Fractal Dimension Identification Method of Fractures in Igneous Buried Hill Based on Mechanical Layer Division
-
摘要: 火成岩潜山油气藏已成为海上油气增储上产的新领域,具有广阔的勘探和开发前景. 琼东南盆地潜山气藏受到多期岩浆侵入影响,岩石结构复杂多变,储集空间分布具极强的非均质性,利用测井曲线识别裂缝的难度增大. 针对火成岩潜山测井识别裂缝面临的难题,利用壁心、薄片、成像测井、常规测井等资料分析了火成岩潜山裂缝特征和测井响应规律;运用经典的岩石弹性参数计算模型建立了岩石力学剖面,根据井剖面纵向力学性质差异划分岩石力学层;引入反映岩石稳定性的岩石力学评价模型,采用曲线波动分形维变原理,通过力学层划分约束消除岩性变化干扰对火成岩潜山裂缝进行识别. 研究结果表明:潜山裂缝的发育具有明显的岩性选择偏向,二长花岗岩中发育的裂缝开度最大,保留了较多的开启裂缝,岩石性质变化易造成裂缝分布差异,从而导致密度和波速变化;纵横波时差比与光电吸收截面交会分析可以最大程度的区分大部分较发育的裂缝和绝大部分极发育的裂缝;在力学层段划分的基础上,分段识别天然裂缝能提高火成岩潜山裂缝识别效果,与成像测井中溶蚀缝+高导缝段的识别符合率为85%;潜山顶部常发育溶蚀孔隙型储层,其裂缝越发育、变尺度分形维数(HF)越大,裂缝有效性越好,属于本区储渗性能最有利的储层发育带. 该方法能够解决常规资料识别潜山裂缝的难题,可对潜山气藏的有效开发提供指导依据.Abstract: Igneous buried⁃hill oil and gas reservoir has become a new field for increasing reserves and production, which has broad exploration and development prospects. The burial⁃hill gas reservoir in Qiongdongnan Basin is affected by multi⁃stage magma intrusion, the rock structure is complex and varied, the reservoir space distribution is highly heterogeneous, and it is difficult to identify fractures by logging curves.In view of the difficult problem of identifying fractures in igneous rock buried hill logging, the fracture characteristics and logging response rules are analyzed by using the data of core, thin section, imaging logging and conventional logging. The classical rock elastic parameter calculation model is used to establish the rock mechanics section, and the rock mechanics layer is divided according to the difference of the longitudinal mechanical properties of the well section. The rock mechanics evaluation model reflecting rock stability is introduced, and the fractal dimension principle of curve fluctuation is adopted to identify the fractures in buried hills of igneous rocks by the constraint of mechanical layer division to eliminate the interference of lithology change. The results show that the development of fractures in buriedhill has obvious lithology selection bias, and the fractures developed in monzonitic granite have the largest opening degree and retain more open fractures. The change of rock properties is easy to cause the difference of fracture distribution, which leads to the change of density and wave velocity. The cross analysis of the ratio of P⁃wave to S⁃wave time difference and photoelectric absorption cross section can distinguish most of the more developed cracks and most of the more developed fractures to the greatest extent. On the basis of mechanical interval division, segmented identification of natural fractures can improve the identification effect of buried hill fractures, and the identification coincidence rate is 85% with that of dissolution fractures + high conductivity fractures in imaging logging, which can meet the research needs and provide guidance for the effective development of buried hill gas reservoirs.
