• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    钱家店铀矿床层间氧化带中铁钛氧化物的赋存状态及其对铀成矿的响应

    张宇辰 荣辉 焦养泉 曹民强 李清春 郭亮亮 郭长琪 周明旺

    张宇辰, 荣辉, 焦养泉, 曹民强, 李清春, 郭亮亮, 郭长琪, 周明旺, 2024. 钱家店铀矿床层间氧化带中铁钛氧化物的赋存状态及其对铀成矿的响应. 地球科学, 49(6): 2024-2043. doi: 10.3799/dqkx.2023.181
    引用本文: 张宇辰, 荣辉, 焦养泉, 曹民强, 李清春, 郭亮亮, 郭长琪, 周明旺, 2024. 钱家店铀矿床层间氧化带中铁钛氧化物的赋存状态及其对铀成矿的响应. 地球科学, 49(6): 2024-2043. doi: 10.3799/dqkx.2023.181
    Zhang Yuchen, Rong Hui, Jiao Yangquan, Cao Minqiang, Li Qingchun, Guo Liangliang, Guo Changqi, Zhou Mingwang, 2024. Occurrence State of Fe-Ti Oxides and Its Response to Uranium Mineralization Process in Interlayer Oxidation Zone of Qianjiadian Uranium Deposit. Earth Science, 49(6): 2024-2043. doi: 10.3799/dqkx.2023.181
    Citation: Zhang Yuchen, Rong Hui, Jiao Yangquan, Cao Minqiang, Li Qingchun, Guo Liangliang, Guo Changqi, Zhou Mingwang, 2024. Occurrence State of Fe-Ti Oxides and Its Response to Uranium Mineralization Process in Interlayer Oxidation Zone of Qianjiadian Uranium Deposit. Earth Science, 49(6): 2024-2043. doi: 10.3799/dqkx.2023.181

    钱家店铀矿床层间氧化带中铁钛氧化物的赋存状态及其对铀成矿的响应

    doi: 10.3799/dqkx.2023.181
    基金项目: 

    国家重点研发计划项目 2018YFC0604202

    国家青年科学基金项目 41502105

    中国地质大学(武汉)学科杰出人才基金项目 102-162301192664

    详细信息
      作者简介:

      张宇辰(2000-),男,硕士研究生,资源与环境专业.ORCID:0009-0006-7515-1905. E-mail:1097167239@qq.com

      通讯作者:

      荣辉,副教授,主要从事铀储层沉积学、砂岩型铀矿床成岩-成矿作用等方面的教学和科研工作. E-mail: ronghui0411@163.com

    • 中图分类号: P611.2

    Occurrence State of Fe-Ti Oxides and Its Response to Uranium Mineralization Process in Interlayer Oxidation Zone of Qianjiadian Uranium Deposit

    • 摘要: 铁钛氧化物对氧化-还原环境的变化极为敏感,是砂岩型铀矿成矿作用研究极为重要的标型矿物.然而,国内外对铁钛氧化物在砂岩型铀矿层间氧化带不同分带中形貌、含量及组合特征的研究却缺少量化数据的约束.鉴于此,本文以松辽盆地钱家店铀矿床层间氧化带中铁钛氧化物为研究对象,通过偏光显微镜、扫描电镜、电子探针等手段,识别出6种铁钛氧化物:钛铁矿、钛赤铁矿、钛磁铁矿、白钛石、金红石和锐钛矿,其中完全氧化亚带和部分氧化亚带以钛赤铁矿、钛磁铁矿为主,微弱氧化亚带以金红石、锐钛矿、钛磁铁矿为主,过渡带以白钛石、锐钛矿为主,还原带以金红石、锐钛矿、钛铁矿与白钛石为主.从钛铁矿氧化物与铀矿物的产出关系来看,锐钛矿、白钛石与金红石与铀成矿关系最为密切.根据各个分带中铁钛氧化物之间的穿插包裹关系,识别出7种蚀变序列,其中,完全氧化亚带、部分氧化亚带与微弱氧化亚带中以钛铁矿→钛磁铁矿→磁铁矿、钛铁矿→钛赤铁矿、白钛石→钛磁铁矿→磁铁矿以及白钛石→钛赤铁矿4种蚀变序列为主,记录了铀矿床的大规模层间氧化事件;过渡带中主要表现为白钛石→锐钛矿和金红石→锐钛矿两种蚀变序列,体现了晚期成矿阶段该矿床受到低温热液流体改造事件;还原带中主要表现为钛铁矿→白钛石的蚀变序列,反映了成岩时期弱酸性-弱碱性的环境.研究成果为铁钛氧化物作为标型矿物研究砂岩型铀矿床层间氧化带精细分带及铀成矿作用过程奠定了基础.

