• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    考虑P波预警参数的震源破裂特征实时持续估测方法

    彭朝勇 程振鹏 郑钰 徐志强

    彭朝勇, 程振鹏, 郑钰, 徐志强, 2024. 考虑P波预警参数的震源破裂特征实时持续估测方法. 地球科学, 49(2): 391-402. doi: 10.3799/dqkx.2023.167
    引用本文: 彭朝勇, 程振鹏, 郑钰, 徐志强, 2024. 考虑P波预警参数的震源破裂特征实时持续估测方法. 地球科学, 49(2): 391-402. doi: 10.3799/dqkx.2023.167
    Peng Chaoyong, Cheng Zhenpeng, Zheng Yu, Xu Zhiqiang, 2024. Real-Time Continuous Estimation of Seismic Source Rupture Characteristics Considering P-Wave Early Warning Parameters. Earth Science, 49(2): 391-402. doi: 10.3799/dqkx.2023.167
    Citation: Peng Chaoyong, Cheng Zhenpeng, Zheng Yu, Xu Zhiqiang, 2024. Real-Time Continuous Estimation of Seismic Source Rupture Characteristics Considering P-Wave Early Warning Parameters. Earth Science, 49(2): 391-402. doi: 10.3799/dqkx.2023.167

    考虑P波预警参数的震源破裂特征实时持续估测方法

    doi: 10.3799/dqkx.2023.167
    基金项目: 

    中国地震局地球物理研究所基本科研业务专项 DQJB23X11

    中国地震局地球物理研究所基本科研业务专项 DQJB20B17

    北京市自然科学基金 8202051

    详细信息
      作者简介:

      彭朝勇(1982-),男,研究员,博士,主要从事实时地震学研究. ORCID:0000-0002-5946-7647. E-mail:pengchaoyong@cea-igp.ac.cn

    • 中图分类号: P315

    Real-Time Continuous Estimation of Seismic Source Rupture Characteristics Considering P-Wave Early Warning Parameters

    • 摘要: 在地震预警系统中引入震源破裂特征实时持续估测方法,可有效克服传统基于点源模型估测目标预警烈度和潜在破坏区的不足. 现有方法的实时性通常只能达到分钟级,无法满足地震预警系统的高时效性要求. 基于地震台站实时观测数据,通过引入地震预警P波特征参数,开展有限破裂模板匹配技术研究,形成了一套时效性更强的震源破裂特征实时估测方法. 测试结果表明:利用本方法在震后同一时刻得到的结果相对于有限破裂探测器(FinDer)算法结果在速度上要快3 s左右,个别震例结果要快5 s;破裂初期,由于受到地震辐射多样性、场地、传播路径等因素的影响,走向θ会存在较大的波动. 随着破裂的延展,θ逐渐收敛至参考值;对于M7.0级以下地震,震后6~10 s即可获得较稳定的破裂特征参数结果,而对于M7.0+地震,则需要更长的时间,尤其是类似于汶川8.0级这种特大地震,其结果在台网较为稀疏的情况下需到震后40 s才能逐渐稳定.

       

    • 图  1  全P波段垂直向加速度预警参数PAall与PGA的拟合曲线(彭朝勇等,2021

      Fig.  1.  Fitting curve of the vertical acceleration early-warning parameter PAall obtained from the full P wave window with PGA(Peng et al., 2021)

      图  2  有限破裂模板匹配流程

      Fig.  2.  Flow for the finite rupture template matching process

      图  3  震后不同时刻四川汶川8.0级地震模拟结果与FinDer算法结果对比

      Fig.  3.  Comparison of simulation results of M8.0 Wenchuan, Sichuan earthquake at different moments after the origin with those obtained by the FinDer algorithm

      图  4  震后不同时刻四川汶川8.0级地震模拟结果

      Fig.  4.  Simulation results of M8.0 Wenchuan, Sichuan earthquake at different moments after the origin.

