology, 90(6): 1722-1746. https://doi.org/10.2113/gsecongeo.90.6.1722 Du, B. S., Shen, J. F., Santosh, M., et al., 2021. Textural, Compositional and Isotopic Characteristics of Pyrite from the Zaozigou Gold Deposit in West Qinling, China: Implications for Gold Metallogeny. Ore Geology Reviews, 130: 103917. https://doi.org/10.1016/j.oregeorev.2020.103917 Deditius, A. P., Reich, M., Kesler, S. E., et al., 2014. The Coupled Geochemistry of Au and As in Pyrite from Hydrothermal Ore Deposits. Geochimica et Cosmochimica Acta, 140: 644-670. https://doi.org/10.1016/j.gca.2014.05.045 Hu, X. L., Ding, Z. J., Gong, Y. J., et al., 2021. Ore-Hosting Igneous Rocks in the Xiahe-Hezuo District, West Qinling Orogen, China, and Their Relationships with Gold Mineralization. Ore Geology Reviews, 133: 104127. https://doi.org/10.1016/j.oregeorev.2021.104127 Hu, X. L., Gong, Y. J., Zeng, G. P., et al., 2018. Multistage Pyrite in the Getang Sediment-Hosted Disseminated Gold Deposit, Southwestern Guizhou Province, China: Insights from Textures and In Situ Chemical and Sulfur Isotopic Analyses. Ore Geology Reviews, 99: 1-16. https://doi.org/10.1016/j.oregeorev.2018.05.020 Hu, X. L., Yao, S. Z., He, M. C., et al., 2021. An Overview of Advances in Tellurium Mineralization in Telluride-Rich Gold Deposits. Earth Science, 46(11): 3807-3817(in Chinese with English abstract). Hurtig, N. C., Williams-Jones, A. E., 2014. An Experimental Study of the Transport of Gold through Hydration of AuCl in Aqueous Vapour and Vapour-Like Fluids. Geochimica et Cosmochimica Acta, 127: 305-325. https://doi.org/10.1016/j.gca.2013.11.029 Jin, X. Y., Li, J. W., Sui, J. X., et al., 2013. Geochronological and Geochemical Constraints on the Genesis and Tectonic Setting of Dewulu Intrusive Complex in Xiahe-Hezuo District of Western Qinling. Journal of Earth Sciences and Environment, 35(3): 20-38(in Chinese with English abstract). Li, J. W., Sui, J. X., Jin, X. Y., et al., 2019. The Intrusion-Related Gold Deposits in the Xiahe-Hezuo District, West Qinling Orogen: Geodynamic Setting and Exploration Potential. Earth Science Frontiers, 26(5): 17-32(in Chinese with English abstract). Li, W. H., Liu, J. H., Li, T. G., et al., 2015. Analysis on Resource Potential of Xiahe-Hezuo Au Enrichment Area, Gansu: Taking Geochemical Blocks of Au, Ag and Sb as an Example. Northwestern Geology, 48(2): 121-127(in Chinese with English abstract). doi: 10.3969/j.issn.1009-6248.2015.02.012 Liu, C. X., Li, L., Sui, J. X., 2011. Mineralization Characteristics and Ore Genesis of the Zaozigou Gold Deposit, Gansu Province. Geological Science and Technology Information, 30(6): 66-74 (in Chinese with English abstract). Liu, D. X., Di, P. F., Zhang, X., et al., 2019. Genesis of the Zaozigou Gold Deposit in Gansu Province: Evidences from Fluid Inclusions and H-O-S Isotopes. Journal of Lanzhou University (Natural Sciences), 55(2): 168-175(in Chinese with English