• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    南海西沙海域甘泉海台发现大型溶洞群

    杜文波 杨楚鹏

    杜文波, 杨楚鹏, 2023. 南海西沙海域甘泉海台发现大型溶洞群. 地球科学, 48(10): 3961-3964. doi: 10.3799/dqkx.2023.174
    引用本文: 杜文波, 杨楚鹏, 2023. 南海西沙海域甘泉海台发现大型溶洞群. 地球科学, 48(10): 3961-3964. doi: 10.3799/dqkx.2023.174
    Du Wenbo, Yang Chupeng, 2023. A Large Submarine Sinkhole Group was Discovered on Ganquan Platform in Xisha Sea Area of South China Sea. Earth Science, 48(10): 3961-3964. doi: 10.3799/dqkx.2023.174
    Citation: Du Wenbo, Yang Chupeng, 2023. A Large Submarine Sinkhole Group was Discovered on Ganquan Platform in Xisha Sea Area of South China Sea. Earth Science, 48(10): 3961-3964. doi: 10.3799/dqkx.2023.174

    南海西沙海域甘泉海台发现大型溶洞群

    doi: 10.3799/dqkx.2023.174
    基金项目: 

    中国地质调查局地质调查项目 DD20221712

    中国地质调查局地质调查项目 DD20221719

    详细信息
      作者简介:

      杜文波(1986-),男,硕士,高级工程师,主要从事层序地层学和海洋地质等研究. ORCID:0000-0002-4221-3261. E-mail:superdwb@outlook.com

      通讯作者:

      杨楚鹏,E-mail: gmgs_yang@foxmail.com

    A Large Submarine Sinkhole Group was Discovered on Ganquan Platform in Xisha Sea Area of South China Sea

    • 图  1  研究区位置(a), 甘泉海台溶洞群分布特征(b); 溶洞地形特征(c, e, g);溶洞地形剖面(d, f, h)

      图c,e,g中蓝线为地形剖面位置. c. 2号溶洞地形特征;e. 13号溶洞地形特征;g. 18号溶洞地形特征;d. 2号溶洞地形剖面;f.13号溶洞地形剖面;h. 18号溶洞地形剖面

      Fig.  1.  Location of the study area(a); distribution characteristics of submarine sinkholes on the Ganquan carbonate platform(b); bathymetry maps (c, e, g); bathymetric profilescross sections of submarine sinkhole (d, f, h)

      图  2  “2号”溶洞洞内景观图

      a.石笋;b.洞壁岩脉;c.洞壁溶蚀沟槽;d.海洋雪;e.鳐鱼;f.冷水珊瑚

      Fig.  2.  Images of the inner part of the sinkhole No. 2

      图  3  “2号”溶洞水体溶解氧剖面

      Fig.  3.  Dissolved oxygen profile in the sinkhole No. 2

      表  1  甘泉海台溶洞群的地形参数

      Table  1.   Geomorphologic parameters of the sinkholes on the Ganquan platform

      编号 洞顶水深(m) 溶洞深度(m) 平均直径(m) 编号 洞顶水深(m) 溶洞深度(m) 平均直径(m)
      1 724 54 572 20 571 56 502
      2 642 241 449 21 595 81 574
      3 647 46 330 22 551 5.5 172
      4 591 64 441 23 597 8.5 213
      5 593 90 566 24 559 3.8 267
      6 598 26 465 25 1 267 15 321
      7 597 54 435 26 1 242 12 338
      8 586 86 459 27 821 42 264
      9 586 45 252 28 776 22 207
      10 573 89 501 29 584 3 268
      11 599 21 320 30 590 6 214
      12 613 78 339 31 593 3 148
      13 609 69 468 32 601 3 180
      14 580 120 487 33 704 5 144
      15 582 25 416 34 794 5 145
      16 580 19 519 35 1 101 14 95
      17 572 22 333 36 1 089 26 66
      18 571 79 550 37 1 143 16 76
      19 561 14 293
      下载: 导出CSV
    • Bastos, A. C., Amado-Filho, G. M., Moura, R. L., et al., 2016. Origin and Sedimentary Evolution of Sinkholes (buracas) in the Abrolhos Continental Shelf, Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology, 462: 101-111. https://doi.org/10.1016/j.palaeo.2016.09.009
      Cavailhes, T., Gillet, H., Guiastrennec-Faugas, L., et al., 2022. The Abyssal Giant Sinkholes of the Blake Bahama Escarpment: Evidence of Focused Deep-Ocean Carbonate Dissolution. Geomorphology, 398: 108058. https://doi.org/10.1016/j.geomorph.2021.108058
      Chen, W. L., Wu, S. G., Wang, D. W., et al., 2023. Stratigraphic Evolution and Drowning Steps of a Submerged Isolated Carbonate Platform in the Northern South China Sea. Frontiers in Marine Science, 10: 1200788. https://doi.org/10.3389/fmars.2023.1200788
      Humphreys, M. P., Meesters, E. H., de Haas, H., et al., 2022. Dissolution of a Submarine Carbonate Platform by a Submerged Lake of Acidic Seawater. Biogeosciences, 19(2): 347-358. https://doi.org/10.5194/bg-19-347-2022
      Kan, H., Urata, K., Nagao, M., et al., 2015. Submerged Karst Landforms Observed by Multibeam Bathymetric Survey in Nagura Bay, Ishigaki Island, Southwestern Japan. Geomorphology, 229: 112-124. https://doi.org/10.1016/j.geomorph.2014.07.032
      Land, L. A., Paull, C. K., Spiess, F. N., 1999. Abyssal Erosion and Scarp Retreat: Deep Tow Observations of the Blake Escarpment and Blake Spur. Marine Geology, 160(1/2): 63-83. https://doi.org/10.1016/S0025-3227(99)00012-2
      Mylroie, J. E., 2008. Late Quaternary Sea-Level Position: Evidence from Bahamian Carbonate Deposition and Dissolution Cycles. Quaternary International, 183(1): 61-75. https://doi.org/10.1016/j.quaint.2007.06.030
      Taviani, M., Angeletti, L., Campiani, E., et al., 2012. Drowned Karst Landscape Offshore the Apulian Margin (Southern Adriatic Sea, Italy). Journal of Cave and Karst Studies, 74(2): 197-212. https://doi.org/10.4311/2011jcks0204
      Wu, S. G., Yang, Z., Wang, D. W., et al., 2014. Architecture, Development and Geological Control of the Xisha Carbonate Platforms, Northwestern South China Sea. Marine Geology, 350: 71-83. https://doi.org/10.1016/j.margeo.2013.12.016
      Yao, P., Wang, X. C., Bianchi, T. S., et al., 2020. Carbon Cycling in the World's Deepest Blue Hole. Journal of Geophysical Research: Biogeosciences, 125(2): 1-19. https://doi.org/10.1029/2019jg005307
    • 加载中
    图(3) / 表(1)
    计量
    • 文章访问数:  375
    • HTML全文浏览量:  246
    • PDF下载量:  63
    • 被引次数: 0
    出版历程
    • 刊出日期:  2023-10-25

    目录

      /

      返回文章
      返回