• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    南阿尔金早古生代后碰撞花岗岩的成因及地质意义

    徐楠 吴才来 赵苗苗 刘畅

    徐楠, 吴才来, 赵苗苗, 刘畅, 2024. 南阿尔金早古生代后碰撞花岗岩的成因及地质意义. 地球科学, 49(12): 4418-4433. doi: 10.3799/dqkx.2023.171
    引用本文: 徐楠, 吴才来, 赵苗苗, 刘畅, 2024. 南阿尔金早古生代后碰撞花岗岩的成因及地质意义. 地球科学, 49(12): 4418-4433. doi: 10.3799/dqkx.2023.171
    Xu Nan, Wu Cailai, Zhao Miaomiao, Liu Chang, 2024. Genesis and Geological Significance of Post-Collision Granites in South Altun. Earth Science, 49(12): 4418-4433. doi: 10.3799/dqkx.2023.171
    Citation: Xu Nan, Wu Cailai, Zhao Miaomiao, Liu Chang, 2024. Genesis and Geological Significance of Post-Collision Granites in South Altun. Earth Science, 49(12): 4418-4433. doi: 10.3799/dqkx.2023.171

    南阿尔金早古生代后碰撞花岗岩的成因及地质意义

    doi: 10.3799/dqkx.2023.171
    基金项目: 

    安徽省高等学校科学研究项目 2023AH051168

    深部煤矿采动响应与灾害防控国家重点实验室开放基金 SKLMRDPC21KF17

    安徽理工大学引进人才基金;国家自然科学基金面上项目 41872071

    地质调查项目 DD20190006

    详细信息
      作者简介:

      徐楠(1984-),男,讲师,博士后,硕士研究生导师,长期从事火成岩岩石学、成因矿物学方面研究.ORCID:0000-0002-2665-856X.E-mail:2020059@aust.edu.cn

      通讯作者:

      吴才来, 研究员,博士,博士生导师,岩石学专业,长期从事火成岩岩石学、岩浆与成矿科研工作.E-mail: wucailai@126.com

    • 中图分类号: P581

    Genesis and Geological Significance of Post-Collision Granites in South Altun

    • 摘要: 南阿尔金早古生代洋陆转换作用的极性是近年来的研究热点之一,但深俯冲陆壳的折返作用缺少详实的岩石学证据.本文对茫崖北杂岩体开展岩石学、地球化学、锆石U-Pb年代学和Lu-Hf同位素研究,探讨其物质来源及成岩时的构造环境,揭示造山带早古生代构造演化的岩浆活动响应.研究表明,南阿尔金458~420 Ma花岗岩的εHf (t)和tDM2具有相似的变化范围,显示高碱、富钾、低钛、贫铁等钾玄质岩石特征,指示其相似的物质来源和岩浆源区.458~453 Ma花岗岩是深俯冲陆壳断离并折返至上地壳后经历减压熔融的产物,451~420 Ma花岗岩是后碰撞伸展环境下幔源岩浆底侵下地壳的产物.因此,南阿尔金深俯冲陆壳的折返作用在 < 453 Ma已经完成,造山带在 < 451 Ma进入造山晚期的后碰撞环境.

       

    • 图  1  阿尔金地区花岗岩分布图(a)和茫崖区域地质图(b)

      Fig.  1.  Distribution of granities in the South Altun (a) and geological map of the Mangya area (b)

      图  2  茫崖花岗岩正交偏光显微照片

      Fig.  2.  Orthogonal polarizing microscopes of the Mangya granites

      图  3  茫崖花岗岩A/CNK-A/NK图解(a)和K2O-SiO2图解(b)

      Fig.  3.  Diagrams of A/CNK vs. A/NK (a) and K2O-SiO2 (b) of Mangya granites

      图  4  原始地幔标准化微量元素蛛网图(a)和球粒陨石标准化稀土元素配分图(b) (Sun and McDonough, 1989)

      Fig.  4.  Primitive mantle-normalized trace element spider diagrams (a) and chondrite-normalized rare earth element patterns (b)(Sun and McDonough, 1989)

