Dissolution of Stibnite and Morphological Distribution of Antimony in Its Products under Different Aqueous Conditions
-
摘要: 辉锑矿(Sb2S3)的溶解是水环境中锑的重要来源,水中溶解态锑的毒性、迁移性及生物可利用性与其形态密切相关,但当前学界对辉锑矿溶解产物中锑的形态分布的认识并不一致,对于其中锑的特殊形态——硫代锑酸盐的认识的争议尤为突出.鉴于此,我们在不同水环境条件下系统研究了辉锑矿的溶解过程及其对硫代锑酸盐形成的影响,以期为准确评价辉锑矿溶解的环境效应提供依据.结果表明:单一辉锑矿在酸性‒弱碱性条件下的溶解不能形成硫代锑酸盐,在碱性条件下则可形成三硫代锑酸盐和四硫代锑酸盐;在反应系统中总锑含量与天然水中总锑含量相当的情况下,辉锑矿的溶解不可能形成硫代锑酸盐的多聚物.此外,不同类型还原态硫或适量雌黄的共存以及水中离子强度的增加均可促进硫代锑酸盐的形成,过量的雌黄则会抑制其形成.水中S(-Ⅱ)/Sb摩尔比是控制硫代锑酸盐形成的重要因素.在考察天然水环境中辉锑矿淋滤的环境影响以及淋滤过程中硫代锑酸盐的形成潜力时,S(-Ⅱ)/Sb摩尔比是应重点参考的关键指标.Abstract: The dissolution of stibnite (Sb2S3) is an important source of antimony in the aqueous environment, and the toxicity, mobility and bioavailability of dissolved antimony in water are closely related to its morphology, but the current understanding of the morphological distribution of antimony in the dissolution products of stibnite is not consistent, and the understanding of the particular form of antimony, thioantimonate, is particularly controversial. In this context, it systematically investigated the dissolution process of stibnite and its effect on the formation of thioantimonate under different aqueous conditions, to provide a basis for the accurate evaluation of the environmental effects of stibnite dissolution. The results show that the dissolution of stibnite under acidic-weak alkaline conditions does not lead to the formation of thioantimonate, while under alkaline conditions trithioantimonate and tetrathioantimonate can be formed; the dissolution of stibnite is unlikely to lead to the formation of poly-thioantimonate when the initial total antimony content in the reaction system is comparable to that in natural water. In addition, the coexistence of different types of reduced sulfur or moderate amounts of orpiment and an increase in the ionic strength of the water can promote the formation of thioantimonate, which is inhibited by excess orpiment. The S(-Ⅱ)/Sb molar ratio in water is an important factor in controlling the formation of thioantimonate; the S(-Ⅱ)/Sb molar ratio is a key indicator to be considered when examining the environmental impact of stibnite leaching in natural water environments and the potential for thioantimonate formation during leaching.
-
图 2 有氧和厌氧环境中不同pH(3‒11)条件下对辉锑矿溶解和硫代锑酸盐形成的影响
a.反应6 h时淋滤液中锑形态分布;b.反应720 h时淋滤液中锑形态分布;c.有氧条件下硫代锑酸盐形态占总锑比例随时间变化;d.厌氧条件下硫代锑酸盐形态占总锑比例随时间变化;e.有氧条件下硫代锑酸盐浓度随时间的变化;f.厌氧条件下硫代锑酸盐浓度随时间的变化
Fig. 2. Effect of different pH (3‒11) conditions on stibnite dissolution and thioantimonate formation in aerobic and anaerobic environments
图 5 不同离子强度条件下硫代锑酸盐在总锑中占比随时间的变化(a), S(-Ⅱ)/Sb摩尔比随时间的变化(b), 辉锑矿溶解6 h、168 h后淋滤液中锑形态分布的变化(c)
Fig. 5. The changes in the proportion of thioantimonate in total antimony over time (a), the changes in S(-Ⅱ)/Sb molar ratio with time (b) and the changes in the morphological distribution of antimony in solution after 6 h and 168 h of dissolution of stibnite under different ionic strength conditions(c)
-
Andreae, M. O., Asmode, J. F., Foster, P., et al., 1981. Determination of Antimony(Ⅲ), Antimony(Ⅴ), and Methylantimony Species in Natural Waters by Atomic Absorption Spectrometry with Hydride Generation. Analytical Chemistry, 53(12): 1766-1771. https://doi.org/10.1021/ac00235a012 Andreae, M. O., Froelich, P. N. Jr, 1984. Arsenic, Antimony, and Germanium Biogeochemistry in the Baltic Sea. Tellus B: Chemical and Physical Meteorology, 36(2): 101. https://doi.org/10.3402/tellusb.v36i2.14880 Baeza, M., Ren, J. H., Krishnamurthy, S., et al., 2010. Spatial Distribution of Antimony and Arsenic Levels in Manadas Creek, an Urban Tributary of the Rio Grande in Laredo, Texas. Archives of Environmental Contamination