• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    新疆伽师地区地壳三维速度结构及中强震震源机制揭示的区域孕震环境

    梁姗姗 徐志国 黄小宁 张广伟 邹立晔 周元泽

    梁姗姗, 徐志国, 黄小宁, 张广伟, 邹立晔, 周元泽, 2024. 新疆伽师地区地壳三维速度结构及中强震震源机制揭示的区域孕震环境. 地球科学, 49(2): 451-468. doi: 10.3799/dqkx.2023.165
    引用本文: 梁姗姗, 徐志国, 黄小宁, 张广伟, 邹立晔, 周元泽, 2024. 新疆伽师地区地壳三维速度结构及中强震震源机制揭示的区域孕震环境. 地球科学, 49(2): 451-468. doi: 10.3799/dqkx.2023.165
    Liang Shanshan, Xu Zhiguo, Huang Xiaoning, Zhang Guangwei, Zou Liye, Zhou Yuanze, 2024. Regional Seismogenic Environment Revealed by the 3D Crustal Velocity Structure and Focal Mechanism of Moderate and Strong Earthquakes in Jiashi Area, Xinjiang, China. Earth Science, 49(2): 451-468. doi: 10.3799/dqkx.2023.165
    Citation: Liang Shanshan, Xu Zhiguo, Huang Xiaoning, Zhang Guangwei, Zou Liye, Zhou Yuanze, 2024. Regional Seismogenic Environment Revealed by the 3D Crustal Velocity Structure and Focal Mechanism of Moderate and Strong Earthquakes in Jiashi Area, Xinjiang, China. Earth Science, 49(2): 451-468. doi: 10.3799/dqkx.2023.165

    新疆伽师地区地壳三维速度结构及中强震震源机制揭示的区域孕震环境

    doi: 10.3799/dqkx.2023.165
    基金项目: 

    地震科技星火计划项目 XH213703Y

    中央高校基本科研业务费专项资金 E3E40401X2

    详细信息
      作者简介:

      梁姗姗(1989-),女,高级工程师,博士研究生,从事天然地震数字资料处理与分析工作,主要从事地震定位、震源机制反演研究. ORCID: 0000-0002-4357-5248. E-mail:liangshanshan@seis.ac.cn

      通讯作者:

      周元泽,ORCID: 0000-000-4932-5722. E-mail: yzzhou@ucas.ac.cn

    • 中图分类号: P315

    Regional Seismogenic Environment Revealed by the 3D Crustal Velocity Structure and Focal Mechanism of Moderate and Strong Earthquakes in Jiashi Area, Xinjiang, China

    • 摘要: 为了详细探讨伽师震区上地壳精细速度结构与地震活动的关系,基于新疆数字地震台网提供的震相观测报告和宽频带波形数据,使用双差层析成像方法获得了伽师地区(76.5°E~78.0°E,39.3°N~40.3°N)2009年以来地震精定位结果和较高分辨率的三维VPVSVP/VS结构,并分析了2020年伽师MS6.4地震序列中MS≥5.0地震的全矩张量解,综合研究区域内地震时空分布特征、震源机制和速度结构等信息,探讨伽师震源区发震构造及孕震环境. 结果表明,研究区重定位后的地震分布与已知断裂相关性差. 2020年伽师MS6.4地震序列呈NNW和近EW向2个优势方向分布,其余震在震后48 h内主要在距主震约20 km处近EW向的奥兹格尔他乌断裂上及其附近展布;序列中4次中强地震全矩张量解显示出具有明显的非双力偶成分,均为体积缩小的压性破裂;伽师地区地壳速度结构存在明显的不均匀性:2020年伽师MS6.4地震震中位于P波高速体内、S波高速体边缘及低波速比区域,且在中下地壳存在大范围的S波低速异常. 结合周边地质构造及前人研究结果,我们认为,2020年MS6.4主震的发震构造为柯坪塔格推覆体中的近EW向隐伏逆断裂,与其共轭的NNW向隐伏断裂也参与了整个伽师MS6.4地震序列的发震过程. 伽师地区强震频发是塔里木盆地向南天山持续俯冲挤压,触发推覆构造和盆山交界处若干隐伏断裂活动的构造运动结果,速度结构所揭示的介质横向不均匀性也造成震源破裂机制的多样性.

