• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    细/粗二元结构边坡角度与岩性特征对其阻隔降雨入渗的影响规律

    吴庆华 王珂

    吴庆华, 王珂, 2025. 细/粗二元结构边坡角度与岩性特征对其阻隔降雨入渗的影响规律. 地球科学, 50(1): 311-321. doi: 10.3799/dqkx.2023.170
    引用本文: 吴庆华, 王珂, 2025. 细/粗二元结构边坡角度与岩性特征对其阻隔降雨入渗的影响规律. 地球科学, 50(1): 311-321. doi: 10.3799/dqkx.2023.170
    Wu Qinghua, Wang Ke, 2025. Effect of Angle and Lithology on Infiltrating to Fine/Coarse Dual-Structure Slope under Rainfall Condition. Earth Science, 50(1): 311-321. doi: 10.3799/dqkx.2023.170
    Citation: Wu Qinghua, Wang Ke, 2025. Effect of Angle and Lithology on Infiltrating to Fine/Coarse Dual-Structure Slope under Rainfall Condition. Earth Science, 50(1): 311-321. doi: 10.3799/dqkx.2023.170

    细/粗二元结构边坡角度与岩性特征对其阻隔降雨入渗的影响规律

    doi: 10.3799/dqkx.2023.170
    基金项目: 

    国家自然科学基金项目 42072282

    中央级公益性科研院所基本科研业务费项目 CKSF2023360/YT

    详细信息
      作者简介:

      吴庆华(1981-),男,正高级工程师,主要从事饱和‒非饱和渗流和堤防险情研究. ORCID:0000-0001-6565-9357. E-mail:wqh0505@126.com

    • 中图分类号: P641.2

    Effect of Angle and Lithology on Infiltrating to Fine/Coarse Dual-Structure Slope under Rainfall Condition

    • 摘要: 土质边坡在降雨条件下易形成滑坡灾害,采用表面硬化等传统方法防止降雨入渗边坡时,存在运行过程中表面开裂导致其防护功能失效的问题.从生态优先与长期有效性角度,采用上细/下粗的非饱和二元结构地层阻隔降雨入渗防护边坡.利用系列物理模型试验,研究降雨条件下不同边坡角度(10°、20°、30°和40°)与不同地层岩性特征(亚砂土/粗砂、亚砂土/砂砾、亚砂土/圆砾和亚砂土/角砾)对其阻隔降雨入渗的影响,并提出了细/粗二元结构地层抑制降雨入渗的综合阻隔能力的评估方法.结果表明:(1)采用亮蓝示踪剂可直接观测非饱和二元结构地层对降雨入渗边坡的阻隔过程.(2)二元结构的综合阻隔能力随粗粒层粒径和不均匀系数的增加而增强.(3)无降雨条件下,增加边坡角度能促进二元结构地层排水;在降雨条件下,亚砂土/砾砂二元结构粗粒层稳定排水强度和降雨入渗综合阻隔能力均随边坡角度呈先增加后减少的规律,建议最优边坡角度范围为25°~27°.研究成果对边坡稳定治理具有重要参考价值.

       

    • 图  1  非饱和边坡阻隔层物理模型试验结构

      1.边坡体;2.粗粒层;3.细粒层;4.降雨支架;5.降雨器水位控制阀;6.针头;7.降雨模拟器腔体;8.供水系统;9.供水系统支架;10.碎石层防护层;11.排水侧多孔板;12.细粒层排水收集;13.粗粒层排水收集;14.边坡底部排水收集

      Fig.  1.  Physical model of the CBL

      图  2  颗粒级配曲线

      Fig.  2.  Grading curves of the soils for the CBLS

      图  3  亚砂土/角砾二元结构阻隔降雨入渗示踪

      Fig.  3.  Tracing of rainfall infiltration for the dual-structure of sub-sandy soil/angular sand

      图  4  不同岩性的二元结构地层排水速率(边坡角度30°)

      Fig.  4.  Coarse-grained drainage rate of the four dual-structure layers with the angle of 30°

      图  5  CBL综合阻隔能力与粗粒层不均匀系数的关系(30°)

      Fig.  5.  Relationship curve between CBL comprehensive barrier capacity and coarse-grained layer non-uniformity coefficient (30°)