       

    • 图  1  区域地质背景

      a.钱家店铀矿床区域构造位置;b.钱家店地区地层综合柱状图;c.钱家店铀矿床层间氧化带位置展布;据 荣辉等(2016) 修改

      Fig.  1.  Regional geological background

      图  2  样品位置及分布示意图

      钻孔位置见 图 1

      Fig.  2.  Location and distribution of the samples

      图  3  铁钛氧化物含量统计示意图

      a.样品4-56-08-1的一张统计图像;b.图a经过矿物分类处理后的图像;c.图a对应钛赤铁矿处原子数占比能谱元素;d.图a中对应的锐钛矿原子数占比能谱图像

      Fig.  3.  Statistical diagram of Fe-Ti oxides content

      图  4  钱家店铀矿床中钛铁矿与钛赤铁矿的形貌特征

      a.碎屑状钛铁矿蚀变为白钛石,QC17-22;b.碎屑状钛铁矿表面发生蚀变局部形成白钛石,发育大量裂纹,4-14911-2;c.钛铁矿由裂隙处蚀变为白钛石,QC17-22;d.碎屑状钛铁矿局部区域发生蚀变,4-11311-6;e.钛铁矿发生微弱蚀变表面发育大量裂纹,4-11311-6;f.碎屑状钛铁矿被赤铁矿交代,残留钛铁矿呈条状分布,QC90-20;g.钛赤铁矿交代铁钛氧化物,蚀变边缘可见锐钛矿,4-56-08-11;h.钛赤铁矿交代白钛石再氧化为赤铁矿,4-17-120;i.完全交代铁钛氧化物的钛赤铁矿,裂纹中填充锐钛矿,4-56-08-1

      Fig.  4.  Morphological characteristics of ilmenite and titanium hematite in Qianjiadian uranium deposit

      图  5  钱家店铀矿床中钛磁铁矿与白钛石的形貌特征

      a.布纹状钛磁铁矿解理缝中充填胶状锐钛矿,4-56-08-10;b.条状的钛铁矿从边缘被钛磁铁矿交代并呈现出不规则片层,4-17-120;c.钛磁铁矿内部残留少量白钛石,边缘逐渐蚀变为磁铁矿并以网格状生长,4-56-08-11;d.钛磁铁矿边缘氧化为磁铁矿,QC90-20;e.白钛石边缘蚀变为锐钛矿,外侧发育草莓状黄铁矿,4-WT3-U3;f.白钛石内部残留部分钛铁矿,表面发育裂隙呈叶片状,4-56-08-11;g.碎屑状白钛石边缘向锐钛矿蚀变,锐钛矿呈胶状、絮状,4-14911-3;h.白钛石被菱铁矿包裹,QC17-22;i.白钛石被菱铁矿包裹,QC17-22

      Fig.  5.  Morphological characteristics of titanomagnetite and leucoxene in Qianjiadian uranium deposit

      图  6  钱家店铀矿床中金红石与锐钛矿的形貌特征

      a.针状自形金红石被高岭石包裹充填,4-14911-3;b.针状金红石间隙中发育了粒状黄铁矿,4-WT3-U6;c.金红石与碎屑颗粒之间生长了大面积胶状黄铁矿,金红石间隙被少量黄铁矿充填,4-14911-3;d.金红石逐渐被菱铁矿包裹,QC17-26;e.针状金红石边缘溶蚀形成锐钛矿,QC17-22;f.黄铁矿在锐钛矿表面生长后期被高岭石包裹,QC17-26;g.锐钛矿在高岭石表面生长,IV29-02-1;h.白钛石边缘蚀变为锐钛矿,QC17-26;i.颗粒间自生的粒状锐钛矿吸附少量铀,其中锐钛矿表面存在少量亮斑为铀矿物,4-WT3-U2

      Fig.  6.  Morphological characteristics of rutile and anatase in Qianjiadian uranium deposit