       

    • 图  1  研究区域历史地震和台站分布与构造背景

      历史地震目录来自中国地震台网中心,断层数据来自中国地震局地质研究所;F1. 柯坪断裂;F2.奥兹格尔他乌断裂;F3.皮羌断裂;F4.阿图什背斜北翼断裂;F5.伽师隐伏断裂;F6.巴什托普断裂

      Fig.  1.  Historical earthquakes and station distribution and tectonic background in the study area

      图  2  双差层析成像网格点分布(a)和走时曲线(b)

      红色框为研究区域,橙色三角形为地震台站,深蓝色十字为网格点(0.25°×0.25°),浅蓝色线条为地震射线路径

      Fig.  2.  Double difference tomography distribution of inversion grids(a) and travel time⁃distance curve(b)

      图  3  使用不同阻尼因子(a)和光滑因子(b)得到的L曲线

      箭头所指的数字代表选取的最佳参数值

      Fig.  3.  Trade⁃off curves of different damping coefficients(a) and smoothing coefficient(b)

      图  4  不同深度P波棋盘格测试结果

      Fig.  4.  Resolutions of checkboard tests of P waves at different depths

      图  5  不同深度S波棋盘测试结果

      Fig.  5.  Resolutions of checkboard tests of S waves at different depths

      图  6  研究区内地震重定位后沿水平方向(a)和深度方向(b)的相对误差

      Fig.  6.  The relative error of horizonal (a) and depth after relocation in the study area

      图  7  (a) 研究区重定位震中分布图,灰色圆点代表历史地震位置,红色圆点代表2020年伽师MS6.4地震序列;(b)研究区重定位前后地震走时均方根残差分布;(c)重定位后2020年伽师地震序列震中分布,颜色代表2020年伽师地震序列MS5.4前震后7天内的时间

      Fig.  7.  (a) The relocation epicenter distribution map of the study area, with gray dots denote historical earthquake locations and red dots denote the 2020 MS6.4 Jiashi earthquake sequence; (b) Histograms of travel time residuals before and after relocation; (c) The epicenter distribution of the 2020 Jiashi earthquake sequence after relocation, with colors denote the time within 7 days before and after the MS5.4 earthquake in the 2020 Jiashi earthquake sequence

      图  8  2020年伽师MS6.4地震不同深度上的全矩张量解及其波形互相关系数

      Fig.  8.  Double⁃couple mechanism solution and its waveform correlation coefficient of 2020 MS6.4 Jiashi earthquake at different depths

      图  9  表 2中事件1~4地震全矩张量对应的三分量理论(红色)和实际(黑色或灰色,灰色未参加反演)波形拟合图

      波形上方数字表示波形拟合方差;右侧大写字母表示台站名

      Fig.  9.  The waveform fitting map of the three⁃component theory corresponding the double⁃couple mechanism solution (red) and the actual waveforms (black or gray, gray not participating in the inversion) oftheevents 1⁃4 intable 2

      图  10  1996年以来伽师地区MS6.0以上地震震源机制解和2020年伽师MS6.4地震序列中MS≥5.0地震震源机制解

      Fig.  10.  Focal mechanism solutions for earthquakes with MS6.0 or above in the Jiashi area since 1996 and MS≥5.0 in the MS6.4 Jiashi earthquake sequence in 2020

      图  11  2020年伽师MS6.4地震序列中MS≥5.0地震Husdon震源类型图

      Fig.  11.  Husdon source type map of earthquakes with MS≥5.0 in the 2020 MS6.4 Jiashi earthquake sequence

      图  12  不同深度方向上P波速度分布

      黑色圆点表示历史地震震中位置,黄色五角星为2020年伽师MS6.4地震,白色线条为主要活动断层

      Fig.  12.  Velocity variations on horizontal slices of P waves at different depths