      图  6  无降雨条件下边坡角度增加(20°增至30°)对CBL持续排水的影响

      a.亚砂土/粗砂;b.亚砂土/砂砾;c.亚砂土/角砾;d.亚砂土/圆砾

      Fig.  6.  Coarse-grained drainage of the four CBLs due to the increased angle of the slope from 20° to 30°

      图  7  不同边坡角度的亚砂土/砂砾粗粒层排水效果

      Fig.  7.  Coarse-grained drainage of sub-sandy soil/gravel layers with different slope angles

      图  8  亚砂土/砂砾粗粒层排水占降雨百分比与边坡角度关系

      Fig.  8.  The relationship of drainage percentage of coarse grain layer for sub-sandy soil/gravel structure vs. the slope angle

      表  1  二元结构土层颗粒级配及主要物理参数

      Table  1.   Particle size distribution and physical parameters of the dual-structure layer

      土样 土壤类型 粒径分布(%) d50 Cu 干密度 饱和导水系数
      粗砾 中砾 细砾 粗砂 中砂 细砂 粉粒/黏粒
      40~20 mm 20~5 mm 5~2 mm 2~0.5 mm 0.5~0.25mm 0.25~0.75mm < 0.075 mm (mm) (d60/d10) (g/cm3) (cm/s)
      细粒土 亚砂土 - - - 15 20 45 20 0.095 1.7 1.45 7.65×10-3
      粗粒土1 粗砂 - - - 60 25 15 - 0.57 5.0 1.70 1.96×10-2
      粗粒土2 砾砂 - 20 20 50 10 - - 1.4 10.2 1.70 0.102
      粗粒土3 圆砾 15 25 50 10 - - - 3.7 13.5 1.70 0.638
      粗粒土4 角砾 15 25 50 10 - - - 24 22.9 1.70 1.60
      边坡土 黏土 - - - - 1.6 2.8 95.6 0.005 4.3 1.60 2.53×10-6
      注:d50d60d10为在土的粒径累计曲线上过筛重量分别占50%、60%和10%的粒径;Cu为不均匀性系数.
      下载: 导出CSV

      表  2  试验方案

      Table  2.   Schemes of rainfall tests

      方案 阻隔层地层岩性 降雨强度(10-4 cm/s) 降雨持续时间(min) 边坡倾角 染色示踪
      F1-1 亚砂土/粗砂 4.73 480 20° -
      F1-2 660 30° -
      F2-1 亚砂土/砾砂 4.73 480 10° -
      F2-2 480 20° -
      F2-3 660 30°
      F2-4 660 40° -
      F3-1 亚砂土/圆砾 4.73 510 20° -
      F3-2 660 30° -
      F4-1 亚砂土/角砾 4.73 510 20° -
      F4-2 660 30°
      下载: 导出CSV

      表  3  边坡角度为30°时不同岩性二元结构的综合阻隔能力

      Table  3.   Barrier capacity of different dual-structure layers with the angle of 30°

      方案 阻隔层地层岩性 降雨持续时间(min) 粗粒层累积排水量(cm3) $ \mathrm{l}\mathrm{o}\mathrm{g}\frac{{K}_{\mathrm{C}}}{{K}_{\mathrm{p}}} $ $ \eta $
      F1-2 亚砂土/粗砂 660 27 401 3.89 3.82
      F2-3 亚砂土/砾砂 660 30 420 4.60 4.60
      F3-2 亚砂土/圆砾 660 30 029 5.40 5.33
      F4-2 亚砂土/角砾 660 32 284 6.80 6.75
      下载: 导出CSV

      表  4  边坡角度为20°时不同岩性二元结构的综合阻隔能力

      Table  4.   Barrier capacity of different dual-structure layers with the angle of 20°

      方案 阻隔层地层岩性 降雨持续时间(min) 粗粒层累积排水量(cm3) $ \mathrm{l}\mathrm{o}\mathrm{g}\frac{{K}_{\mathrm{C}}}{{K}_{\mathrm{p}}} $ $ \eta $
      F1-1 亚砂土/粗砂 480 20 544 3.89 3.73
      F2-2 亚砂土/砾砂 480 22 053 4.60 4.49
      F3-1 亚砂土/圆砾 510 23 291 5.40 5.31
      F4-1 亚砂土/角砾 510 23 351 6.80 6.70
      下载: 导出CSV

      表  5  不同边坡角度亚砂土/砂砾二元结构的综合阻隔能力

      Table  5.   Barrier capacity of sub-sandy soil/gravel structure with different angles