      图  5  茫崖花岗岩LA-ICP-MS锆石U-Pb年龄谐和图

      Fig.  5.  U-Pb concordia diagrams for the zircon grains of the Mangya granites

      图  6  南阿尔金花岗岩Hf同位素演化

      Fig.  6.  Zircon εHf (t) values versus age (Ma) diagram of the granites in the South Altun

      图  7  茫崖北花岗岩Ta/Yb-Th/Yb图解(a)、CaO/(MgO+FeOT)-Al2O3/(MgO+FeOT)图解(b)、(Na2O+K2O+MgO+FeOT+ TiO2)- (Na2O+K2O)/(MgO+FeOT)图解(c)、CaO/(MgO+FeOT)-K2O/ Na2O图解(d)、Al2O3/TiO2-CaO/Na2O图解(e)和Rb/Sr-Rb/Ba图解(f)

      Fig.  7.  Plots of Ta/Yb vs. Th/Yb (a), CaO/(MgO+FeOT) vs. Al2O3/(MgO+FeOT) (b), (Na2O+K2O+MgO+FeOT+ TiO2) vs. (Na2O+K2O)/(MgO+FeOT) (c), CaO/(MgO+FeOT) vs. K2O/Na2O (d), Al2O3/TiO2 vs. CaO/Na2O (e) and Rb/Sr vs. Rb/Ba (f) of the north Mangya granites

      图  8  Ta/Yb与Ce/Yb关系图(a)、Ta/Yb与Th/Yb关系图(b)、Sr-Y图解(c)和(La/Yb)N-YbN图解(d)

      Fig.  8.  Diagrams of Ta/Yb vs. Ce /Yb (a), Ta/Yb vs. Th/Yb (b), Sr vs. Y (c) and (La/Yb)N vs. YbN (d)

      图  9  茫崖北花岗岩Rb/30-Hf-Ta×3图解(a)、Ta/Yb-Th/Yb图解(b)、R1-R2判别图(c)和Rb-(Y+Nb)判别图(d)

      Fig.  9.  Plots of Rb/30-Hf-Ta×3 (a), Ta/Yb vs. Th/Yb (b), R1 vs. R2 (c) and Rb vs. (Y+Nb) (d)

      表  1  茫崖花岗岩主量元素(%)和微量元素(10-6)分析结果

      Table  1.   Major (%), trace and rare earth element (10-6) results of the Mangya granites

      样品编号 CL 124 CL 123 CL 121-1 CL 121-2 CL 126
      SiO2 69.74 48.17 52.66 59.13 73.84
      TiO2 0.29 1.27 0.94 0.84 0.17
      Al2O3 15.64 15.20 10.61 17.65 13.64
      Fe2O3 0.23 1.06 1.36 0.96 0.36
      FeO 1.80 7.98 7.58 3.87 0.88
      TFeO 2.00 8.94 8.81 4.73 1.21
      MnO 0.03 0.15 0.17 0.09 0.02
      MgO 0.87 9.01 10.06 1.97 0.25
      CaO 2.16 10.00 10.65 4.38 0.99
      Na2O 3.69 2.26 0.55 4.10 3.60
      K2O 3.97 1.17 1.89 3.37 4.76
      P2O5 0.06 0.29 0.29 0.38 0.05
      A/CNK 1.09 0.65 0.47 0.96 1.06
      K2O+Na2O 7.66 3.43 2.44 7.47 8.36
      K2O/Na2O 1.08 0.52 3.43 0.82 1.32
      Rb 166.24 63.49 186.41 207.17 227.66
      Ba 545.77 378.40 204.60 1295.17 480.75
      Th 17.08 3.50 4.90 12.29 24.16
      U 2.18 1.82 3.54 2.70 1.95
      Ta 1.43 0.79 0.81 1.89 1.25
      Nb 14.66 15.84 7.69 33.16 23.52
      La 34.77 24.81 23.08 67.10 41.49
      Ce 68.50 53.09 47.67 129.69 65.10
      Sr 316.13 535.22 106.22 649.97 154.29
      Nd 28.52 27.20 27.37 48.30 20.75
      Zr 143.96 165.32 101.64 300.69 139.17
      Hf 4.02 4.13 3.31 6.59 4.49
      Sm 5.75 5.71 6.20 7.61 3.10
      Y 22.83 28.85 27.71 26.28 13.75
      Yb 1.16 2.14 2.31 1.87 1.24
      Lu 0.18 0.33 0.35 0.28 0.21
      ΣREE 161.18 135.78 130.82 286.82 146.62
      LREE 146.98 119.17 112.38 269.46 137.84
      HREE 14.19 16.62 18.44 17.36 8.78
      LREE/HREE 10.36 7.17 6.09 15.52 15.69
      LaN/YbN 21.41 8.30 7.18 25.69 23.91
      δEu 0.77 0.87 0.72 0.92 0.55
      δCe 0.97 0.98 0.93 0.97 0.86
      Th/U 7.84 1.93 1.39 4.55 12.39
      Ta/Yb 1.23 0.37 0.35 1.01 1.00
      Ce/Yb 58.80 24.77 20.67 69.22 52.30
      Ta/Yb 1.23 0.37 0.35 1.01 1.00
      Th/Yb 14.67 1.63 2.13 6.56 19.41
      下载: 导出CSV