      图  7  钱家店铀矿床层间氧化带中铁钛氧化物平均含量分布

      Fig.  7.  The average content distribution of Fe-Ti oxides in interlayer oxidation zone of Qianjiadian uranium deposit

      图  8  钱家店铀矿床铁钛氧化物蚀变类型及组合特征

      铁钛氧化物数据源于本文,其他矿物数据源于 荣辉等(2016)贾俊民等(2018)

      Fig.  8.  Alteration types and assemblage characteristics of Fe-Ti oxides in Qianjiadian uranium deposit

      图  9  钱家店铀矿床中铁钛氧化物的蚀变演化模式

      Fig.  9.  Alteration evolution models of Fe-Ti oxides in the Qianjiadian uranium deposit

      图  10  钱家店铀矿床中铁钛氧化物与铀矿物的关系

      a.含铀锐钛矿被沥青铀矿包裹,4-WT3-U2;b.含铀锐钛矿部分被沥青铀矿包裹,IV29-02-1;c.含铀锐钛矿表面充填沥青铀矿,4-WT3-U2;d.含铀锐钛矿内部残留部分白钛石,边缘被沥青铀矿逐渐包裹,4-WT3-U2;e.碎屑状白钛石与邻近锆石吸附少量铀,4-WT3-U2;f.自形六边形白钛石裂隙中吸附少量铀,4-WT3-U2;g.含铀白钛石局部被铀交代形成铀石,IV29-02-1;h.网格状结构的钛铀矿,4-WT3-U2;i.网格状金红石吸附铀,铀矿物呈星点状分布在表面,IV29-02-1

      Fig.  10.  Relationship between Fe-Ti oxides and uranium minerals in Qianjiadian uranium deposit

      图  11  钱家店铀矿床中典型矿物蚀变演化序列

      铁钛氧化物资料源于本文,其他矿物数据源于 荣辉等(2016)贾俊民等(2018)

      Fig.  11.  Alteration sequence of typical minerals in the Qianjiadian uranium deposit

      表  1  钱家店铀矿床中铁钛氧化物电子探针分析结果

      Table  1.   Analysis results of Fe-Ti oxides electron probe in Qianjiadian uranium deposit

      序号 CaO K2O UO2 ThO2 TiO2 SO3 Na2O MgO SiO2 Al2O3 TFeO MnO Cr2O3 Total Ti/[Ti+Fe] 类型
      1 0.03 0.04 0.00 0.00 1.17 0.00 0.00 0.03 0.15 0.37 86.01 0.39 0.17 88.36 0.01 赤铁矿
      2 0.00 0.00 0.05 0.01 4.23 0.00 0.00 0.00 0.11 0.16 85.36 0.00 0.05 89.96 0.04
      3 0.02 0.00 0.00 0.04 29.15 0.01 0.03 0.20 0.25 0.43 61.96 0.00 0.12 92.21 0.27 钛赤铁矿
      4 0.00 0.01 0.03 0.01 7.42 0.01 0.00 0.07 0.05 0.61 82.94 0.10 0.06 91.30 0.07 磁铁矿
      5 0.02 0.01 0.00 0.00 12.73 0.00 0.03 0.12 0.07 0.76 77.36 0.31 0.10 91.52 0.11 钛磁铁矿
      6 0.02 0.01 0.03 0.00 19.40 0.00 0.03 0.03 0.22 0.16 72.58 0.47 0.04 93.01 0.17
      7 0.02 0.00 0.00 0.03 50.03 0.00 0.02 0.26 0.05 0.00 38.94 0.99 0.03 90.37 0.50 钛铁矿
      8 0.04 0.03 0.01 0.03 53.02 0.00 0.02 0.61 0.09 0.20 40.09 0.31 0.10 94.54 0.51
      9 0.04 0.04 0.00 0.02 55.18 0.00 0.01 0.04 0.00 0.01 37.47 2.60 0.05 95.46 0.53
      10 0.06 0.03 0.00 0.05 54.42 0.00 0.01 0.07 0.00 0.02 36.15 6.23 0.07 97.11 0.54
      11 0.38 0.05 0.04 0.04 61.32 0.02 0.13 0.10 0.48 0.28 27.60 0.20 0.06 90.69 0.63 白钛石
      12 0.19 0.08 0.01 0.00 80.37 0.00 0.16 0.02 1.29 1.43 8.69 0.04 0.13 92.41 0.88
      13 0.05 0.01 0.02 0.01 59.55 0.02 0.02 0.05 0.14 0.05 30.26 1.11 0.00 91.29 0.60
      14 0.23 0.03 0.02 0.03 61.33 0.01 0.17 0.05 0.62 0.49 25.93 0.12 0.03 89.06 0.65
      15 0.14 0.02 0.04 0.01 60.76 0.01 0.08 0.04 0.42 0.22 28.49 0.19 0.07 90.50 0.62
      16 0.20 0.10 1.72 0.03 84.06 0.00 0.21 0.03 0.89 0.85 1.99 0.03 0.09 90.18 0.97 锐钛矿
      17 0.09 0.02 0.00 0.00 91.16 0.00 0.02 0.20 0.07 0.03 1.57 0.00 0.01 93.17 0.98
      18 0.01 0.00 0.00 0.00 97.36 0.00 0.00 0.02 0.00 0.00 1.16 0.03 0.01 98.60 0.99
        注:TFeO为全铁含量,Ti/[Ti+Fe]为质量百分数换算成原子百分数的比值结果.
      下载: 导出CSV