      图  5  震后不同时刻四川芦山7.0级地震模拟结果与FinDer算法结果对比

      Fig.  5.  Comparison of simulation results of M7.0 Lushan, Sichuan earthquake at different moments after the origin with those obtained by the FinDer algorithm

      图  6  震后不同时刻青海门源6.9级地震模拟结果与FinDer算法结果对比

      Fig.  6.  Comparison of simulation results of M6.9 Menyuan, Qinghai earthquake at different moments after the origin with those obtained by the FinDer algorithm

      图  7  日本熊本7.4级地震震后不同时刻模拟结果与FinDer算法结果对比

      Fig.  7.  Comparison of simulation results of M7.4 Kumamoto, Japan earthquake at different moments after the origin with those obtained by the FinDer algorithm

      表  1  线下模拟所用4次破坏性地震事件信息

      Table  1.   The four damaging earthquakes used for off-line simulation

      事件名 发震时刻 震中经度
      (ºN)
      震中纬度
      (ºE)
      深度
      (km)
      震级
      Ms
      走向θ
      (º)
      破裂长度L(km)
      四川汶川地震 2008-05-12
      14∶28∶00
      103.42 31.01 14 8.0 231/51 290
      四川芦山地震 2013-04-20
      08∶02∶48
      102.99 30.30 17 7.0 218/38 40
      青海门源地震 2022-01-08
      01∶45∶28
      101.26 37.77 10 6.9 284/104 31
      日本熊本地震 2016-04-16
      01∶25∶17
      130.76 32.75 12 7.4 226/46 65
      下载: 导出CSV
    • Allen, R. M., Melgar, D., 2019. Earthquake Early Warning: Advances, Scientific Challenges, and Societal Needs. Annual Review of Earth and Planetary Sciences, 47(1): 361-388. https://doi.org/10.1146/annurev-earth-053018-060457
      Böse, M., 2006. Earthquake Early Warning for Istanbul using Artificial Neural Networks(Dissertation). Karlsruhe University, Karlsruhe, 19-24.
      Böse, M., Heaton, T. H., Hauksson, E., 2012. Real-Time Finite Fault Rupture Detector (FinDer) for Large Earthquakes. Geophysical Journal International, 191(2): 803-812. https://doi.org/10.1111/j.1365-246X.2012.05657.x
      Böse, M., Smith, D. E., Felizardo, C., et al., 2018. FinDer v. 2: Improved Real-Time Ground-Motion Predictions for M2-M9 with Seismic Finite-Source Characterization. Geophysical Journal International, 212(1): 725-742. https://doi.org/10.1093/gji/ggx430
      Böse, M., Andrews, J., Hartog, R., et al., 2023. Performance and Next-Generation Development of the Finite-Fault Rupture Detector (FinDer) within the United States West Coast ShakeAlertWarning System. Bulletin of the Seismological Society of America, 113(2): 648-663. https://doi.org/10.1785/0120220183
      Cheng, J., Rong, Y. F., Magistrale, H., et al., 2020. Earthquake Rupture Scaling Relations for Mainland China. Seismological Research Letters, 91(1): 248-261. https://doi.org/10.1785/0220190129
      Chung, A. I., Meier, M. A., Andrews, J., et al., 2020. ShakeAlertEarthquake Early Warning System Performance during the 2019 Ridgecrest Earthquake Sequence. Bulletin of the Seismological Society of America, 110(4): 1904-1923. https://doi.org/10.1785/0120200032
      Cui, P., Wang, J., Wang, H., et al., 2022. How to Scientifically Prevent, Manage and Prewarn Catastrophic Risk?. Earth Science, 47(10): 3897-3899 (in Chinese with English abstract).
      Fang, L. H., Wu, J. P., Wang, W. L., et al., 2013. Relocation of the Mainshock and Aftershock Sequences of MS7.0 Sichuan Lushan Earthquake. Chinese Science Bulletin, 58: 3451-3459. https://doi.org/10.1007/s11434-013-6000-2
      Hoshiba, M., Iwakiri, K., Hayashimoto, N., et al., 2011. Outline of the 2011 off the Pacific Coast of Tohoku Earthquake (MW 9.0): Earthquake Early Warning and Observed Seismic Intensity. Earth Planets & Space, 63(7): 547-551. https://doi.org/10.5047/eps.2011.05.031
      Hu, J. J., Ding, Y. T., Zhang, H., et al., 2023. A Real-Time Seismic Intensity Prediction Model Based on Long Short-Term Memory Neural Network. Earth Science, 48(5): 1853-1864 (in Chinese with English abstract).