-
图 3 研究区储集空间发育特征镜下照片
a. YE⁃1,3 064 m,正长花岗岩,晶内溶孔(⁃);b. YE⁃1,3 060 m,粘土化花岗岩,粒间溶蚀孔(⁃);c. YE⁃1,2 982 m,正长花岗岩,铸模孔(⁃);d. YE⁃1,3 006 m,流纹岩,基质溶孔(⁃);e. YE⁃2,3 367 m,二长花岗岩,构造破碎,破碎物充填,铁方解石不完全充填(⁃);f. YE⁃3,2 833 m,花岗斑岩,构造裂缝,宽度较小,斑晶内溶蚀孔发育(⁃);g. YE⁃2,3 483 m,二长花岗岩,构造裂隙发育,裂缝宽度较大,微斜长石表面相对洁净(⁃);h. 描述同g,(+);i. YE⁃3,2 860 m,花岗闪长岩,长石溶孔,长石风化深(⁃);j:YE⁃2,3 356.3 m,二长花岗岩,风化溶蚀裂缝(⁃);k. YE⁃3,花岗闪长岩,构造缝、溶蚀缝、溶蚀孔(⁃);l. YE⁃1,3 024 m,内幕带,构造缝被方解石充填(⁃)
Fig. 3. The characteristics of reservoir space development in the study area
表 1 研究区潜山储集空间类型及特征
Table 1. Types and characteristics of buried hill reservoir space in the study area
储集空间类型 作用机制 形成机制 特征 孔隙 晶内溶蚀孔 溶解作用 矿物晶体部分被溶解、水解形成的孔隙 孔隙形态不规则,连通性不好 基质溶蚀孔 基质中的胶结物被溶蚀形成的孔隙 细小的筛状孔,具有一定的连通性 铸模孔 矿物晶体完全溶解、水解形成的孔隙 多发育于解理发育的矿物晶体内,孔隙连通性差 粒间溶蚀孔 矿物晶体边缘或沿裂缝边缘被溶蚀所形成的孔隙 形状不规则,孔隙发育较大,连通性好 裂缝 构造裂缝 构造作用 火成岩成岩后受到构造应力作用产生的裂缝 有的早期裂缝被充填,晚期未被充填,切割矿物颗粒,连通性好,是很好的油气运移通道 构造-溶蚀缝 构造作用
溶解作用早期形成的构造裂缝后经溶蚀改造扩大形成有效的储集空间 保留原有的裂缝形态,溶蚀构造裂缝,不规则不平直,相交处形成溶蚀孔,连通性好 网状溶蚀缝 构造作用
风化作用
溶解作用风化壳受风化和构造作用产生的破碎岩石受到上部大气水淋滤作用,形成复杂的网状裂缝和溶蚀孔隙相半生的有效储集空间 裂缝形态呈网状,溶蚀构造裂缝,连通性好 -
Aghli, G., Moussavi⁃Harami, R., Mortazavi, S., et al., 2019. Evaluation of New Method for Estimation of Fracture Parameters Using Conventional Petrophysical Logs and ANFIS in the Carbonate Heterogeneous Reservoirs. Journal of Petroleum Science and Engineering, 172: 1092-1102. https://doi.org/10.1016/j.petrol.2018.09.017 Al⁃Sit, W., Al⁃Nuaimy, W., Marelli, M., et al., 2015. Visual Texture for Automated Characterisation of Geological Features in Borehole Televiewer Imagery. Journal of Applied Geophysics, 119: 139-146. https://doi.org/10.1016/j.jappgeo.2015.05.015 Atkinson, B., Meredith, P., 1987. Experimental Fracture Mechanics Data for Rocks and Minerals. In: Atkinson, B., ed., Fracture Mechanics of Rock. Academic Press, London, England, 76-80. Bhattacharya, S., Mishra, S., 2018. Applications of Machine Learning for Facies and Fracture Prediction Using Bayesian Network Theory and Random Forest: Case Studies from the Appalachian Basin, USA. Journal of Petroleum Science and Engineering, 170: 1005-1017. https://doi.org/ 10.1016/j.petrol.2018.06.075 Dou, L. R., Wang, J. C., Wei, R. C., et al., 2018. Precambrian Basement Reservoirs: Case Study from Northern Bonger Basin, the Repubilc of Chad. AAPG Bulletin, 102(9): 1803-1824. https://doi.org/10.1306/02061817090 Fan, T. E., Du, X., Fan, P. J., et al., 2023. Fault⁃Landform Double Controlled Archean Buried⁃Hill Reservoir Integrated Prediction for BZ26⁃6 Oil Field, Bohai Bay. Earth Science, 48(2): 429-438(in Chinese with English abstract). Hong, Z., Su, M. J., Liu, H. Q., et al., 2012. Lithologies Recognition and Reservoir Prediction in Complex Lithologies Area. Journal of Southwest Petroleum University(Science & Technology Edition), 34(6): 38-46 (in Chinese with English abstract). Jansen, J. D., Katsuki, K., Ohtomo, H., et