      表  2  铁钛氧化物分类依据

      Table  2.   Classification basis of Fe-Ti oxides

      矿物
      名称
      TiO2
      (%)
      [Ti]/
      [Ti+Fe]
      形态 化学组成
      钛铁矿 48~60 0.48~0.60 碎屑状、板状、叶片状 FeTiO3
      钛磁
      铁矿
      < 48 < 0.48 网格状、布纹状、块状 TiO2+Fe3O4
      钛赤
      铁矿
      < 48 < 0.48 胶状、它形 TiO2+Fe2O3
      白钛石 60~90 0.6~0.9 胶状、叶片状、六边形 Fe2Ti3O9+FeO
      锐钛矿 > 90 > 0.9 胶状、絮状、粒状 TiO2
      金红石 > 90 > 0.9 网格状、针状、块状 TiO2
        注:TiO2%为质量百分比.
      下载: 导出CSV

      表  3  铁钛氧化物的矿物含量

      Table  3.   Mineral content of Fe-Ti oxides

      样品号 深度(m) 矿物平均含量(μm2/mm2) 分带
      钛铁矿 钛赤铁矿 钛磁铁矿 白钛石 金红石 锐钛矿
      4-56-08-1 431.5 97.28 1 113.90 1 972.48 236.18 144.58 0.00
      完全氧化亚带
      4-56-08-2 438.0 0.00 487.41 1 398.83 131.96 15.41 0.00
      QC90-20 499.7 404.54 1 115.51 732.47 611.63 20.01 24.46
      QC90-24 536.0 76.08 279.96 318.78 152.13 408.35 134.13
      5-56-25 278.5 0.00 32.65 40.14 47.63 87.54 130.38
      4-56-08-09 331.3 6.23 164.83 498.42 0.00 218.24 8.97
      4-56-08-10 342.6 45.91 34.81 543.09 72.96 479.72 6.52 部分氧化亚带
      4-56-08-11 333.3 123.93 277.47 244.51 40.16 585.02 0.00
      5-56-41-7 232.8 4.52 3.63 425.56 0.00 84.91 44.41
      4-17-120 301.6 598.55 263.85 1 515.53 224.97 43.40 77.42
      4-WT3-U6 467.5 0.00 0.00 2.61 64.02 393.46 0.00 微弱氧化亚带
      5-56-41-15 350.2 14.39 460.26 0.00 61.29 424.35 47.69
      4-56-08-03 300.4 0.00 0.00 0.00 293.63 1631.33 30.68
      4-56-08-08 299.4 10.95 0.00 24.14 15.25 147.74 820.37
      4-11303-8 301.7 16.06 0.00 1 028.87 85.62 170.14 780.02
      4-WT3-U2 420.6 0.00 0.00 0.00 126.24 46.27 256.73 过渡带
      4-WT3-U3 500.8 37.89 84.41 0.00 768.58 419.21 241.08
      4-56-08-4 316.8 44.42 0.00 0.00 124.58 369.02 647.01
      4-56-08-5 317.4 130.52 0.00 105.79 192.27 1 072.48 908.48
      IV29-02-01 405.1 12.45 0.00 3.78 220.33 224.53 324.06
      4-17-120 431.0 0.00 0.00 0.00 202.15 137.54 33.59
      5-56-25 288.2 0.00 0.00 0.00 0.00 371.01 484.67
      4-14911-2 240.2 282.02 0.00 92.70 817.94 1 569.09 119.00 还原带
      4-14911-3 257.5 216.37 0.00 162.34 1 185.02 1 658.66 9.78
      4-11303-9 306.4 0.00 0.00 125.66 0.00 8 347.40 718.32
      QC17-22 221 7 095.41 0.00 0.00 2 316.66 3 398.43 944.86
      QC17-34 272.3 15.82 0.00 0.00 109.35 417.26 164.55
      下载: 导出CSV
    • Anand, R. R., Gilkes, R. J., 1984. Weathering of Ilmenite in a Lateritic Pallid Zone. Clays and Clay Minerals, 32(5): 363-374. https://doi.org/10.1346/ccmn.1984.0320504
      Boulesteix, T., Cathelineau, M., Deloule, E., et al., 2019. Ilmenites and Their Alteration Products, Sinkholes for Uranium and Radium in Roll-Front Deposits after the Example of South Tortkuduk (Kazakhstan). Journal of Geochemical Exploration, 206: 106343. https://doi.org/10.1016/j.gexplo.2019.106343
      Bonnetti, C., Cuney, M., Michels, R., et al., 2015. The Multiple Roles of Sulfate-Reducing Bacteria and Fe-Ti Oxides in the Genesis of the Bayinwula Roll Front-Type Uranium Deposit, Erlian Basin, NE China. Economic Geology, 110(4): 1059-1081. https://doi.org/10.2113/econgeo.110.4.1059