      表  2  南阿尔金花岗岩数据

      Table  2.   Data of South Altun granites

      地区 年龄
      (Ma)
      岩性 εHf(t) tDM2(Ma) 岩浆源区 源岩 数据来源
      茫崖 510~494 石英二长岩 0.04~1.69 -3.51~-0.08 1 466~1 363 1 684~1 473 下地壳 变杂砂岩、
      变玄武岩
      Xu et al. (2020)
      长沙沟 503 花岗闪长岩 0.5~5.9 -5.7~-0.7 1 342~1 020 1 659~1 437 下地壳 康磊(2014)
      茫崖 472 二长花岗岩 0.14~1.86 -2.28~-0.06 1 246~1 162 1 371~1 259 上地壳 变杂砂岩 康磊等(2016)
      茫崖 466 花岗岩 0.6~3.6 1 364~1 191 吴才来等(2014)
      闪长岩 1 453~1 254 1 496~1 447
      茫崖 458 石英闪长岩 上地壳 变中基性岩,
      角闪岩
      康磊等(2016)
      茫崖 457 正长花岗岩 6.08~0.98 -2.97~-0.68 1 417~1 053 1 537~1 486 上地壳 变杂砂岩 本文
      茫崖 454 花岗岩 -2.6~-0.4 1 454~1 331 上地壳 变杂砂岩 康磊等(2014)
      江格勒萨依 453 二长花岗岩 -3.1~-1.5 1 478~1 391 上地壳 变杂砂岩、
      变泥质岩
      吐拉 453 正长花岗岩 -3.8~-1.1 1 518~1 371 上地壳 变杂砂岩、
      变泥质岩
      茫崖 451 角闪闪长岩 0.07~3.08 1 426~1 238 下地壳 变玄武岩 本文
      玉苏普 450~447 二长花岗岩 0.12~3.40 -0.67~-0.1 1 219-1 058 1 474~1 432 下地壳 变玄武岩、
      变杂砂岩、角闪岩、变安山岩
      Wang et al.(2014); 高栋等(2022)
      二长花岗岩 0.03~2.86 -0.79~-0.05 1 418~1 242 1 479~1 430
      且末 448~444 花岗岩 0.2~5.0 -12.4~-3.5 1 420~1 399 2 211~1 646 下地壳 变玄武岩、
      变杂砂岩、角闪岩、变安山岩
      吴才来等(2016)
      南阿尔金 445 石英闪长岩 下地壳 变中基性岩 曾忠诚等(2022)
      茫崖 442 闪长岩 0.29~2.68 -0.08 1 406~1 258 1 424 下地壳 变杂砂岩、
      变泥质岩
      本文
      茫崖 435 闪长岩 0.41~5.41 1 394~1 078 下地壳 变玄武岩、
      角闪岩、
      变中基性岩
      茫崖 435 花岗岩 0.2~6.0 -0.4 1 413~1 033 1 454 下地壳 吴才来等(2016)
      茫崖 430 二长花岗岩 -3.72~-0.08 1 648~1 419 上地壳 变杂砂岩、
      变泥质岩
      本文
      玉苏普 426~420 二长花岗岩 0.36~3.18 -0.32~-0.07 1 390~1 215 1 433~1 409 下地壳 变杂砂岩、
      变中基性岩
      Wang et al.(2014); 高栋等(2022)
      下载: 导出CSV
    • Altherr, R., Holl, A., Hegner, E., et al., 2000. High-Potassium, Calc-Alkaline I-Type Plutonism in the European Variscides: Northern Vosges (France) and Northern Schwarzwald (Germany). Lithos, 50(1-3): 51-73. https://doi.org/10.1016/s0024-4937(99)00052-3
      Batchelor, R. A., Bowden, P., 1985. Petrogenetic Interpretation of Granitoid Rock Series Using Multicationic Parameters. Chemical Geology, 48(1-4): 43-55. https://doi.org/10.1016/0009-2541(85)90034-8
      Che, Z. C, Liu, L, Liu, H. F., 1995. Discovery and Occurrence of High-Pressure Metapelitic Rocks from Altyn Mountain Areas. Chinese Scinence Bulletin, 40(14): 1298-1300(in Chinese). doi: 10.1360/csb1995-40-14-1298
      Che, Z. C., Liu, L., Luo, J. H. 2002. Regional Tectonics of China and Its Adjacent Regions. Science Press, Beijing, 207-369(in Chinese).
      Collins, W. J., Beams, S. D., White, A. J. R., et al., 1982. Nature and Origin of A-Type Granites with Particular Reference to Southeastern Australia. Contributions to Mineralogy and Petrology, 80(2): 189-200. https://doi.org/10.1007/bf00374895