abstract). Liu, J. J., Zheng, M. H., Liu, J. M., et al., 2000. Sulfur Isotopic Composition and Its Geological Significance of the Cambrian Gold Deposits in Western Qinling, China. Journal of Jilin University (Earth Science Edition), 30(2): 150-156(in Chinese with English abstract). Liu, X. L., 2011. A Study on the Geology Feature and Minerals Exploration Sign of Structure-Metamorphosis-Type Gold-Bearing Deposit in Gansu Xiahe-Hezuo Region. Gansu Metallurgy, 33(2): 99-103(in Chinese with English abstract). Liu, W. H., Borg, S. J., Testemale, D., et al., 2011. Speciation and Thermodynamic Properties for Cobalt Chloride Complexes in Hydrothermal Fluids at 35-440 ℃ and 600 bar: An In-Situ XAS Study. Geochimica et Cosmochimica Acta, 75(5): 1227-1248. https://doi.org/10.1016/j.gca.2010.12.002 Liu, W. H., Migdisov, A., Williams-Jones, A., 2012. The Stability of Aqueous Nickel (II) Chloride Complexes in Hydrothermal Solutions: Results of UV-Visible Spectroscopic Experiments. Geochimica et Cosmochimica Acta, 94: 276-290. https://doi.org/10.1016/j.gca.2012.04.055 Liu, W. Q., Liu, B., Luo, Q., et al., 2022. In-Situ Trace Element and Sulfur Isotope of Pyrite Constrain Ore Genesis in Shulouqiu Uranium Deposit, North Guangdong. Earth Science, 47(1): 178-191(in Chinese with English abstract). Liu, Y., Liu, Y. H., Dong, F. C., et al., 2012. Accurate Dating of Mineralogenetic Epoch and Its Geological Significance in Zaozigou Gold Deposit, Gansu Province. Gold, 33(11): 10-17(in Chinese with English abstract). Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004 Lü, X. B., Cao, X. F., Mohamed, L. S. S., et al. 2009. Discussion on Geological Characteristics, Ore Control Structure and Material Source of Zaozigou Gold Deposit. Acta Mineralogica Sinica, 29(Suppl. 1): 447-448(in Chinese with English abstract). Mao, H. H., Zhang, Z. R., 1997. An Overview Physicochemical Conditions and Mechanisms of Au Deposition from hydrothermal solutions. Geology-Geochemistry, 25(2): 89-92(in Chinese with English abstract). Naden, J., Shepherd, T. J., 1989. Role of Methane and Carbon Dioxide in Gold Deposition. Nature, 342: 793-795. https://doi.org/10.1038/342793a0 Nevolko, P. A., Pham, T. D., Fominykh, P. A., et al., 2019. Origin of the Intrusion-Related Lang Vai Gold-Antimony District (Northeastern Vietnam): Constraints from Fluid Inclusions Study and C-O-S-Pb Isotope Systematics. Ore Geology Reviews, 104: 114-131. https://doi.org/10.1016/j.oregeorev.2018.10.019 Ohmoto, H., 1972. Systematics of Sulfur and Carbon Isotopes in Hydrothermal Ore Deposits. Economic Geology, 67(5): 551-578. https://doi.org/10.2113/gsecongeo.67.5.551 Palenik, C. S., Utsunomiya, S., Reich, M., et al., 2004. "Invisible" Gold Revealed: Direct Imaging of Gold Nanoparticles in a Carlin-Type Deposit. American Mineralogist, 89(10): 1359-1366. https://doi.org/10.2138/am-2004-1002 Qian, J. P., Zhang, G., Qi, W. B., et al., 2020. Composition, Pattern, and Evolution