      Bonnetti, C., Liu, X. D., Yan, Z. B., et al., 2017. Coupled Uranium Mineralisation and Bacterial Sulphate Reduction for the Genesis of the Baxingtu Sandstone-Hosted U Deposit, SW Songliao Basin, NE China. Ore Geology Reviews, 82: 108-129. https://doi.org/10.1016/j.oregeorev.2016.11.013
      Cai, G. Q., Huang, Z. Z., Li, S. X., 2006. Alteration Mineral Assemblages in Interlayer Oxidation Zone of the Shihongtan In-Situ Leachable Sandstone-Type Uranium Deposit. Acta Geologica Sinica, 80(1): 119-125, 173(in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2006.01.013
      Cao, M. Q., Rong, H., Chen, Z. Y., et al., 2021. Quantitative Characterization and Controlling Factors of the Interlayer Oxidation Zone of Qianjiadian Uranium Deposit, Songliao Basin. Earth Science, 46(10): 3453-3466(in Chinese with English abstract).
      Chen, F. H., Zhang, M. Y., Lin, C. S., 2005. Sedimentary Environments and Uranium Enrichment in the Yaojia Formation, Qianjiadian Depression, Kailu Basin, Nei Mongol. Sedimentary Geology and Tethyan Geology, 25(3): 74-79(in Chinese with English abstract). doi: 10.3969/j.issn.1009-3850.2005.03.012
      Chen, L. L., Chen, Y., Guo, H., et al., 2022. Characteristics of Altered Ilmenite in Uranium-Bearing Sandstone and Its Relationship with Uranium Minerals in the Northeastern Ordos Basin. Journal of Earth Science, 33(2): 342-357. https://doi.org/10.1007/s12583-021-1468-1
      Chen, X. L., Xiang, W. D., Li, T. G., et al., 2006. Distribution Characteristics of Interlayer Oxidation Zone and Its Relationship with Sedimentary Facies and Uranium Mineralization in QJD Uranium Deposit, Songliao Basin, NE China. World Nuclear Geoscience, 23(3): 137-144(in Chinese with English abstract). doi: 10.3969/j.issn.1672-0636.2006.03.003
      Chen, X. L., Xiang, W. D., Li, T. G., et al., 2007. Lithofacies Characteristics of Ore-Hosting Horizon and Its Relationship to Uranium Mineralization in Qianjiadian Uranium Deposit, Songliao Basin. Uranium Geology, 23(6): 335-341, 355(in Chinese with English abstract). doi: 10.3969/j.issn.1000-0658.2007.06.003
      Chen, X. L., Fang, X. H., Guo, Q. Y., et al., 2008a. Re-Disscussion on Uranium Metallogenesis in Qianjiadian Sag, Songliao Basin. Acta Geologica Sinica, 82(4): 553-561(in Chinese with English abstract).
      Chen, X. L., Guo, Q. Y., Fang, X. H., et al., 2008b. Discussion on the Differences between Epigenetic Oxidized and Primary Red Beds. World Nuclear Geoscience, 25(4): 187-194(in Chinese with English abstract).
      Cheng, Y. H., Wang, S. Y., Zhang, T. F., et al., 2020. Regional Sandstone-Type Uranium Mineralization Rooted in Oligo-Miocene Tectonic Inversion in the Songliao Basin, NE China. Gondwana Research, 88: 88-105. https://doi.org/10.1016/j.gr.2020.08.002
      Deng, L. M., Ge, X. K., Liu, Z. Y., et al., 2021. The Occurrence and Mineral Composition of Uranium Ore of DL Mineralized Zone in Southwestern Songliao Basin. Uranium Geology, 37(2): 192-204(in Chinese with English abstract).