      Deng, J. F., Feng, Y. F., Di, Y. J., et al. 2017. Intrusive rock tectonics in China. Geological Publishing House, Beijing(in Chinese).
      Drummond, M. S., Defant, M. J., 1990. A Model for Trondhjemite-Tonalite-Dacite Genesis and Crustal Growth via Slab Melting: Archean to Modern Comparisons. Journal of Geophysical Research: Solid Earth, 95(B13): 21503-21521. https://doi.org/10.1029/jb095ib13p21503
      Gao, D., Wu, C. L., Gao, Y. H., et al., 2022. Genesis of the Yusupualeke Tagh Granitic Pluton in the South Altun and Its Implications for the Early Paleozoic Regional Tectonic Evolution. Geology in China, 49(5): 1636-1655(in Chinese with English abstract).
      Gao, S., Luo, T. C., Zhang, B. R., et al., 1998. Chemical Composition of the Continental Crust as Revealed by Studies in East China. Geochimica et Cosmochimica Acta, 62(11): 1959-1975. https://doi.org/10.1016/s0016-7037(98)00121-5
      Gao, X. Y., Yu, S. Y., Peng, Y. B., et al., 2021. Insights into OIB-Like Magmatism Contemporaneous with Oceanic Subduction: Petrogenetic Constraints on the Kendelong Metagabbro in the North Qaidam. Lithos, 392-393: 106130. https://doi: 10.1016/j.lithos.2021.106130
      Gorton, M. P., Schandl, E. S., 2000. From Continents to Island Arcs: A Geochemical Index of Tectonic Setting for Arc-Related and Within-Plate Felsic to Intermediate Volcanic Rocks. The Canadian Mineralogist, 38(5): 1065-1073. https://doi.org/10.2113/gscanmin.38.5.1065
      Guo, Z. J., Zhang Z. C., Wang J. J., 1998. Sm-Nd Isochron Age of Ophiolite along Northern Margin of Altun Tagh Mountain and Its Tectonic Significance. Chinese Science Bulletin, 43(18): 1981-1984(in Chinese). doi: 10.1360/csb1998-43-18-1981
      Kang, L., 2014. Early Paleozoic Multi-Stage Granitic Magmatism in the South Altun High-Pressure and Ultrahigh-Pressure Metamorphic Belt and Its Geological Significance (Dissertation). Northwest University, Xi'an(in Chinese with English abstract).
      Kang, L., Xiao, P. X., Gao, X. F., et al., 2016. Early Paleozoic Magmatism and Collision Orogenic Process of the South Altyn. Acta Geologica Sinica, 90(10): 2527-2550(in Chinese with English abstract).
      Kaygusuz, A., Siebel, W., Şen, C., et al., 2008. Petrochemistry and Petrology of I-Type Granitoids in an Arc Setting: The Composite Torul Pluton, Eastern Pontides, NE Turkey. International Journal of Earth Sciences, 97(4): 739-764. https://doi.org/10.1007/s00531-007-0188-9
      Kirkland, C. L., Smithies, R. H., Taylor, R. J. M., et al., 2015. Zircon Th/U Ratios in Magmatic Environs. Lithos, 212: 397-414. https://doi.org/10.1016/j.lithos.2014.11.021