of Compound Metallogenic Structural System and Their Controls on Mineralization of Zaozigou Gold Deposit, Gansu Province. Geotectonica et Metallogenia, 44(5): 913-936(in Chinese with English abstract). Qiu, K. F., Yu, H. C., Deng, J., et al., 2020. The Giant Zaozigou Au-Sb Deposit in West Qinling, China: Magmatic- or Metamorphic-Hydrothermal Origin? Mineralium Deposita, 55(2): 345-362. https://doi.org/10.1007/s00126-019-00937-w Qiu, Z. W., Li, Z. K., Yuan, Z. Z., 2022. Microstructure and Trace Elements of Pyrite from Sanshandao Gold Deposit in Jiaodong District: Implications for Mechanism of Gold Enrichment. Earth Science, 47(1): 290-308(in Chinese with English abstract). Reich, M., Kesler, S. E., Utsunomiya, S., et al., 2005. Solubility of Gold in Arsenian Pyrite. Geochimica et Cosmochimica Acta, 69(11): 2781-2796. https://doi.org/10.1016/j.gca.2005.01.011 Shenberger, D. M., Barnes, H. L., 1989. Solubility of Gold in Aqueous Sulfide Solutions from 150 to 350 ℃. Geochimica et Cosmochimica Acta, 53(2): 269-278. https://doi.org/10.1016/0016-7037(89)90379-7 Simmons, S. F., Brown, K. L., Tutolo, B. M., 2016. Hydrothermal Transport of Ag, Au, Cu, Pb, Te, Zn, and Other Metals and Metalloids in New Zealand Geothermal Systems: Spatial Patterns, Fluid-Mineral Equilibria, and Implications for Epithermal Mineralization. Economic Geology, 111(3): 589-618. https://doi.org/10.2113/econgeo.111.3.589 Simon, G., Kesler, S. E., Chryssoulis, S., 1999. Geochemistry and Textures of Gold-Bearing Arsenian Pyrite, Twin Creeks, Nevada; Implications for Deposition of Gold in Carlin-Type Deposits. Economic Geology, 94(3): 405-421. https://doi.org/10.2113/gsecongeo.94.3.405 Su, W. C., Xia, B., Zhang, H. T., et al., 2008. Visible Gold in Arsenian Pyrite at the Shuiyindong Carlin-Type Gold Deposit, Guizhou, China: Implications for the Environment and Processes of Ore Formation. Ore Geology Reviews, 33(3/4): 667-679. https://doi.org/10.1016/j.oregeorev.2007.10.002 Su, W., Heinrich, C. A., Pettke, T., et al., 2009. Sediment-Hosted Gold Deposits in Guizhou, China: Products of Wall-Rock Sulfidation by Deep Crustal Fluids. Economic Geology, 104(1): 73-93. https://doi.org/10.2113/gsecongeo.104.1.73 Sui, J. X., Li, J. W., Hofstra, A. H., et al., 2020. Genesis of the Zaozigou Gold Deposit, West Qinling Orogen, China: Constraints from Sulfide Trace Element and Stable Isotope Geochemistry. Ore Geology Reviews, 122: 103477. https://doi.org/10.1016/j.oregeorev.2020.103477 Sung, Y. H., Brugger, J., Ciobanu, C. L., et al., 2009. Invisible Gold in Arsenian Pyrite and Arsenopyrite from a Multistage Archaean Gold Deposit: Sunrise Dam, Eastern Goldfields Province, Western Australia. Mineralium Deposita, 44(7): 765-791. https://doi.org/10.1007/s00126-009-0244-4 Stefánsson, A., Seward, T. M., 2003. The Hydrolysis of Gold(I) in Aqueous Solutions to 600 ℃ and 1 500 Bar. Geochimica et Cosmochimica Acta, 67(9): 