      Ding, B., Liu, H. X., Zhang, B., et al., 2020. Study on Ilmenite Alteration and Its Process of Uranium Enrichment in Sandstone-Type Uranium Deposits in Northern Ordos Basin. Geological Review, 66(2): 467-474(in Chinese with English abstract).
      Ding, X., He, J. J., Liu, Z. Y., 2018. Experimental Studies on Crystal Growth of Anatase under Hydrothermal Conditions. Earth Science, 43(5): 1763-1772(in Chinese with English abstract).
      Force, E. R., 2001. Magnetic Ilmenite-Hematite Detritus in Mesozoic-Tertiary Placer and Sandstone-Hosted Uranium Deposits of the Rocky Mountains. Economic Geology, 96(6): 1445-1453. https://doi.org/10.2113/96.6.1445
      Frost, M. T., Grey, I. E., Harrowfield, I. R., et al., 1983. The Dependence of Alumina and Silica Contents on the Extent of Alteration of Weathered Ilmenites from Western Australia. Mineralogical Magazine, 47(343): 201-208. https://doi.org/10.1180/minmag.1983.047.343.10
      Fuchs, S., Schumann, D., Williams-Jones, A. E., et al., 2015. The Growth and Concentration of Uranium and Titanium Minerals in Hydrocarbons of the Carbon Leader Reef, Witwatersrand Supergroup, South Africa. Chemical Geology, 393: 55-66. https://doi.org/10.1016/j.chemgeo.2014.11.018
      Gao, Y. Y., Yu, B. L., Yu, W. B., et al., 2008. Analysis on Uranium Metallogenic Conditions and Ore-Controlling Factors of Qianjiadian-Jiamatu Area, Southwest of Songliao Basin. World Nuclear Geoscience, 25(3): 150-156(in Chinese with English abstract). doi: 10.3969/j.issn.1672-0636.2008.03.005
      Grey, I. E., Reid, A. F., 1975. The Structure of Pseudorutile and Its Role in the Natural Alteration of Ilmenite. American Mineralogist, 60: 898-906.
      Granger, H. C., Warren, C. G., 1979. The Importance of Dissolved Free Oxygen during Formation of Sandstone Type Uranium Deposits. Open-File Report. United States Department of the Interior Geological Survey, U. S. A., 79-1603, 1-19.
      Hall, S. M., Mihalasky, M. J., Tureck, K. R., et al., 2017. Genetic and Grade and Tonnage Models for Sandstone-Hosted Roll-Type Uranium Deposits, Texas Coastal Plain, USA. Ore Geology Reviews, 80: 716-753. https://doi.org/10.1016/j.oregeorev.2016.06.013
      He, J. J., Ding, X., Wang, Y. R., et al., 2015. The Effect of Temperature and Concentration on Hydrolysis of Fluorinerich Titanium Complexes in Hydrothermal Fluids: Constraints on Titanium Mobility in Deep Geological Processes. Acta Petrologica Sinica, 31(3): 802-810(in Chinese with English abstract).
      Jia, J. M., Rong, H., Jiao, Y. Q., et al., 2018. Occurrence of Carbonate Cements and Relationship between Carbonate Cementation and Uranium Mineraization of Qianjiadian Uranium Deposit, Songliao Basin. Earth Science, 43(2): 149-161(in Chinese with English abstract).
      Jia, J. M., Rong, H., Jiao, Y. Q., et al., 2020. Mineralogy and Geochemistry of Carbonate Cement in Sandstone and Implications for Mineralization of the Qianjiadian Sandstone-Hosted Uranium Deposit, Southern Songliao Basin, China. Ore Geology Reviews, 123: 103590. https://doi.org/10.1016/j.oregeorev.2020.103590