      Liu, B., Xu, Y., Ma, C. Q., et al., 2023. Petrogenesis and Geodynamic Setting of the Ningduo Peraluminous Granites from the North Qiangtang Terrane. Earth Science, 48(9): 3296-3311(in Chinese with English abstract).
      Liu, L., Che Z. C., Wang Y., et al., 1998. The Evidence of Sm-Nd Isochron Age for the Early Paleozoic Ophiolite in Mangya Area, Altun Mountains. Chinese Science Bulletin, 43(8): 880-883(in Chinese). doi: 10.1360/csb1998-43-8-880
      Liu, L., Wang, C., Cao, Y. T., et al., 2012. Geochronology of Multi-Stage Metamorphic Events: Constraints on Episodic Zircon Growth from the UHP Eclogite in the South Altyn, NW China. Lithos, 136: 10-26. https://doi.org/10.1016/j.lithos.2011.09.014
      Liu, L., Chen, D. L., Zhang, J. F., et al., 2019. New Evidence of an Ultra-Deep Continental Subduction to Mantle Depth (~300 km) in Stishovite Stability Field. Earth Science, 44(12): 3998-4003(in Chinese with English abstract).
      Liu, Y. S., Yu, H. F., Xiu, Q. Y., et al., 2010. Characteristics and Tectonic Implications of Eclogites in Southern Altun Area. Acta Petrologica et Mineralogica, 29(2): 166-174(in Chinese with English abstract).
      Lu, S. N., Yuan, G. B., 2003. Geochronology of Early Precambrian Magmatic Activities in Aketashitage, East Altyn Tagh. Acta Geologica Sinica, 77(1): 61-68(in Chinese with English abstract). http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=DZXE200301014&dbcode=CJFD&year=2003&dflag=pdfdown
      Ma, T., Liu, L., Gai, Y. S., et al., 2021. Multistage Metamorphism of Eclogite in the South Altyn HP-UHP Belt, Northwest China: Deep Subduction and Exhumation Process of Continental Crust. Journal of Metamorphic Geology, 40(4): 751-787. https://doi: 10.1111/jmg.12645
      Ma, Z. P., Li, X. M., Sun, J. M., et al., 2009. Discovery of Layered Mafic-Ultramafic Intrusion in Changshagou, Altyn Tagh, and Its Geological Implication: A Pilot Study on Its Petrological and Geochemical Characteristics. Acta Petrologica Sinica, 25(4): 793-804(in Chinese with English abstract).
      Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016-7606(1989)1010635:tdog>2.3.co;2 doi: 10.1130/0016-7606(1989)1010635:tdog>2.3.co;2
      Pearce, J., 1982. Trace Element Characteristics of Lavas from Destructive Plate Boundaries. In: Thorpe, R. S., ed., Andesites: Orogenic Andesites and Related Rocks. John Wiley, New York, 525-548.
      Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. https://doi.org/10.1093/petrology/25.4.956
      Rickwood, P. C., 1989. Boundary Lines within Petrologic Diagrams which Use Oxides of Major and Minor Elements. Lithos, 22(4): 247-263. https://doi.org/10.1016/0024-4937(89)90028-5