and Toxicology, 58(2): 299-314. https://doi.org/10.1007/s00244-009-9357-0 Feng, R. W., Wei, C. Y., Tu, S. X., et al., 2013. The Uptake and Detoxification of Antimony by Plants: A Review. Environmental and Experimental Botany, 96: 28-34. https://doi.org/10.1016/j.envexpbot.2013.08.006 Filella, M., Belzile, N., Chen, Y. W., 2002. Antimony in the Environment: A Review Focused on Natural Waters Ⅰ. Occurrence. Earth-Science Reviews, 57(1/2): 125-176. https://doi.org/10.1016/S0012-8252(01)00070-8 Gebel, T., 1997. Arsenic and Antimony: Comparative Approach on Mechanistic Toxicology. Chemico-Biological Interactions, 107(3): 131-144. https://doi.org/10.1016/S0009-2797(97)00087-2 Guo, Q. H., Planer-Friedrich, B., Luo, L., et al., 2020. Speciation of Antimony in Representative Sulfidic Hot Springs in the YST Geothermal Province (China) and Its Immobilization by Spring Sediments. Environmental Pollution, 266: 115221. https://doi.org/10.1016/j.envpol.2020.115221 Helz, G. R., Valerio, M. S., Capps, N. E., 2002. Antimony Speciation in Alkaline Sulfide Solutions: Role of Zerovalent Sulfur. Environmental Science & Technology, 36(5): 943-948. https://doi.org/10.1021/es011227c Herath, I., Vithanage, M., Bundschuh, J., 2017. Antimony as a Global Dilemma: Geochemistry, Mobility, Fate and Transport. Environmental Pollution, 223: 545-559. https://doi.org/10.1016/j.envpol.2017.01.057 Kamyshny, A. Jr, Borkenstein, C. G., Ferdelman, T. G., 2009. Protocol for Quantitative Detection of Elemental Sulfur and Polysulfide Zero-Valent Sulfur Distribution in Natural Aquatic Samples. Geostandards and Geoanalytical Research, 33(3): 415-435. https://doi.org/10.1111/j.1751-908x.2009.00907.x Krupp, R. E., 1988. Solubility of Stibnite in Hydrogen Sulfide Solutions, Speciation, and Equilibrium Constants, from 25 to 350 ℃. Geochimica et Cosmochimica Acta, 52(12): 3005-3015. https://doi.org/10.1016/0016-7037(88)90164-0 Mosselmans, J. F. W., Helz, G. R., Pattrick, R. A. D., et al., 2000. A Study of Speciation of Sb in Bisulfide Solutions by X-Ray Absorption Spectroscopy. Applied Geochemistry, 15(6): 879-889. https://doi.org/10.1016/S0883-2927(99)00080-3 Nakamaru, Y. M., Altansuvd, J., 2014. Speciation and Bioavailability of Selenium and Antimony in Non-Flooded and Wetland Soils: A Review. Chemosphere, 111: 366-371. https://doi.org/10.1016/j.chemosphere.2014.04.024 Olsen, N. J., Mountain, B. W., Seward, T. M., 2018. Antimony(Ⅲ) Sulfide Complexes in Aqueous Solutions at 30 ℃: A Solubility and XAS Study. Chemical Geology, 476: 233-247. https://doi.org/10.1016/j.chemgeo.2017.11.020 Pierart, A., Shahid, M., Séjalon-Delmas, N., et al., 2015. Antimony Bioavailability: Knowledge and Research Perspectives for Sustainable Agricultures. Journal of Hazardous Materials, 289: 219-234. https://doi.org/10.1016/j.jhazmat.2015.02.011 Planer-Friedrich, B., Forberg, J., Lohmayer, R., et al., 2020. Relative Abundance of Thiolated Species of As, Mo, W, and Sb in Hot Springs of Yellowstone National Park and Iceland. Environmental Science & Technology, 54(7): 4295-4304. https://doi.org/10.1021/acs.est.0c00668 Planer-Friedrich, B., London, J., McCleskey, R. B., et al., 2007. Thioarsenates in Geothermal Waters of Yellowstone National Park: Determination, Preservation, and Geochemical Importance. Environmental Science & Technology, 41(15): 5245-5251. https://doi.org/10.1021/es070273v Planer-Friedrich, B., Scheinost, A. C., 2011. Formation and Structural Characterization of Thioantimony Species and Their Natural Occurrence in Geothermal Waters. Environmental Science & Technology, 45(16): 6855-6863. https://doi.org/10.1021/es201003k Planer-Friedrich, B., Wilson, N., 2012. The