      图  13  不同深度方向上S波速度分布

      黑色圆点表示历史地震震中位置,黄色五角星为2020年伽师MS6.4地震,白色线条为主要活动断层

      Fig.  13.  Velocity variations on horizontal slices of S waves at different depths

      图  14  不同深度方向上VP/VS分布

      黑色圆点表示历史地震震中位置,黄色五角星为2020年伽师MS6.4地震,白色线条为主要活动断层

      Fig.  14.  Velocity variations on horizontal slices of VP/VS at different depths

      图  15  不同深度AA’剖面上P波和S波速度结构

      黑色圆点表示历史地震震源位置,黄色五角星为2020年伽师MS6.4地震,绿色椭圆代表高速异常区域

      Fig.  15.  Velocity structures of P and S waves at different depth profiles AA'

      图  16  不同深度BB’剖面上P波和S波速度结构

      黑色圆点表示历史地震震源位置,黄色五角星为2020年伽师MS6.4地震

      Fig.  16.  Velocity structures of P and S waves at different depth profiles BB'

      表  1  本研究所使用的一维速度模型(郭志等,2021)

      Table  1.   The velocity model used in this study (Guo et al., 2021)

      顶层高度(km) VP(km/s) VP/VS
      0 4.48 1.72
      6 5.45
      14 6.22
      28 6.75
      38 7.42
      52 8.15
      下载: 导出CSV

      表  2  2020年伽师MS6.4地震序列较大地震全矩张量解反演结果

      Table  2.   The full moment tensor solutions for large earthquakes in the 2020 Jiashi MS6.4 earthquake sequence