      Sun, J. M., Ma, Z. P., Tang, Z., et al., 2012. LA-ICP-MS Zircon Dating of the Yumuquan Magma Mixing Granite in the Southern Altyn Tagh and Its Tectonic Significance. Acta Geologica Sinica, 86(2): 247-257(in Chinese with English abstract).
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. 10.1144/gsl.sp.1989.042.01.19
      Sylvester, P. J., 1998. Post-Collisional Strongly Peraluminous Granites. Lithos, 45(1-4): 29-44. https://doi.org/10.1016/s0024-4937(98)00024-3
      Teng, X., Zhang, J. X., Müller, T., et al., 2022. Post-Collisional Extension of the South Altun Subduction-Collision Belt, Northern Tibetan Plateau: Insight from Phase Equilibria Modeling and Zircon Geochronology of Pelitic Migmatites. Journal of Asian Earth Sciences, 225: 105069. https://doi.org/10.1016/j.jseaes.2021.105069
      Wang, C., Liu, L., Xiao, P. X., et al., 2014. Geochemical and Geochronologic Constraints for Paleozoic Magmatism Related to the Orogenic Collapse in the Qimantagh-South Altyn Region, Northwestern China. Lithos, 202: 1-20. https://doi.org/10.1016/j.lithos.2014.05.016
      Wu, C. L., Chen, H. J., Wu, D., et al., 2018. Paleozoic Granitic Magmatism and Tectonic Evolution of the South Altun Block, NW China: Constraints from Zircon U-Pb Dating and Lu-Hf Isotope Geochemistry. Journal of Asian Earth Sciences, 160: 168-199. https://doi: 10.1016/j.jseaes.2018.04.019
      Wu, C. L., Gao, Y. H., Lei, M., et al., 2014. Zircon SHRIMP U-Pb Dating, Lu-Hf Isotopic Characteristics and Petrogenesis of the Palaeozoic Granites in Mangya Area, Southern Altun, NW China. Acta Petrologica Sinica, 30(8): 2297-2323 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-YSXB201408014.htm
      Wu, C. L., Lei, M., Zhang, X., et al., 2016. Petrogenesis and Zircon Lu-Hf Isotopic Characteristics of the Granites from the Southern Altun Area, Northwest China. Geology in China, 43(6): 1853-1883(in Chinese with English abstract).
      Wu, F. Y., Liu, X. C., Ji, W. Q., et al., 2017. Highly Fractionated Granites: Recognition and Research. Science China: Earth Sciences, 47(7): 745-765(in Chinese). http://www.zhangqiaokeyan.com/academic-journal-cn_chinese-science_thesis/0201258275043.html
      Xu, N., Wu, C. L., Lei, M., et al., 2018. Petrogenesis, Zircon U-Pb Chronology, and Lu-Hf Isotopic Characteristics of Monzonitic Granite from Mangya Area. Earth Science, 43(Suppl. 2): 60-80 (in Chinese with English abstract).
      Xu, N., Wu, C. L., Zheng, K., et al., 2020. Petrogenesis and Tectonic Implications of the Mangya A Type Alkali-Feldspar Granites in the South Altun, Northwest China. Acta Geologica Sinica, 94(5): 1431-1449(in Chinese with English abstract).