      Huang, Y., Wu, J. P., Zhang, T. Z., et al., 2008. Relocation of the Wenchuan MS8.0 Great Earthquake and Its Aftershock Sequences. Science in China: Earth Sciences, 38(10): 1242-1249 (in Chinese).
      Kodera, Y., Saitou, J., Hayashimoto, N., et al., 2016. Earthquake Early Warning for the 2016 Kumamoto Earthquake: Performance Evaluation of the Current System and the Next-Generation Methods of the Japan Meteorological Agency. Earth Planets & Space, 68(1): 202. https://doi.org/10.1186/s40623-016-0567-1
      Kurahashi, S., Irikura, K., 2011. Source Model for Generating Strong Ground Motions during the 2011 off the Pacific Coast of Tohoku Earthquake. Earth Planets & Space, 63(7): 571-576. https://doi.org/10.5047/eps.2011.06.044
      Li, J. W., Böse, M., Feng, Y., et al., 2021. Real-Time Characterization of Finite Rupture and its Implication for Earthquake Early Warning: Application of FinDer to Existing and Planned Stations in Southwest China. Frontiers in Earth Science, 9: 699560. https://doi.org/10.3389/feart.2021.699560
      Lu, J. Q., Li, S. Y., 2021. Detailed Analysis and Preliminary Performance Evaluation of the FinDer: A Real-Time Finite Fault Rupture Detector for Earthquake Early Warning. World Earthquake Engineering, 37(1): 152-164 (in Chinese with English abstract).
      Massin, F., Clinton, J., Böse, M., 2021. Status of Earthquake Early Warning in Switzerland. Frontiers in Earth Science, 9: 707654. https://doi.org/10.3389/feart.2021.707654
      Peng, C. Y., Yang, J. S., Xue, B., et al., 2013. Research on Correlation between Early-Warning Parameters and Magnitude for the Wenchuan Earthquake and Its Aftershocks. Chinese Journal of Geophysics, 56(10): 3404-3415 (in Chinese with English abstract).
      Peng, C. Y., Yang, J. S., Xue, B., et al., 2014. Exploring the Feasibility of Earthquake Early Warning using Record of the 2008 Wenchuan Earthquake and its Aftershocks. Soil Dynamics and Earthquake Engineering, 57: 86-93. https://doi.org/10.1016/j.soildyn.2013.11.005
      Peng, C. Y., Yang, J. S., Zheng, Y., et al., 2017. New τc Regression Relationship Derived from all P Wave Time Windows for Rapid Magnitude Estimation. Geophysical Research Letters, 44: 1724-1731. https://doi.org/10.1002/2016GL071672
      Peng, C. Y., Yang, J. S., 2019. Real-Time Estimation of Potentially Damaged Zone for Earthquake Early Warning Based on Thresholds of P-Wave Parameters. Acta Seismologica Sinica, 41(3): 354-365 (in Chinese with English abstract).
      Peng, C. Y., Ma, Q., Jiang, P., et al., 2020. Performance of a Hybrid Demonstration Earthquake Early Warning System in the Sichuan-Yunnan Border Region. Seismological Research Letters, 91: 835-846. https://doi.org/10.1785/0220190101
      Peng, C. Y., Jiang, P., Ma, Q., et al., 2021. Performance Evaluation of an Earthquake Early Warning System in the 2019-2020 M6.0 Changning, Sichuan, China, Seismic Sequence. Frontiers in Earth Science, 9: 699941. https://doi.org/10.3389/feart.2021.699941
      Peng, C. Y., Zheng, Y., Xu, Z. Q., et al., 2021. Construction and Verification of Onsite Ground Motion Prediction Models for Seismic Intensity Instrument. Acta Seismologica Sinica, 43(5): 643-655 (in Chinese with English abstract).
      Song, J. D., Jiao, C. C., Li, S. Y., et al., 2018. Prediction Method of First-Level Earthquake Warning for High Speed Railway Based on Two-Parameter Threshold of Seismic P-Wave. China Railway Science, 39(1): 138-144 (in Chinese with English abstract).
      Wang, D., Sun, K., 2022. How the Big Data Seismology and AI Refine Rapid Determination of Source Parameters of Large Earthquakes? Earth Science, 47(10): 3915-3917 (in Chinese with English abstract).
