• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于俯冲带动力学参数评估琉球海沟对我国东南沿岸的海啸威胁

    李宏伟 徐志国 史健宇 王宗辰 杨怀玮

    李宏伟, 徐志国, 史健宇, 王宗辰, 杨怀玮, 2024. 基于俯冲带动力学参数评估琉球海沟对我国东南沿岸的海啸威胁. 地球科学, 49(2): 403-413. doi: 10.3799/dqkx.2023.168
    引用本文: 李宏伟, 徐志国, 史健宇, 王宗辰, 杨怀玮, 2024. 基于俯冲带动力学参数评估琉球海沟对我国东南沿岸的海啸威胁. 地球科学, 49(2): 403-413. doi: 10.3799/dqkx.2023.168
    Li Hongwei, Xu Zhiguo, Shi Jianyu, Wang Zongchen, Yang Huaiwei, 2024. Tsunami Potential Threat from the Ryukyu Trench on Chinese Coast Based on Subduction Zone Dynamics Parameters. Earth Science, 49(2): 403-413. doi: 10.3799/dqkx.2023.168
    Citation: Li Hongwei, Xu Zhiguo, Shi Jianyu, Wang Zongchen, Yang Huaiwei, 2024. Tsunami Potential Threat from the Ryukyu Trench on Chinese Coast Based on Subduction Zone Dynamics Parameters. Earth Science, 49(2): 403-413. doi: 10.3799/dqkx.2023.168

    基于俯冲带动力学参数评估琉球海沟对我国东南沿岸的海啸威胁

    doi: 10.3799/dqkx.2023.168
    基金项目: 

    国家自然基金青年基金“基于蒙特卡洛随机模拟的南中国海地区多尺度海啸淹没风险评估体系研究” 41806045

    国家重点研发项目“全方位综合海洋地震和海啸监测预警系统研制与示范” 2022YFC3003800

    详细信息
      作者简介:

      李宏伟(1984-),男,副研究员,主要研究地震海啸预警技术、海啸风险评估等方面研究.ORCID:0000-0001-5581-5686.E-mail:lihw@nmefc.cn

      通讯作者:

      史健宇,ORCID:0000-0002-1034-1285.E-mail: shijy@nmefc.cn

    • 中图分类号: P315

    Tsunami Potential Threat from the Ryukyu Trench on Chinese Coast Based on Subduction Zone Dynamics Parameters

    • 摘要: 为了提升我国沿海海啸防灾减灾能力,加强民众海啸风险防范意识,系统地分析了琉球海沟俯冲带地震所引发海啸对我国大陆东南沿岸及台湾东部的潜在威胁,基于逻辑树与蒙特卡洛随机模拟的概率性方法对其海啸风险进行定量评估. 考虑到琉球海沟历史地震记录稀少,基于俯冲带的动力学参数对该区域潜在地震的最大震级进行了修正. 与此同时,结合前人对该区域的古海啸研究成果建立了海啸源参数逻辑树,分析了评估结果的不确定性.研究结果表明,2000年重现期下台湾东部宜兰县和花莲县周边的最大海啸波幅可以达到2~3 m;上海和浙江舟山的最大海啸波幅也能达到0.6 m和0.8 m左右.由于琉球海沟历史上没有灾害性海啸,其对东南沿岸和台湾东部的海啸威胁难以量化评估,模拟结果为今后该地区的海啸防御提供了理论依据.

       

    • 图  1  研究区域海底地形以及海啸单位源分布

      Fig.  1.  Bathymetry and tsunami unit source identified in this study

      图  2  概率性海啸风险评估流程

      Fig.  2.  Flow chart of probabilistic tsunami hazard assessment

      图  3  琉球海沟TGR参数等值线及拟合曲线

      a. 应用最大似然法获得的TGR参数等值线;b. 琉球海沟TGR关系曲线及修正拐角震级后的曲线

      Fig.  3.  Contours of TGR parameters of Ryukyu Trench and curves of TGR distribution

      图  4  本文中不确定性分析所运用的逻辑树

      Fig.  4.  Logic tree used for uncertainty analysis in this study

      图  5  不同重现期沿岸最大海啸波幅的中值分布

      Fig.  5.  Median of coastal maximum wave amplitudes for specified return periods

      a. 2 000 a; b. 1 000 a; c. 500 a; d 200 a

      图  6  重点城市的波幅曲线

      灰色曲线为50个目录计算得到的海啸波幅曲线,红线为中值曲线,绿色曲线为2.5%的波幅曲线,蓝色为97.5%的波幅曲线

      Fig.  6.  Tsunami hazard curves for 4 coastal cities considering the uncertainties