      Xu, N., Wu, C. L, Gao, Y. H., et al., 2020. Tectonic Evolution of the South Altyn, NW China: Constraints by Geochemical, Zircon U-Pb and Lu-Hf Isotopic Analysis of the Palaeozoic Granitic Plutons in the Mangya Area. Geological Magazine, 157 (7): 1121-1143. https://doi: 10.1017/s0016756820000126
      Xu, Z. Q., Yang, J. S., Zhang, J. X., et al., 1999. A Comparison between the Tectonic Units on the Two Sides of the Altun Sinistral Strike-Slip Fault and the Mechanism of Lithospheric Shearing. Acta Geologica Sinica, 73(3): 193-205(in Chinese with English abstract).
      Yin, A., 2001. Geologic Evolution of the Himalayan-Tibtan Orogen: Phanerozoic Growth of Asisa Continental. Acta Geosicentia Sinica, 22(3): 193-230(in Chinese with English abstract).
      Yin, A., Manning, C. E., Lovera, O., et al., 2007. Early Paleozoic Tectonic and Thermomechanical Evolution of Ultrahigh-Pressure (UHP) Metamorphic Rocks in the Northern Tibetan Plateau, Northwest China. International Geology Review, 49(8): 681-716. https://doi.org/10.2747/0020-6814.49.8.681
      Yu, S. Y., Li, S. Z., Zhang, J. X., et al., 2019a. Multistage Anatexis during Tectonic Evolution from Oceanic Subduction to Continental Collision: A Review of the North Qaidam UHP Belt, NW China. Earth-Science Reviews, 191: 190-211. https://doi.org/10.1016/j.earscirev.2019.02.016
      Yu, S. Y., Zhang, J. X., Li, S. Z., et al., 2019b. TTG-Adakitic-Like (Tonalitic-Trondhjemitic) Magmas Resulting from Partial Melting of Metagabbro under High-Pressure Condition during Continental Collision in the North Qaidam UHP Terrane, Western China. Tectonics, 38(3): 791-822. https://doi.org/10.1029/2018tc005259
      Yu, S. Y., Peng, Y. B., Zhang, J. X., et al., 2021. Tectono-Thermal Evolution of the Qilian Orogenic System: Tracing the Subduction, Accretion and Closure of the Proto-Tethys Ocean. Earth-Science Reviews, 215: 103547. https://doi.org/10.1016/j.earscirev.2021.103547
      Zeng, Z. C., Hong, Z. L., Bian, X. W., et al., 2022. Discovery of Late Ordovician Sanukitoid-Like Diorite in Southern Altyn Orogeny and Its Geological Significance. Earth Science Frontiers, 29(4): 345-357(in Chinese with English abstract).
      Zhang, J. X., Lu, Z. L., Mao, X. H., et al., 2021. Revisiting the Precambrian Micro-Continental Blocks within the Early Paleozoic Orogenic System of the Northeastern Qinghai-Tibet Plateau: Insight into the Origin of Proto-Tethyan Ocean. Acta Petrologica Sinica, 37(1): 74-94 (in Chinese with English abstract). doi: 10.18654/1000-0569/2021.01.06