al., 2018. Characterization and Modeling of Fractures in Shales: A Case Study from the Permian Basin, USA. Journal of Petroleum Science and Engineering, 163: 245-253. https://doi.org/ 10.1016/j.petrol.2018.09.017 Jin, C. S., Qiao, D. W., Dan, W. N., 2012. Meso⁃Cenozoic Volcanic Rock Distribution and Reservoir Characteristics in the Bohai Bay Basin. Oil & Gas Geology, 33(1): 19-29, 36(in Chinese with English abstract). Li, W., Yan, T., 2012. Fractal Rock Mechanics and Its Application in Petroleum Engineering. Petroleum Industry Press, Beijing (in Chinese). Li, X. Y., Qin, R. B., 2023. Method of Fracture Characterization and Productivity Prediction of 19⁃6 Buried⁃Hill Fractured Reservoirs, Bohai Bay Basin. Earth Science, 48(2): 475-487(in Chinese with English abstract). Liu, Z., Zhu, M. L., Liu, H. M., et al., 2021. Formation Mechanism and Distribution Characteristics of Granitic Weathering Crust Reservoir: a Case Study of the Western Segment of the Northern Belt of Dongying Sag. Acta Petrolei Sinica, 42(2): 163-175(in Chinese with English abstract). Luo, W., Cai, J. J., Wan, Q. H., et al., 2019. Reservoir Condition Analysis of a Buried Granite Hill in the Huizhou Depression and Its Petroleum Geological Significance. Marine Geology & Quaternary Geology, 39(4): 126-135(in Chinese with English abstract). Nouri⁃Taleghani, M., Mahmoudifar, M., Shokrollahi, A., et al., 2015. Fracture Density Determination using A Novel Hybrid Computational Scheme: A Case Study on An Iranian Marun Oil Field Reservoir. Journal of Geophysics and Engineering, 12(2): 188-198. https://doi.org/ 10.1088/1742⁃2132/12/2/188 Pan, J. G., Hao, F., Zhang, H. Q., et al., 2007. Formation of Granite and Volcanic Rock Reservoirs and Their Accumulation Model. Natural Gas Geoscience, 18(3): 380-385 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-1926.2007.03.013 Song, B. R., Hu, Y. J., Bian, S. Z., et al., 2011. Reservoir Characteristics of the Crystal Basement in the Xinglongtai Buried⁃Hill, Liaohe Depression. Acta Petrolei Sinica, 32(1): 77-82(in Chinese with English abstract). doi: 10.3969/j.issn.1001-8719.2011.01.013 Taibi, F., Akbarizadeh, G., Farshidi, E., 2019. Robust Reservoir Rock Fracture Recognition Based on a New Sparse Feature Learning and Data Training Method. Multidimensional Systems and Signal Processing, 30(4): 2113-2146. https://doi: 10.1007/s11045⁃019⁃00645⁃8 Tang, X. M., Xu, S., Zhuang, C. X., et al., 2016. Quantitative Evaluation of Rock Brittleness and Fracability Based on Elastic⁃Wave Velocity Variation around Borehole. Petroleum Exploration and Development, 43(3): 417-424. https://doi.org/ 10.1016/S1876⁃3804(16)30053⁃2 Xu, F. H., Wang, Z. W., Liu, J. H., et al., 2018. Acoustic Logging Information Extraction and Fractural Volcanic Formation Characteristics Based