      编号 1 2 3 4
      发震时刻 2020-01-18 00:05:50.0 2020-01-19 21:27:55.4 2020-01-19 22:23:01.2 2020-02-21 23:39:14.9
      节面Ⅰ 走向(°) 262 75 76 55
      倾角(°) 90 68 80 60
      滑动角(°) -173 116 93 74
      节面Ⅱ 走向(°) 172 203 241 270
      倾角(°) 83 33 10 28
      滑动角(°) 0 43 75 122
      矩心深度(km) 9 10 9 11
      Mw 5 6 4.9 4.6
      MS 5.4 6.4 5.2 5.1
      Mrr -0.215 4.218 0.432 0.235
      Mtt 1.028 -5.994 -1.535 -1.024
      Mpp -1.468 -1.692 -0.704 0.099
      Mrt 0.499 5.843 2.797 0.557
      Mrp 0.081 1.938 0.676 0.275
      Mtp -4.203 -6.86 -0.381 -0.564
      VR 0.85 0.69 0.85 0.78
      CN 2.9 3.3 2.3 2.5
      最小旋转角(°) 6.5 9 15.1 21.8
      下载: 导出CSV
    • Bouchon, M., 1981. A Simple Method to Calculate Green's Functions for Elastic Layered Media. Bulletin of the Seismological Society of America, 71(4): 959-971. https://doi.org/10.1785/bssa0710040959
      Chapman, C. H., Leaney, W. S., 2011. A New Moment⁃Tensor Decomposition for Seismic Events in Anisotropic Media. Geophysical Journal International, 188(1): 343-370. https://doi.org/10.1111/j.1365⁃246x.2011.05265.x
      Cui, H. W., Wan, Y. G., Wang, X. S., et al., 2021. Characteristic of Tectonic Stress Field in Source Region of 2018 MW7.6 Palu Earthquake and Sulawesi Area. Earth Science, 46(7): 2657-2674(in Chinese with English abstract).
      Cui, R. S., Zhao, C. P., Zhou, L. P., et al., 2021. Seismicity Feature and Seismogenic Fault of the MS6.4 Earthquake Sequence on January 19, 2020 in Jiashi, Xinjiang. Seismology and Geology, 43(2): 329-344(in Chinese with English abstract).
      Eberhart⁃Phillips, D., Michael, A. J., 1993. Three‐dimensional Velocity Structure, Seismicity, and Fault Structure in the Parkfield Region, Central California. Journal of Geophysical Research: Solid Earth, 98(B9): 15737-15758. https://doi.org/10.1029/93jb01029
      Eberhart⁃Phillips, D., 1986. Three⁃Dimensional Velocity Structure in Northern California Coast Ranges from Inversion of Local Earthquake Arrival Times. Bulletin of the Seismological Society of America, 76(4): 1025-1052.
      Guo, Z., Gao, X., Lu, Z., 2021. Relocation and Focal Mechanism for the Xinjiang JiashiEartjquake on 19 January, 2020. Seismology and Geology, 43(2): 345-356(in Chinese with English abstract).
      He, Y. M., Zheng, T. Y., Shan, X. J., 2001. The 1996 Artux, Xinjiang, Earthquake: a Unilateral⁃Rupture Event. Chinese Journal of Geophysics, 44(4): 510-519(in Chinese with English abstract).
      Hua, Q., Pei, S, P., Guo, Z., etal., 2022. Shallow Layer Tomography Study on Tongmai⁃Lulang Section of Sichuan⁃Tibet Railway. Earth Science, 47(9): 3447-3462(in Chinese with English abstract).
      Lei, J. S., 2011. Seismic Tomographic Imaging of the Crust and Upper Mantle under the Central and Western Tien Shan Orogenic Belt. Journal of Geophysical Research, 116(B9): 9305. https://doi.org/10.1029/2010jb008000
      Li, J., Gao, Y., Zhou, S. H., 2023. Upper Crust Anisotropy of the 2020 Jiashi MS 6.4 Earthquake. Frontiers in Earth Science, 11: 1160676. https://doi.org/10.3389/feart. 2023. 1160676 doi: 10.3389/feart.2023.1160676
      Li, D. H., Ding, Z. F., Wu, P. P., et al., 2021. The Characteristics of Crustal Structure and Seismogenic Background of Yangbi MS6.4 Earthquake on May 21, 2021 in Yunnan Province, China. Chinese Journal of Geophysics, 64(9): 3083-3100(in Chinese with English abstract).