      方案 边坡角度 降雨持续时间(min) 粗粒层累积排水量(cm3 $ \mathrm{l}\mathrm{o}\mathrm{g}\frac{{K}_{\mathrm{C}}}{{K}_{\mathrm{p}}} $ 二元结构综合阻隔能力
      F2-1 10° 480 20 386 4.60 3.82
      F2-2 20° 480 22 053 4.60 4.14
      F2-3 30° 540 30 420 4.60 4.15
      F2-4 40° 660 18 266 4.60 3.72
      下载: 导出CSV
    • Aubertin, M., Cifuentes, E., Apithy, S. A., et al., 2009. Analyses of Water Diversion along Inclined Covers with Capillary Barrier Effects. Canadian Geotechnical Journal, 46(10): 1146-1164. https://doi.org/10.1139/t09-050
      Chen, R., Liu, J., Ng, C. W. W., et al., 2019. Influence of Slope Angle on Water Flow in a Three-Layer Capillary Barrier Soil Cover under Heavy Rainfall. Soil Science Society of America Journal, 83(6): 1637-1647. https://doi.org/10.2136/sssaj2019.05.0135
      Chen, Y. B., Gao, Y. F., Ng, C. W. W., 2020. A New Capillary Barrier System for Retaining Wall Backfilled with Fine-Grained Soil. Computers and Geotechnics, 118: 103324. https://doi.org/10.1016/j.compgeo.2019.103324
      Deng, L. H., Zhan, L. T., Chen, Y. M., et al., 2012. Model Tests on Capillary-Barrier Cover with Unsaturated Drainage Layer. Chinese Journalof Geotechnical Engineering, 34(1): 75-80 (in Chinese with English abstract).
      Gao, C., Zhu, Y. M., Zhang, Y. W., 2022. Stability Analysis of the Inclined Capillary Barrier Covers under Rainfall Condition. Buildings, 12(8): 1218. https://doi.org/10.3390/buildings12081218
      Jiao, W. G., Zhan, L. T., Ji, Y. X., et al., 2019. Analysis on Long-Term Performance of Capillary-Barrier Cover with Unsaturated Drainage Layer. Journal of Zhejiang University (Engineering Science), 53(6): 1101-1109 (in Chinese with English abstract).
      Jiao, W. G., Zhan, L. T., Ji, Y. X., et al., 2020. Model Test and Numerical Analysis on Lateral Drainage in Capillary-Barrier Cover with Unsaturated Drainage Layer. Journal of Yangtze River Scientific Research Institute, 37(5): 92-98 (in Chinese with English abstract).
      Krisdani, H., Rahardjo, H., Leong, E. C., 2010. Application of Geosynthetic Material in Capillary Barriers for Slope Stabilisation. Geosynthetics International, 17(5): 323-331. https://doi.org/10.1680/gein.2010.17.5.323
      Luo, Y., He, S. M., He, J. C., 2014. Effect of Rainfall Patterns on Stability of Shallow Landslide. Earth Science, 39(9): 1357-1363 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201409012.htm
      Morii, T., Kobayashi, K., Matsumoto, K., et al., 2020. Estimation and Observation of Water Diversion in Capillary Barrier of Soil. In: Khalili, N., Russell, A. R., Khoshghalb, A., et al., eds., Unsaturated Soils: Research & Applications. CRC Press-Taylor & Francis Group, BocaRaton, 1197-1203. https://doi.org/10.1201/9781003070580-39
      Morris, C. E., Stormont, J. C., 1999. Parametric Study of Unsaturated Drainage Layers in a Capillary Barrier. Journal of Geotechnical and Geoenvironmental Engineering, 125(12): 1057-1065. https://doi.org/10.1061/(asce)1090-0241(1999)125:12(1057)
      Parent, S. É., Cabral, A., 2006. Design of Inclined Covers with Capillary Barrier Effect. Geotechnical & Geological Engineering, 24(3): 689-710. https://doi.org/10.1007/s10706-005-3229-9