on Empirical Mode Decomposition. Geophysical Prospecting for Petroleum, 57(6): 936-943. https://doi.org/10.3969/j.issn.1000⁃1441.2018.06.016 Xu, G. S., Chen, F., Zhou, X. H., et al., 2016. Hydrocarbon Accumulation Process of Large Scale Oil and Gas of Granite Buried Hill in Penglai 9⁃1 Structure, Bohai, China. Journal of Chengdu University of Technology, 43(2): 153-162(in Chinese with English abstract). doi: 10.3969/j.issn.1671-9727.2016.02.02 Xu, S. L., You, L., Mao, X. L., et al., 2019. Reservoir Characteristics and Controlling Factors of Granite Buried Hill in Songnan Low Uplift, Qiongdongnan Basin. Earth Science, 44(8): 2717-2728(in Chinese with English abstract). Ye, Q., Zhang, C., Zhou, W., et al., 2023. Identification and Prediction Method of Complex Lithology of Igneous Bedrock Buried⁃Hill: A Case Study of Bedrock Buried⁃Hill of Songnan Low Uplift, Qiongdongnan Basin. China Offshore Oil and Gas, 35(2): 65-77(in Chinese with English abstract). Yin, S., Ding, W. L., Lin, L. F., et al., 2023. Characteristics and Controlling Effect on Hydrocarbon Accumulation of Fractures in Yanchang Formation in Zhidan⁃Wuqi Area, Western Ordos Basin. Earth Science, 48(7): 2614-2629(in Chinese with English abstract). Yin, S., Sun, X. G., Wu, Z. H., et al., 2022a. Coupling Control of Tectonic Evolution and Fractures on the Upper Paleozoic Gas Reservoirs in the Northeastern Margin of the Ordos Basin. Journal of Central South University (Science and Technology). 53(9): 3724-3737(in Chinese with English abstract). Yin, S., Wu, Z. H., Wu, X. M., et al., 2022b. Oil Enrichment Law of the Jurassic Yan'an Formation, Hongde Block, Longdong Area, Ordos Basin. Oil & Gas Geology, 43(5): 1167-1179(in Chinese with English abstract). You, J. J., Sun, Z. P., Li, J. L., et al., 2012. Exploration Potential of Songnan Low⁃Uplift in the Deep Water Region, Qiongdongnan Basin. China Mining Magazine, 21(8): 56-5(in Chinese with English abstract). Yuan, L., Xin, Y., Wu, S. Y., et al., 2021. Research on Qualitative Identification, Parameter Modeling and Control Factors of Cracks in Deep Cretaceous Tight Sandstone: Taking the Cretaceous Bashijiqike Formation Reservoir in Keshen Area, Kuqa Depression, Tarim Basin as an Example. Journal of Northeast Petroleum University, 45(1): 20-31(in Chinese with English abstract). Zhang, G. C., Mi, L. J., Wu, J. F., et al., 2010. Rises and Their Plunges: Favorable Exploration Directions for Major Fields in the Deepwater Area, Qiongdongnan Basin. China Offshore Oil and Gas, 22(6): 360-368(in Chinese with English abstract). doi: 10.3969/j.issn.1673-1506.2010.06.002 Zhao, J. F., Li, F. Q., Ling, Z. H., 2014. Logging Identification Method for Tight Sandstone Reservoir of Ancient Buried Mountain in Dongpu Sag. Special Oil & Gas Reservoirs, 21(2): 46-50, 153(in Chinese with