      Li, J., Jiang, H. K., Wei, Y. Y., et al., 2021. Preliminary Study for Seismogenic Structure of the MS6.4 Jiashi Earthquake on January 19, 2020. Seismology and Geology, 43(2): 357-376(in Chinese with English abstract).
      Liang, S. S., Xu, Z. G., Zhang, G. W., et al., 2021. Full Moment Tensor Inversion for the 2019 Ningjiang MS5.1 Earthquake in Jilin Province and Study on its Seismogenic Mechanism. Earthquake Research in China, 35(3): 488-498(in Chinese with English abstract).
      Liu, Q. Y., Chen, J. H., Li, S, C., et al., 2000. Passive Seismic Experiment in Xinjiang⁃Jiashi Strong Earthquake Region and Discussion on its Seismic Genesis. Chinese Journal of Geophysics, 43(3): 356-365(in Chinese with English abstract).
      Lü, Z. Q., Gao, H. Y., Lei, J. S., 2020. New Insight into Crustal and Lithospheric Variability beneath the Central Tien Shan (NW China) Revealed by P⁃Wave Receiver Functions. Journal of Asian Earth Sciences, 189(6): 104187. https://doi.org/10.1016/j.jseaes.2019.104187
      Min, W., Song, F. M., Han, Z. J., et al., 2006. The Preliminary Study on Paleo Earthquakes along the Western Segment of Kalpintag Fault. Seismology and Geology, 8(2): 76-86(in Chinese with English abstract).
      Shan, X. J., He, Y. M., Zhu, Y., 2002. Characteristics of Focal Rupture of the Jiashi Strong Earthquake Swarm. Seismology and Geology, 24(1): 59-68(in Chinese with English abstract).
      Sokos, E. N., Zahradnik, J., 2008. ISOLA a Fortran Code and a Matlab GUI to Perform Multiple⁃Point Source Inversion of Seismic Data. Computers & Geosciences, 34(8): 967-977. https://doi.org/10.1016/j.cageo.2007.07.005
      Sokos, E., Zahradnik, J., 2013. Evaluating Centroid⁃Moment⁃Tensor Uncertainty in the New Version of ISOLA Software. Seismological Research Letters, 84(4): 656-665. https://doi.org/10.1785/0220130002
      Song, F. M., Min, W., Han, Z. J., et al., 2007. Activities and Slip Rate of the Frontal Faults of the KalpintagNappe, Tianshan Mountains, China. Seismology and Geology, 29(2): 272-281(in Chinese with English abstract).
      Tang, X. Y., Fan, W. Y., Feng, Y. G., et al., 2011. Phase Velocity Tomography of Rayleigh Wave in Xinjiang from Ambient Noise. Chinese Journal of Geophysics, 54(8): 2042-2049(in Chinese with English abstract).
      Vavryčuk, V., 2001. Inversion for Parameters of Tensile Earthquakes. Journal of Geophysical Research: Solid Earth, 106(B8): 16339-16355. https://doi.org/10.1029/2001jb000372
      Vavryčuk, V., 2011. Detection of High⁃Frequency Tensile Vibrations of a Fault during Shear Rupturing: Observations from the 2008 West Bohemia Swarm. Geophysical Journal International, 186(3): 1404-1414. https://doi.org/10.1111/j.1365⁃246x.2011.05122.x
      Wan, Y. G., 2019. Determination of Center of Several Focal Mechanisms of the Same Earthquake. Chinese Journal of Geophysics, 62(12): 4718-4728(in Chinese with English abstract).
      Wang, M., Shen, Z. K., 2020. Present‐Day Crustal Deformation of Continental China Derived from GPS and its Tectonic Implications. Journal of Geophysical Research: Solid Earth, 125(2): e2019JB018774. https://doi.org/10.1029/2019jb018774
      Wang, C. Z., Wu, J. P., Yang, T., et al., 2018. Crustal Structure Beneath the Taiyuan Basin and Adjacent Areas Revealed by Double⁃Difference Tomography. Chinese Journal of Geophysics, 61(3): 963-974(in Chinese with English abstract).
      Wang, W. M., Li, L. Zhao, L. F., et al., 2005. Rupture Process of Jiashi, Xinjiang Earthquake(MS6.5) of Feb. 24, 2003. Chinese Journal of Geophysics, 48(2): 343-351(in Chinese with English abstract).