      Qian, T. W., Huo, L. J., Zhao, D. Y., 2010. Laboratory Investigation into Factors Affecting Performance of Capillary Barrier System in Unsaturated Soil. Water, Air, and Soil Pollution, 206(1): 295-306. https://doi.org/10.1007/s11270-009-0106-9
      Rahardjo, H., 2015. Capillary Barrier as a Slope Protection. In: Chen, Z., Wei, C., Sun, D., et al., eds., Unsaturated Soil Mechanics-From Theory to Practice. CRC Press-Taylor & Francis Group, BocaRaton, 23-36.
      Rahardjo, H., Gofar, N., Harnas, F., et al., 2018. Effect of Geobags on Water Flow through Capillary Barrier System. Geotechnical Engineering, 49(4): 73-78. http://www.researchgate.net/publication/331952194_Effect_of_Geobags_on_Water_Flow_through_Capillary_Barrier_System
      Rahardjo, H., Santoso, V. A., Leong, E. C., et al., 2012. Performance of an Instrumented Slope Covered by a Capillary Barrier System. Journal of Geotechnical and Geoenvironmental Engineering, 138(4): 481-490. https://doi.org/10.1061/(asce)gt.1943-5606.0000600
      Sun, C., Tang, C. S., Cheng, Q., et al., 2022. Stability of Soil Slope under Soil-Atmosphere Interaction. Earth Science, 47(10): 3701-3722 (in Chinese with English abstract).
      Tami, D., Rahardjo, H., Leong, E. C., et al., 2004. A Physical Model for Sloping Capillary Barriers. Geotechnical Testing Journal, 27(2): 173-183. https://doi.org/10.1520/gtj11431
      Tang, H. M., Li, C. D., Hu, W., et al., 2022. What is the Physical Mechanism of Landslide Initiation?. Earth Science, 47(10): 3902-3903 (in Chinese with English abstract).
      Wu, Q. H., Zhang, J. F., Cui, H. D., et al., 2017a. Experimental Study of Drainage Control of Slopes with Fine-Coarse Grain Structure. Rock and Soil Mechanics, 38(2): 392-399 (in Chinese with English abstract).
      Wu, Q. H., Zhang, J. F., Wu, J. B., et al., 2017b. Physical Model Tests on Slopes with Control of Infiltration by Unsaturated Drainage Structures. Chinese Journal of Geotechnical Engineering, 39(1): 154-160 (in Chinese with English abstract).
      Zhang, J. F., Liu, X. M., Jiao, J. J., 2009. A Protection Scheme of Double Layers with Drainage Function for Expansive Soil Slopes by Canal. Journal of Yangtze River Scientific Research Institute, 26(11): 37-41 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjkxyyb200911009
      邓林恒, 詹良通, 陈云敏, 等, 2012. 含非饱和导排层的毛细阻滞型覆盖层性能模型试验研究. 岩土工程学报, 34(1): 75-80.
      焦卫国, 詹良通, 季永新, 等, 2019. 含非饱和导排层的毛细阻滞覆盖层长期性能分析. 浙江大学学报(工学版), 53(6): 1101-1109.
      焦卫国, 詹良通, 季永新, 等, 2020. 非饱和导排层水分侧向导排作用模型试验验证与影响因素分析. 长江科学院院报, 37(5): 92-98.
      罗渝, 何思明, 何尽川, 2014. 降雨类型对浅层滑坡稳定性的影响. 地球科学, 39(9): 1357-1363. doi: 10.3799/dqkx.2014.118
      孙畅, 唐朝生, 程青, 等, 2022. 土体‒大气相互作用下土质边坡稳定性研究. 地球科学, 47(10): 3701-3722. doi: 10.3799/dqkx.2022.275
      唐辉明, 李长冬, 胡伟, 等, 2022. 重大滑坡启滑的物理机制是什么?. 地球科学, 47(10): 3902-3903.
      吴庆华, 张家发, 崔皓东, 等, 2017a. 细‒粗粒二元结构边坡的排水防渗效果试验研究. 岩土力学, 38(2): 392-399.
      吴庆华, 张家发, 武金博, 等, 2017b. 非饱和导排结构控制降雨入渗的边坡物理模型试验. 岩土工程学报, 39(1): 154-160.
      张家发, 刘晓明, 焦赳赳, 2009. 膨胀土渠坡兼有排水功能的双层结构防护方案. 长江科学院院报, 26(11): 37-41.
    • 加载中
    图(8) / 表(5)
    计量
    • 文章访问数:  192
    • HTML全文浏览量:  50
    • PDF下载量:  23
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-05-11
    • 网络出版日期:  2025-02-10
    • 刊出日期:  2025-01-25

    目录

      /

      返回文章
      返回