    • Ando, M., Kitamura, A., Tu, Y., et al., 2018. Source of High Tsunamis along the Southernmost Ryukyu Trench Inferred from Tsunami Stratigraphy. Tectonophysics, 722: 265-276. https://doi.org/10.1016/j.tecto.2017.11.007
      Ando, M., Nakamura, M., Matsumoto, T., et al., 2009. Is the Ryukyu Subduction Zone in Japan Coupled or Decoupled? The Necessity of Seafloor Crustal Deformation Observation. Earth, Planets and Space, 61: 1031-1039. https://doi.org/10.1186/Bf03352954
      Annaka, T., Satake, K., Sakakiyama, T., et al., 2007. Logic-Tree Approach for Probabilistic Tsunami Hazard Analysis and Its Applications to the Japanese Coasts. Pure and Applied Geophysics, 164: 577-592. doi: 10.1007/s00024-006-0174-3
      Bird, P., Kagan, Y. Y., 2004. Plate-Tectonic Analysis of Shallow Seismicity: Apparent Boundary Width, Beta, Corner Magnitude, Coupled Lithosphere Thickness, and Coupling in Seven Tectonic Settings. Bulletin of the Seismological Society of America, 94(6): 2380-2399. doi: 10.1785/0120030107
      Blaser, L., Krüger, F., Ohrnberger, M., et al., 2010. Scaling Relations of Earthquake Source Parameter Estimates with Special Focus on Subduction Environment. Bulletin of the Seismological Society of America, 100(6): 2914-2926. doi: 10.1785/0120100111
      Cui, P., Wang, J., Wang, H., et al., 2022. How to Scientifically Prevent, Manage and Prewarn Catastrophic Risk? Earth Science, 47(10): 3897-3899(in Chinese with English abstract).
      Davies, G., Griffin, J., 2020. Sensitivity of Probabilistic Tsunami Hazard Assessment to Far-Field Earthquake Slip Complexity and Rigidity Depth-Dependence: Case Study of Australia. Pure and Applied Geophysics, 177: 1521-1548. https://doi.org/10.1007/s00024-019-02299-w
      Engdahl, E. R.; Villaseñor, A., 2002. Global Seismicity: 1900-1999. In: Lee, W. H. K., Jennings, P., Kisslinger, C., eds., International Handbook of Earthquake and Engineering Seismology. Academic Press, Amsterdam, The Netherlands; Boston, MA, USA, 2: 665-690.
      Fujiwara, O., Goto, K., Ando, R., et al., 2020. Paleotsunami Research Along the Nankai Trough and Ryukyu Trench Subduction Zones-Current Achievements and Future Challenges. Earth-Science Reviews, 210: 103333. doi: 10.1016/j.earscirev.2020.103333
      Geist, E. L., Parsons, T., 2006. Probabilistic Analysis of Tsunami Hazards. Natural Hazards, 37: 277-314. doi: 10.1007/s11069-005-4646-z
      Goda, K., Song, J., 2016. Uncertainty Modeling and Visualization for Tsunami Hazard and Risk Mapping: a Case Study for the 2011 Tohoku Earthquake. Stochastic Environmental Research and Risk Assessment, 30: 2271-2285. doi: 10.1007/s00477-015-1146-x
      Hayes, G. P., Moore, G. L., Portner, D. E., et al., 2018. Slab2, a Comprehensive Subduction Zone Geometry Model. Science, 362(6410): 58-61. https://doi.org/10.1126/science.aat4723
      Hisamatsu, A., Goto, K., Imamura, F., 2014. Local Paleo-Tsunami Size Evaluation Using Numerical Modeling for Boulder Transport at Ishigaki Island, Japan. Episodes Journal of International Geoscience, 37(4): 265-27.
      Ishibashi, K., 1981. Specification of a Soon‐to‐Occur Seismic Faulting in the Tokai District, Central Japan, Based upon Seismotectonics. Earthquake Prediction: an International Review, 4: 297-332.
      Kagan, Y. Y., 2002a. Seismic Moment Distribution Revisited: Ⅰ. Statistical Results. Geophysical Journal International, 148(3): 520-541. https://doi.org/10.1046/j.1365-246x.2002.01594.x
      Kagan, Y. Y., 2002b. Seismic Moment Distribution Revisited: Ⅱ. Moment Conservation Principle. Geophysical Journal International, 149(3): 731–754. https://doi.org/10.1046/j.1365-246X.2002.01671.x
      Kagan, Y. Y., Jackson, D. D., 2013. Tohoku Earthquake: A Surprise?. Bulletin of the Seismological Society of America, 103(2B): 1181-1194. . doi: 10.1785/0120120110