      Xiong, X., 2022. What is the Mechanism to Control the Distribution of Intracontinental Earthquakes? Earth Science, 47(10): 3906-3907(in Chinese with English abstract).
      Xu, Z. G., Liang, S. S., Liu, J., et al., 2020. Relocation, Focal Mechanisms and Stress Field Characteristics of Earthquake Swarms in the Songyuan Area of Jilin Province, China. Pure and Applied Geophysics, 177(11): 5147-5168. https://doi.org/10.1007/s00024⁃020⁃02574⁃1
      Xu, Y., Liu, F. T., Liu, J., H. et al., 2000. Crustal Structure and Tectonic Environment of Strong Earthquakes in the Tianshan Earthquake Belt. Chinese Journal of Geophysics, 43(2): 184-193(in Chinese with English abstract).
      Xu, Z. G., Liang, S. S., Zhang, G. W., et al., 2021. Analysis of Seismogenic Structure of Madoi, Qinghai MS7.4 Earthquake on May 22, 2021. Chinese Journal of Geophysics, 64(8): 2657-2670(in Chinese with English abstract).
      Zhang, H. J., Thurber, C., 2006. Development and Applications of Double⁃Difference Seismic Tomography. pure and applied geophysics, 163(2/3): 373-403. https://doi.org/10.1007/s00024⁃005⁃0021⁃y
      Zhang, G. W., Lei, J. S., Sun, D. Y., et al., 2019. The 2013 and 2017 Ms 5 Seismic Swarms in Jilin, NEChina: Fluid‐Triggered Earthquakes?. Journal of Geophysical Research: Solid Earth, 124(12): 13096-13111. https://doi.org/10.1029/2019jb018649
      Zhang, H. J., Thurber, C., 2003. Double⁃Difference Tomography: The Method and its Application to the Hayward Fault, California. Bulletin of the Seismological Society of America, 93(5): 1875-1889. https://doi.org/10.1785/0120020190
      Zhang, W. T., Ji, L. Y., Zhu, L. Y., et al., 2021. A Typical Thrust Rupture Event Occurring in the Foreland Basin of the Southern Tianshan: the 2020 Xinjiang JiashiMS6.4 Earthquake. Seismology and Geology, 43(2): 394-409(in Chinese with English abstract).
      Zhang, X. K., Zhao, J. R., Zhang, C. K., et al., 2002. Crustal Structure at the Northeast Side of the Pamirs. Chinese Journal of Geophysics (in Chinese), 45(5): 665-671(in Chinese with English abstract).
      Zhang, Y. F., Shan, X. J., Zhang, G. H., et al., 2021. The Deformation of 2020 MW6.0 Kalpintage Earthquake and its Implication for the Regional Risk Estimates. Seismology and Geology, 43(2): 377-393(in Chinese with English abstract).
      Zhao, C. P., Chen, Z. L., Zheng, S. H., 2008a. Source Rupture Process of 3 Jiashi MS6 Events(1998-2003) and its Correlation with the aftershock activity. Chinese Journal of Geophysics (in Chinese), 51(4): 1093-1102(in Chinese with English abstract).
      Zhao, C. P., Chen, Z. L., Zheng, S. H., et al., 2008b. Moment Inversion of Moderate Earthquake and the Locally Perturbed Stress Field in the Jiashi Source Region. Chinese Journal of Geophysics (in Chinese), 51(3): 782-792(in Chinese with English abstract).
      Zhou, S. Y., Xu, H. Z., Chen, X. H., 2001. Analysis on the Source Characteristics of the 1997 Jiashi Swarm, Western China. Chinese Journal of Geophysics, 44(5): 654-662(in Chinese with English abstract).
      Zuo, K. Z., Chen, J. F., 2018.3D Body⁃Wave Velocity Structure of Crust and Relocation of Earthquakes in the Menyuan Area. Chinese Journal of Geophysics, 61(7): 2788-2801(in Chinese with English abstract).
      崔华伟, 万永革, 王晓山, 等, 2021. 2018年帕卢MW7.6地震震源及苏拉威西地区构造应力场特征. 地球科学, 46(7): 2657-2674. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDW201910012023.htm