English abstract). Zheng, J., Liu, H. B., Zhou, W., et al., 2010. On Identification Methods for Reservoir Fractures in Daleel Oilfield in Oman Block⁃5. Well Logging Technology, 34(3): 251-256(in Chinese with English abstract). Zhu, L. F., 2003. Application of Novel Cross⁃Dipole Acoustic Logging Data in Fractured Reservoir Evaluation. Well Logging Technology, 27(3): 225-227, 265(in Chinese with English abstract). Zou, C. N., Yang, Z., Zhu, R. K., et al., 2015. Progress in China's Unconventional Oil & Gas Exploration and Development and Theoretical Technologies. Acta Geologica Sinica⁃English Edition, 89(3): 938-971. https://doi.org/10.1111/1755⁃6724.12491 Zou, C. N., Zhao, W. Z., Jia, C. Z., et al., 2008. Formation and Distribution of Volcanic Hydrocarbon Reservoirs in Sedimentary Basins of China. Petroleum Exploration and Development, 35(3): 257-271. https://doi.org/10.1016/s1876⁃3804(08)60071⁃3 范廷恩, 杜昕, 樊鹏军, 等, 2023. 断-貌双控渤中26-6油田太古界潜山储层综合预测. 地球科学, 48(2): 429-438. 洪忠, 苏明军, 刘化清, 等, 2012. 复杂岩性地区岩性识别与储层预测. 西南石油大学学报(自然科学版), 34(6): 38-46. 金春爽, 乔德武, 淡伟宁, 2012. 渤海湾盆地中、新生代火山岩分布及油气藏特征. 石油与天然气地质, 33(1): 19-29, 36. 李玮, 闫铁, 2012. 分形岩石力学及其在石油工程中的应用. 北京: 石油工业出版社. 李雄炎, 秦瑞宝, 2023. 渤海湾盆地渤中19⁃6气田潜山储层裂缝表征与产能预测方法. 地球科学, 48(2): 475-487. doi: 10.3799/dqkx.2022.299 刘震, 朱茂林, 刘惠民, 等, 2021. 花岗岩风化壳储层形成机理及分布特征: 以东营凹陷北带西段为例. 石油学报, 42(2): 163-175. 罗伟, 蔡俊杰, 万琼华, 等, 2019. 惠州凹陷花岗岩潜山储层条件分析及石油地质意义. 海洋地质与第四纪地质, 39(4): 126-135. 潘建国, 郝芳, 张虎权, 等, 2007. 花岗岩和火山岩油气藏的形成及其勘探潜力. 天然气地球科学, 18(3): 380-385. 宋柏荣, 胡英杰, 边少之, 等, 2011. 辽河坳陷兴隆台潜山结晶基岩油气储层特征. 石油学报, 32(1): 77-82. 唐晓明, 许松, 庄春喜, 等, 2016. 基于弹性波速径向变化的岩石脆裂性定量评价. 石油勘探与开发, 43(3): 417-424. 徐方慧, 王祝文, 刘菁华, 等, 2018. 基于EMD的声波测井信息提取与火成岩裂缝地层特征分析. 石油物探, 57(6): 936-943. 徐国盛, 陈飞, 周兴怀, 等, 2016. 蓬莱9⁃1构造花岗岩古潜山大型油气田的成藏过程. 成都理工大学学报(自然科学版), 43(2): 153-162. 徐守立, 尤丽, 毛雪莲, 等, 2019. 琼东南盆地松南低凸起周缘花岗岩潜山储层特征及控制因素. 地球科学, 44(8): 2717-2728. doi: 10.3799/dqkx.2019.186 叶青, 张冲, 周伟, 等, 2023. 火成岩基岩潜山复杂岩性识别与预测方法: 以琼东南盆地松南低凸起基岩潜山为例. 中国海上油气, 35(2): 65-77. 尹帅, 丁文龙, 林利飞, 等, 2023. 鄂尔多斯盆地西部志丹-吴起地区延长组裂缝特征及其控藏作用. 地球科学, 48(7): 2614-2629. doi: 10.3799/dqkx.2022.217 尹帅, 孙晓光, 邬忠虎, 等, 2022a. 鄂尔多斯盆地东北缘上古生界构造演化及裂缝耦合控气作用. 中南大学学报(自然科学版), 53(9): 3724-3737. 尹帅, 邬忠虎, 吴晓明, 等, 2022b. 鄂尔多斯盆地陇东地区洪德区块侏罗系延安组油藏富集规律. 石油与天然气地质, 43(5): 1167-1179. 游君君, 孙志鹏, 李俊良, 等, 2012. 琼东南盆地深水区松南低凸起勘探潜力评价. 中国矿业, 21(8): 56-59. 袁龙, 信毅, 吴思仪, 等, 2021. 深层白垩系致密砂岩裂缝定性识别、参数建模与控制因素分析: 以塔里木盆地库车坳陷克深地区白垩系巴什基奇克组储层为例. 东北石油大学学报, 45(1): 20-31, 72, 6-7. 张功成, 米立军, 吴景富, 等, 2010. 凸起及其倾没端: 琼东南盆地深水区大中型油气田有利勘探方向. 中国海上油气, 22(6): 360-368. 赵俊峰, 李凤琴, 凌志红, 2014. 东濮凹陷古潜山致密砂岩油气层测井识别方法. 特种油气藏, 21(2): 46-50, 153. 郑军, 刘鸿博, 周文, 等, 2010. 阿曼五区块Daleel油田储层裂缝识别方法研究. 测井技术, 34(3): 251-256. 朱留方, 2003. 交叉偶极子阵列声波测井资料在裂缝性储层评价中的应用. 测井技术, 27(3): 225-227, 265. 邹才能, 杨智, 朱如凯, 等, 2015. 中国非常规油气勘探开发与理论技术进展. 地质学报, 89(6): 979-1007. 邹才能, 赵文智, 贾承造, 等, 2008. 中国沉积盆地火山岩油气藏形成与分布. 石油勘探与开发, 35(3): 257-271. -