1677-1688. https://doi.org/10.1016/s0016-7037(02)01131-6 Williams-Jones, A., Bowell, R., Migdisov, A. A., 2009. Gold in Solution. Elements, 5: 281-287. https://doi.org/10.2113/gselements.5.5.281 Wei, P., Mo, X. X., Yu, X. H., et al., 2013. Geochemistry, Chronology and Geological Significance of the Granitoids in Xiahe, West Qinling. Acta Petrologica Sinica, 29(11): 3981-3992(in Chinese with English abstract). Wu, Y. F., Li, J. W., Evans, K., et al., 2018. Ore-Forming Processes of the Daqiao Epizonal Orogenic Gold Deposit, West Qinling Orogen, China: Constraints from Textures, Trace Elements, and Sulfur Isotopes of Pyrite and Marcasite, and Raman Spectroscopy of Carbonaceous Material. Economic Geology, 113(5): 1093-1132. https://doi.org/10.5382/econgeo.2018.4583 Wu, Y. F., Evans, K., Li, J. W., et al., 2019. Metal Remobilization and Ore-Fluid Perturbation during Episodic Replacement of Auriferous Pyrite from an Epizonal Orogenic Gold Deposit. Geochimica et Cosmochimica Acta, 245: 98-117. https://doi.org/10.1016/j.gca.2018.10.031 Zhang, F. R., Feng, X. M., Zhou, H. W., 2001. Geochemical Characteristic and Ore-Search Prospects of Gold Deposit in Xiahe Area. Acta Geologica Gansu, 10(1): 54-62(in Chinese with English abstract). Zhou, H. W., Wang, W., Zhang, F. R., 2003. Features of Gold Deposits and Suggestions for Ore Prospecting in Xiahe-Hezuo Area of Gansu Province. Acta Geologica Gansu, 12(1): 63-69(in Chinese with English abstract). 曹晓峰, Mohamed, L. S. S., 吕新彪, 等, 2012. 甘肃枣子沟金矿床成矿过程分析: 来自矿床地质特征、金的赋存状态及稳定同位素证据. 吉林大学学报(地球科学版), 42(4): 1039-1054. 陈瑞莉, 陈正乐, 伍俊杰, 等, 2018. 甘肃合作早子沟金矿床流体包裹体及硫铅同位素特征. 吉林大学学报(地球科学版), 48(1): 87-104. 胡新露, 姚书振, 何谋惷, 等, 2021. 富碲化物金矿床中碲的成矿作用研究进展. 地球科学, 46(11): 3807-3817. doi: 10.3799/dqkx.2021.002 靳晓野, 李建威, 隋吉祥, 等, 2013. 西秦岭夏河—合作地区德乌鲁杂岩体的侵位时代、岩石成因及构造意义. 地球科学与环境学报, 35(3): 20-38. 李卫红, 刘建宏, 李通国, 等, 2015. 甘肃夏河-合作金富集区资源潜力分析: 以金、银、锑地球化学块体为例. 西北地质, 48(2): 121-127. 李建威, 隋吉祥, 靳晓野, 等, 2019. 西秦岭夏河—合作地区与还原性侵入岩有关的金成矿系统及其动力学背景和勘查意义. 地学前缘, 26(5): 17-32. 刘春先, 李亮, 隋吉祥, 2011. 甘肃枣子沟金矿的矿化特征及矿床成因. 地质科技情报, 30(6): 66-74. 刘家军, 郑明华, 刘建明, 等, 2000. 西秦岭寒武系金矿床中硫同位素组成及其地质意义. 吉林大学(自然科学版), 30(2): 150-156. 刘勇, 刘云华, 董福辰, 等, 2012. 甘肃枣子沟金矿床成矿时代精确测定及其地质意义. 黄金, 33(11): 10-17. 刘东晓, 第鹏飞, 张鑫, 等, 2019. 甘肃早子沟金矿矿床成因: 来自流体包裹体及H-O-S同位素的证据. 兰州大学学报(自然科学版), 55(2): 168-175. 刘晓林, 2011. 甘肃夏河-合作一带构造蚀变岩型金矿地质特征及找矿标志. 甘肃冶金, 33(2): 99-103. 刘文泉, 刘斌, 罗强, 等, 2022. 粤北书楼丘铀矿床黄铁矿原位微量元素、硫同位素组成及矿床成因指示. 地球科学, 47(1): 178-191. doi: 10.3799/dqkx.2021.181 吕新彪, 曹晓峰, Mohamed, L. S. S., 等, 2009. 枣子沟金矿地质特征、控矿构造及物质来源探讨. 矿物学报, 29(增刊1): 447-448. 毛华海, 张哲儒, 1997. 热液中金的沉淀机理研究综述. 地质地球化学, 25(2): 89-92. 钱建平, 张果, 漆炜博, 等, 2020. 甘肃早子沟金矿复合成矿构造系统的构成、样式、演化和控矿规律. 大地构造与成矿学, 44(5): 913-936. 邱志伟, 李占轲, 袁中正, 2022. 胶东三山岛金矿床黄铁矿显微结构和微量元素特征: 对金富集机制的指示. 地球科学, 47(1): 290-308. doi: 10.3799/dqkx.2021.045 韦萍, 莫宣学, 喻学惠, 等, 2013. 西秦岭夏河花岗岩的地球化学、年代学及地质意义. 岩石学报, 29(11): 3981-3992. 张发荣, 冯小明, 周会武, 2001. 夏河地区金矿地球化学特征及找矿前景. 甘肃地质学报, 10(1): 54-62. 周会武, 王伟, 张发荣, 2003. 甘肃夏河—合作地区金矿特征及找矿思路. 甘肃地质学报, 12(1): 63-69. -