      崔仁胜, 赵翠萍, 周连庆, 等, 2021.2020年1月19日新疆伽师MS6.4地震序列的活动特征和发震构造. 地震地质, 43(02): 329-344. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZLT202010001021.htm
      单新建, 何玉梅, 朱燕, 2002. 新疆伽师强震群的震源破裂特征. 地震地质, 24(1): 59-68. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ200201005.htm
      郭志, 高星, 路珍, 2021.2020年1月19日新疆伽师M6.4地震的重定位及震源机制. 地震地质, 43(2): 345-356. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ202102006.htm
      何玉梅, 郑天愉, 单新建, 2001.1996年3月19日新疆阿图什6.9级地震: 单侧破裂过程. 地球物理学报, 44(4): 510-519. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200104008.htm
      花茜, 裴顺平, 郭震, 等, 2022. 川藏铁路通麦‒鲁朗段浅层结构背景噪声成像. 地球科学, 47(9): 3447-3462.
      李大虎, 丁志峰, 吴萍萍, 等, 2021.2021年5月21日云南漾濞MS6.4地震震区地壳结构特征与孕震背景. 地球物理学报, 64(9): 3083-3100. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202208012.htm
      李金, 蒋海昆, 魏芸芸, 等, 2021.2020年1月19日伽师6.4级地震发震构造的初步研究. 地震地质, 43(2): 357-376. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ202102007.htm
      梁姗姗, 徐志国, 张广伟, 等, 2019.2019年吉林宁江MS5.1地震全矩张量反演及其发震机理初探. 中国地震, 35(03): 488-498.
      刘启元, 陈九辉, 李顺成, 等, 2000. 新疆伽师强震群区三维地壳上地幔S波速度结构及其地震成因的探讨. 地球物理学报, 43(3): 356-365. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200003008.htm
      闵伟, 宋方敏, 韩竹军, 等, 2006. 柯坪塔格断裂西段古地震初步研究. 地震地质, 28(2): 76-86. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ200602006.htm
      宋方敏, 闵伟, 韩竹军, 等, 2007. 南天山柯坪塔格推覆体前缘断裂活动性质及速率. 地震地质, 29(2): 272-281. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ200702005.htm
      唐小勇, 范文渊, 冯永革, 等, 2011. 新疆地区环境噪声层析成像研究. 地球物理学报, 54(8): 2042-2049. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201108010.htm
      万永革, 2019. 同一地震多个震源机制中心解的测定. 地球物理学报, 62 (12): 4718-4728. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201912018.htm
      王卫民, 李丽, 赵连锋, 等, 2005. 2003年2月24日新疆伽师MS6.5级地震震源破裂过程研究. 地球物理学报, 48(2): 343-351.
      王长在, 吴建平, 杨婷, 等, 2018. 太原盆地及周边地区双差层析成像. 地球物理学报, 61(3): 963-974. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201803015.htm
      熊熊, 2022. 控制大陆内部地震空间分布的机制是什么?地球科学, 47(10): 3906-3907. doi: 10.3799/dqkx.2022.859
      胥颐, 刘福田, 刘建华, 等, 2000. 天山地震带的地壳结构与强震构造环境. 地球物理学报, 43(2): 184-193. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200002006.htm
      徐志国, 梁姗姗, 张广伟, 等, 2021.2021年5月22日青海玛多MS7.4地震发震构造分析. 地球物理学报, 64(8): 2657-2670. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDW202111015009.htm
      张文婷, 季灵运, 朱良玉, 等. 2021. 南天山前陆盆地的一次典型逆冲破裂事件——2020年新疆伽师6.4级地震. 地震地质, 43(2): 394-409. doi: 10.3969/j.issn.0253-4967.2021.02.009
      张先康, 赵金仁, 张成科, 等. 2002. 帕米尔东北侧地壳结构研究. 地球物理学报, 45(5): 665-671. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201410007.htm
      张迎峰, 单新建, 张国宏, 等, 2021.2020年MW6.0柯坪塔格地震的变形特征及其对周边地震危险性的启示. 地震地质, 43(2): 377-393. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDW202212024005.htm
      赵翠萍, 陈章立, 郑斯华, 2008a. 1998~2003年伽师三次不同类型MS6级地震震源破裂过程及短期内余震活动特征. 地球物理学报, 51(4): 1093-1102. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200804020.htm
      赵翠萍, 陈章立, 郑斯华, 等, 2008b. 伽师震源区中等强度地震矩张量反演及其应力场特征. 地球物理学报, 51(3): 782-792. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200803020.htm
      周仕勇, 许忠淮, 陈晓非, 2001. 伽师强震群震源特征及震源机制力学成因分析. 地球物理学报, 44(5): 654-662. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200105008.htm
      左可桢, 陈继锋, 2018. 门源地区地壳三维体波速度结构及地震重定位研究. 地球物理学报, 61(7): 2788-2801. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201807012.htm
    • 加载中
    图(16) / 表(2)
    计量
    • 文章访问数:  212
    • HTML全文浏览量:  410
    • PDF下载量:  63
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-01-29
    • 刊出日期:  2024-02-25

    目录

      /

      返回文章
      返回