      Wells, D. L., Coppersmith, K. J., 1994. New Empirical Relationships among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement. Bulletin of the Seismological Society of America, 84(4): 974-1002. https://doi.org/10.1007/BF00808290
      Xia, Y. S., Yang, L, P., 2000. Research on Earthquake Prediction (Warning) System and its Disaster Reduction Benefit. Northwestern Seismological Journal, 22(4): 425-457 (in Chinese with English abstract).
      Yamada, M., Heaton, T., 2008. Real-Time Estimation of Fault Rupture Extent Using Envelopes of Acceleration. Bulletin of the Seismological Society of America, 98(2): 607-619. https://doi.org/10.1785/0120060218
      Yamada, M., 2014. Estimation of Fault Rupture Extent Using Near-Source Records for Earthquake Early Warning. In: Wenzel, F., Zschau, J., eds., Early Warning for Geological Disasters, Advanced Technologies in Earth Sciences, Springer, Berlin, 29-48.
      Yu, Y. X., Wang, S. Y., 2006. Attenuation Relations for Horizontal Peak Ground Acceleration and Response Spectrum in Eastern and Western China. Technology for Earthquake Disaster Prevention, 1(3): 1-12 (in Chinese with English abstract).
      Zhang, H. C., Jin, X., Wang, S. C., et al., 2017. Comparative Analyses of Records by Seismic Intensity Instrument with Strong Ground Motion Records and Seismograph Stations Records: Taking the ML4.5 Changli Earthquake of Hebei Province for an Example. Acta Seismologica Sinica, 39(2): 273-285 (in Chinese with English abstract).
      Zhang, Y., Wang, R. J., Zschau, J., et al., 2014a. Automatic Imaging of Earthquake Rupture Processes by Iterative Deconvolution and Stacking of High-Rate GPS and Strong Motion Seismograms. Journal of Geophysical Research, 119(7): 5633-5650. https://doi.org/10.1002/2013JB010469
      Zhang, Y., Wang, R. J., Chen, Y. T., et al., 2014b. Kinematic Rupture Model and Hypocenter Relocation of the 2013 MW6.6 Lushan Earthquake Constrained by Strong-Motion and Teleseismic Data. Seismological Research Letters, 85: 15-22. https://doi.org/10.1785/0220130126
      崔鹏, 王姣, 王昊, 等, 2022. 如何科学防控与预警巨灾风险?. 地球科学, 47(10): 3897-3899. doi: 10.3799/dqkx.2022.855
      胡进军, 丁袆天, 张辉, 等, 2023. 基于长短期记忆神经网络的实时地震烈度预测模型. 地球科学, 48(5): 1853-1864. doi: 10.3799/dqkx.2022.338
      黄媛, 吴建平, 张天中, 等, 2008. 汶川8.0级大地震及其余震序列重定位研究. 中国科学: 地球科学, 38(10): 1242-1249. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200810008.htm
      卢建旗, 李山有, 2021. 地震预警断层参数实时识别方法(FinDer)详解及其性能初步评价. 世界地震工程, 37(1): 152-164. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC202101018.htm
      彭朝勇, 杨建思, 薛兵, 等, 2013. 基于汶川主震及余震的预警参数与震级相关性研究. 地球物理学报, 56(10): 3404-3415. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201310016.htm
      彭朝勇, 杨建思, 2019. 利用P波参数阈值实时估算地震预警潜在破坏区范围. 地震学报, 41(3): 354-365. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB201903007.htm
      彭朝勇, 郑钰, 徐志强, 等. 2021. 面向地震烈度仪的现地地震动预测模型的构建与验证. 地震学报, 43(5): 643-655. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB202105009.htm
      宋晋东, 教聪聪, 李山有, 等, 2018. 基于地震P波双参数阈值的高速铁路Ⅰ级地震警报预测方法. 中国铁道科学, 39(1): 138-144. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201801021.htm
      王墩, 孙琨, 2022. 地震大数据和AI如何改进全球大震参数快速测定?地球科学, 47(10): 3915-3917. doi: 10.3799/dqkx.2022.863
      夏玉胜, 杨丽萍, 2000. 地震预警(报)系统及减灾效益研究. 西北地震学报, 22(4): 425-457. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ200004017.htm
      俞言祥, 汪素云, 2006. 中国东部和西部地区水平向基岩加速度反应谱衰减关系. 震灾防御技术, 1(3): 206-217. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZFY200603005.htm
      张红才, 金星, 王士成, 等, 2017. 烈度仪记录与强震及测震记录的对比分析: 以2015年河北昌黎ML4.5地震为例. 地震学报, 39(2): 273-285. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB201702010.htm
    • 加载中
    图(7) / 表(1)
    计量
    • 文章访问数:  341
    • HTML全文浏览量:  345
    • PDF下载量:  88
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-01-30
    • 刊出日期:  2024-02-25

    目录

      /

      返回文章
      返回