Stability of Tetrathioantimonate in the Presence of Oxygen, Light, High Temperature and Arsenic. Chemical Geology, 322: 1-10. https://doi.org/10.1016/j.chemgeo.2012.06.010 Reimann, C., Matschullat, J., Birke, M., et al., 2010. Antimony in the Environment: Lessons from Geochemical Mapping. Applied Geochemistry, 25(2): 175-198. https://doi.org/10.1016/j.apgeochem.2009.11.011 Shen, Z. L., 1993. Basis of Hydrogeochemistry. Geological Publishing House, Beijing, 13-14 (in Chinese with English abstract). Sherman, D. M., Ragnarsdottir, K. V., Oelkers, E. H., 2000. Antimony Transport in Hydrothermal Solutions: An EXAFS Study of Antimony(Ⅴ) Complexation in Alkaline Sulfide and Sulfide-Chloride Brines at Temperatures from 25 ℃ to 300 ℃ at P Sat. Chemical Geology, 167(1/2): 161-167. https://doi.org/10.1016/S0009-2541(99)00207-7 Smichowski, P., 2008. Antimony in the Environment as a Global Pollutant: A Review on Analytical Methodologies for Its Determination in Atmospheric Aerosols. Talanta, 75(1): 2-14. https://doi.org/10.1016/j.talanta.2007.11.005 Song, H. Y., Guo, Q. H., 2023. Morphological Distribution and Geochemical Origin of Antimony in Typical High-Temperature Hot Springs. Earth Science, 48(3): 946-957 (in Chinese with English abstract). Tossell, J. A., 1994. The Speciation of Antimony in Sulfidic Solutions: A Theoretical Study. Geochimica et Cosmochimica Acta, 58(23): 5093-5104. https://doi.org/10.1016/0016-7037(94)90296-8 Tossell, J. A., 2003. Calculation of the Energetics for the Oxidation of Sb(Ⅲ) Sulfides by Elemental S and Polysulfides in Aqueous Solution. Geochimica et Cosmochimica Acta, 67(18): 3347-3354. https://doi.org/10.1016/S0016-7037(03)00129-7 Tschan, M., Robinson, B. H., Schulin, R., 2009. Antimony in the Soil-Plant System-A Review. Environmental Chemistry, 6(2): 106. https://doi.org/10.1071/en08111 Ullrich, M. K., Pope, J. G., Seward, T. M., et al., 2013. Sulfur Redox Chemistry Governs Diurnal Antimony and Arsenic Cycles at Champagne Pool, Waiotapu, New Zealand. Journal of Volcanology and Geothermal Research, 262: 164-177. https://doi.org/10.1016/j.jvolgeores.2013.07.007 Ungureanu, G., Santos, S., Boaventura, R., et al., 2015. Arsenic and Antimony in Water and Wastewater: Overview of Removal Techniques with Special Reference to Latest Advances in Adsorption. Journal of Environmental Management, 151: 326-342. https://doi.org/10.1016/j.jenvman.2014.12.051 Wilson, N., Webster-Brown, J., 2009. The Fate of Antimony in a Major Lowland River System, the Waikato River, New Zealand. Applied Geochemistry, 24(12): 2283-2292. https://doi.org/10.1016/j.apgeochem.2009.09.016 Wood, S. A., 1989. Raman Spectroscopic Determination of the Speciation of Ore Metals in Hydrothermal Solutions: Ⅰ. Speciation of Antimony in Alkaline Sulfide Solutions at 25 ℃. Geochimica et Cosmochimica Acta, 53(2): 237-244. https://doi.org/10.1016/0016-7037(89)90376-1 Yan, K. T., Guo, Q. H., Luo, L., 2022. Methylation and Sulfhydrylation of Arsenic in Tengchong Hot Spring. Earth Science, 47(2): 622-632 (in Chinese with English abstract). Yan, L., Chan, T. S., Jing, C. Y., 2020. Mechanistic Study for Stibnite Oxidative Dissolution and Sequestration on Pyrite. Environmental Pollution, 262: 114309. https://doi.org/10.1016/j.envpol.2020.114309 Ye, L., Jing, C. Y., 2021. Environmental Geochemistry of Thioantimony: Formation, Structure and Transformation as Compared with Thioarsenic. Environmental Science: Processes & Impacts, 23(12): 1863-1872. https://doi.org/10.1039/D1EM00261A 沈照理, 1993. 水文地球化学基础. 北京: 地质出版社, 13-14. 宋泓禹, 郭清海, 2023. 典型高温热泉中锑的形态分布及其地球化学成因. 地球科学, 48(3): 946-957. 严克涛, 郭清海, 罗黎, 2022. 腾冲热泉中砷的甲基化和巯基化过程. 地球科学, 47(2): 622-632. -