      Zhang, J. X., Zhang, Z. M., Xu, Z. Q., et al., 1999. The Age of U-Pb and Sm-Nd for Eclogite from the Western Segment of the Altun Tagh Tectonic Belt. Chinese Science Bulletin, 44 (10): 1109-1112(in Chinese). doi: 10.1360/csb1999-44-10-1109
      Zheng, Y. F., 2022. Does the Mantle Contribute to Granite Petrogenesis? Earth Science, 47(10): 3765(in Chinese with English abstract). http://qikan.cqvip.com/Qikan/Article/Detail?id=7108250376
      车自成, 刘良, 刘洪福, 等, 1995. 阿尔金山地区高压变质泥质岩石的发现及其产出环境. 科学通报, 40(14): 1298-1300.
      车自成, 刘良, 罗金海, 2002. 中国及其邻区区域大地构造学. 北京: 科学出版社, 207-369.
      邓晋福, 冯艳芳, 狄永军, 等, 2017. 中国侵入岩大地构造. 北京: 地质出版社.
      高栋, 吴才来, 郜源红, 等, 2022. 南阿尔金玉苏普阿勒克塔格花岗岩体成因及其对区域早古生代构造演化的启示. 中国地质, 49(5): 1636-1655.
      郭召杰, 张志诚, 王建君, 1998. 阿尔金山北缘蛇绿岩带的Sm-Nd等时线年龄及其大地构造意义. 科学通报, 43(18): 1981-1984.
      康磊, 2014. 南阿尔金高压-超高压变质带早古生代多期花岗质岩浆作用及其地质意义(博士学位论文). 西安: 西北大学.
      康磊, 校培喜, 高晓峰, 等, 2016. 阿尔金南缘早古生代岩浆作用及碰撞造山过程. 地质学报, 90(10): 2527-2550.
      刘彬, 徐雨, 马昌前, 等, 2023. 北羌塘宁多地区三叠纪过铝质花岗岩的成因及其地球动力学背景. 地球科学, 48(9): 3296-3311. doi: 10.3799/dqkx.2022.191
      刘良, 车自成, 王焰, 等, 1998. 阿尔金茫崖地区早古生代蛇绿岩的Sm-Nd等时线年龄证据. 科学通报, 43(8): 880-883.
      刘良, 陈丹玲, 章军锋, 等, 2019. 陆壳超深俯冲到斯石英稳定域地幔深度(~300 km)的新证据. 地球科学, 44(12): 3998-4003. doi: 10.3799/dqkx.2019.275
      刘永顺, 于海峰, 修群业, 等, 2010. 南阿尔金地区榴辉岩特征及意义. 岩石矿物学杂志, 29(2): 166-174.
      陆松年, 袁桂邦, 2003. 阿尔金山阿克塔什塔格早前寒武纪岩浆活动的年代学证据. 地质学报, 77(1): 61-68.
      马中平, 李向民, 孙吉明, 等, 2009. 阿尔金山南缘长沙沟镁铁-超镁铁质层状杂岩体的发现与地质意义: 岩石学和地球化学初步研究. 岩石学报, 25(4): 793-804.
      孙吉明, 马中平, 唐卓, 等, 2012. 阿尔金南缘鱼目泉岩浆混合花岗岩LA-ICP-MS测年与构造意义. 地质学报, 86(2): 247-257.
      吴才来, 郜源红, 雷敏, 等, 2014. 南阿尔金茫崖地区花岗岩类锆石SHRIMP U-Pb定年、Lu-Hf同位素特征及岩石成因. 岩石学报, 30(8): 2297-2323.
      吴才来, 雷敏, 张昕, 等, 2016. 南阿尔金花岗岩锆石Lu-Hf同位素特征及岩石成因. 中国地质, 43(6): 1853-1883.
      吴福元, 刘小驰, 纪伟强, 等, 2017. 高分异花岗岩的识别与研究. 中国科学: 地球科学, 47(7): 745-765.
      徐楠, 吴才来, 雷敏, 等, 2018. 茫崖二长花岗岩锆石U-Pb年代学、Lu-Hf同位素特征及岩石成因. 地球科学, 43(增刊2): 60-80. doi: 10.3799/dqkx.2018.326
      徐楠, 吴才来, 郑坤, 等, 2020. 南阿尔金茫崖A型花岗岩的成因及构造意义. 地质学报, 94(5): 1431-1449.
      许志琴, 杨经绥, 张建新, 等, 1999. 阿尔金断裂两侧构造单元的对比及岩石圈剪切机制. 地质学报, 73(3): 193-205.
      尹安, 2001. 喜马拉雅-青藏高原造山带地质演化: 显生宙亚洲大陆生长. 地球学报, 22(3): 193-230.
      曾忠诚, 洪增林, 边小卫, 等, 2022. 阿尔金造山带南缘晚奥陶世赞岐质闪长岩的发现及其地质意义. 地学前缘, 29(4): 345-357.
      张建新, 路增龙, 毛小红, 等, 2021. 青藏高原东北缘早古生代造山系中前寒武纪微陆块的再认识: 兼谈原特提斯洋的起源. 岩石学报, 37(1): 74-102.
      张建新, 张泽明, 许志琴, 等, 1999. 阿尔金构造带西段榴辉岩的Sm-Nd及U-Pb年龄: 阿尔金构造带中加里东期山根存在的证据. 科学通报, 44(10): 1109-1112.
      郑永飞, 2022. 地幔是否对花岗岩的形成有贡献?地球科学, 47(10): 3765.
    • dqkxzx-49-12-4418-补充数据表2.docx
      dqkxzx-49-12-4418-补充数据表1.docx
    • 加载中
    图(9) / 表(2)
    计量
    • 文章访问数:  246
    • HTML全文浏览量:  94
    • PDF下载量:  36
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-07-30
    • 网络出版日期:  2025-01-09
    • 刊出日期:  2024-12-25

    目录

      /

      返回文章
      返回