      Li, H., Yuan, Y., Xu, Z., et al., 2018. The Dependency of Probabilistic Tsunami Hazard Assessment on Magnitude Limits of Seismic Sources in the South China Sea and Adjoining Basins. Earthquakes and Multi-Hazards Around the Pacific Rim, 1: 157-176.
      Li, L., Switzer, A. D., Chan, C. H., et al., 2016. How Heterogeneous Coseismic Slip Affects Regional Probabilistic Tsunami Hazard Assessment: A Case Study in the South China Sea. Journal of Geophysical Research: Solid Earth, 121(8): 6250-6272. doi: 10.1002/2016JB013111
      Mai, P. M., Beroza, G. C., 2002. A Spatial Random Field Model to Characterize Complexity in Earthquake Slip. Journal of Geophysical Research: Solid Earth, 107(B11): ESE-10.
      Nakamura, M., Sunagawa, N., 2015. Activation of Very Low Frequency Earthquakes by Slow Slip Events in the Ryukyu Trench. Geophysical Research Letters, 42(4): 1076-1082 https://doi.org/10.1002/2014GL062929
      Papazachos, B. C., Scordilis, E. M., Panagiotopoulos, D. G., et al., 2004. Global Relations between Seismic Fault Parameters and Moment Magnitude of Earthquakes. Bulletin of the Geological Society of Greece, 36(3): 1482-1489. doi: 10.12681/bgsg.16538
      Rong, Y., Jackson, D. D., Magistrale, H., et al., 2014. Magnitude Limits of Subduction Zone Earthquakes. Bulletin of the Seismological Society of America, 104(5): 2359-2377. https://doi.org/10.1785/0120130287
      Scala, A., Lorito, S., Romano, F., et al., 2020. Effect of Shallow Slip Amplification Uncertainty on Probabilistic Tsunami Hazard Analysis in Subduction Zones: Use of Long-Term Balanced Stochastic Slip Models. Pure and Applied Geophysics, 177(3): 1497-1520. doi: 10.1007/s00024-019-02260-x
      Stirling, M., Goded, T., Berryman, K., et al., 2013. Selection of Earthquake Scaling Relationships for Seismic‐Hazard Analysis. Bulletin of the Seismological Society of America, 103(6): 2993-3011. https://doi.org/10.1785/0120130052
      Tadokoro, K., Nakamura, M., Ando, M., et al., 2018. Interplate Coupling State at the Nansei‐Shoto (Ryukyu) Trench, Japan, Deduced from Seafloor Crustal Deformation Measurements. Geophysical Research Letters, 45(14): 6869-6877. https://doi.org/10.1029/2018GL078655
      Wang, Z., Yuan, Y., Wang, P., et al., 2019. Development and Validation of a Tsunami Amplitude Forecast System Covering the Whole Pacific Ocean. Haiyang Xuebao, 41(2): 1-13(in Chinese with English abstract).
      Xiao, W. J., Song, D. F., Zhang, J. E., et al., 2022. Anatomy of the Structure and Evolution of Subduction Zones and Research Prospects. Earth Science, 47(9): 3073-3106(in Chinese with English abstract).
      Xie, Z.; Wang, E.; Lyu, Y., 2022. Seismicity and Stress State in the Ryukyu Islands Subduction Zone. Sustainability, 14(22): 15146. https://doi.org/10.3390/su142215146
      Yu, F. J., Yuan, Y., Wang, P. T., et al., 2020. Modern Technologies in Earthquake-Generated Tsunami Early Warning. Science Press, Beijing, 222 (in Chinese).
      Yuan, Y., Li, H., Wei, Y., Shi, F., et al., 2021. Probabilistic Tsunami Hazard Assessment (PTHA) for Southeast Coast of Chinese Mainland and Taiwan Island. Journal of Geophysical Research: Solid Earth, 126(2): e2020JB020344. doi: 10.1029/2020JB020344
      崔鹏, 王姣, 王昊, 等, 2022. 如何科学防控与预警巨灾风险?地球科学, 47(10): 3897-3899. doi: 10.3799/dqkx.2022.855
      王宗辰, 原野, 王培涛, 等, 2019. 一个覆盖太平洋区域的地震海啸波幅预报系统及检验. 海洋学报, 41(2): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC201902001.htm
      肖文交, 宋东方, 张继恩, 等, 2022. 俯冲带结构演变解剖与研究展望. 地球科学, 47(9): 3073-3106. doi: 10.3799/dqkx.2022.380
      于福江, 原野, 王培涛, 等, 2020. 现代地震海啸预警技术. 北京: 科学出版社, 222.
    • 加载中
    图(6)
    计量
    • 文章访问数:  248
    • HTML全文浏览量:  257
    • PDF下载量:  43
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-03-05
    • 刊出日期:  2024-02-25

    目录

      /

      返回文章
      返回