      Jiao, Y. Q., Wu, L. Q., Peng, Y. B., et al., 2015. Sedimentary-Tectonic Setting of the Deposition-Type Uranium Deposits Forming in the Paleo-Asian Tectonic Domain, North China. Earth Science Frontiers, 22(1): 189-205(in Chinese with English abstract).
      Jiao, Y. Q., Wu, L. Q., Rong, H., et al., 2021. Review of Basin Uranium Resources in China. Earth Science, 46(8): 2675-2696(in Chinese with English abstract).
      Jiao, Y. Q., Wu, L. Q., Rong, H., et al., 2022. Sedimentation, Diagenesis and Uranium Mineralization: Innovative Discoveries and Cognitive Challenges in Study of Sandstone-Type Uranium Deposits in China. Earth Science, 47(10): 3580-3602(in Chinese with English abstract).
      Lehmann, B., 2008. Uranium Ore Deposits. Economic Geology, 2: 16-26. https://doi.org/10.13140/rg.2.1.2870.8723
      Li, P., Wang, J. J., Peng, T., et al., 2019. Heterostructure of Anatase-Rutile Aggregates Boosting the Photoreduction of U(Ⅵ). Applied Surface Science, 483: 670-676. https://doi.org/10.1016/j.apsusc.2019.03.330
      Li, X. D., Liu, J. G., Yi, C., 2017. The Genesis of Uranium Ore with Red Alterations in the Nalinggou Deposit, Northeastern Ordos Basin, and Its Geological Implications. Geological Bulletin of China, 36(4): 511-519(in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2017.04.003
      Liu, H. B., Jin, G. S., Han, J., et al., 2021. Element and Isotope Geochemical Characteristics of Diabase in Qianjiadian Uranium Deposit. World Nuclear Geoscience, 38(2): 135-143(in Chinese with English abstract). doi: 10.3969/j.issn.1672-0636.2021.02.001
      Luo, Y., He, Z. B., Ma, H. F., et al., 2012. Metallogenic Characteristics of Qianjiadian Sandstone Uranium Deposit in Songliao Basin. Mineral Deposits, 31(2): 391-400(in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2012.02.018
      Luo, Y., Ma, H. F., Xia, Y. L., et al., 2007. Geologic Characteristics and Metallogenic Model of Qianjiadian Uranium Deposit in Songliao Basin. Uranium Geology, 23(4): 193-200(in Chinese with English abstract). doi: 10.3969/j.issn.1000-0658.2007.04.001
      Morad, S., Aldahan, A. A., 1986. Alteration of Detrital Fe-Ti Oxides in Sedimentary Rocks. Geological Society of America Bulletin, 97(5): 567. https://doi.org/10.1130/0016-7606(1986)97567:aodfoi>2.0.co;2 doi: 10.1130/0016-7606(1986)97567:aodfoi>2.0.co;2
      Pownceby, M. I., 2010. Alteration and Associated Impurity Element Enrichment in Detrital Ilmenites from the Murray Basin, Southeast Australia: A Product of Multistage Alteration. Australian Journal of Earth Sciences, 57(2): 243-258. https://doi.org/10.1080/08120090903521705
      Pang, Y. Q., Chen, X. L., Fang, X. H., et al., 2010. Discussion on the Interlayer Oxidation and Uranium Metallogenesis in Qianjiadian Uranium Deposit, Songliao Basin. Uranium Geology, 26(1): 9-16, 23(in Chinese with English abstract). doi: 10.3969/j.issn.1000-0658.2010.01.002
      Reynolds, R. L., Goldhaber, M. B., 1978. Origin of a South Texas Roll-Type Uranium Deposit; I, Alteration of Iron-Titanium Oxide Minerals. Economic Geology, 73(8): 1677-1689. https://doi.org/10.2113/gsecongeo.73.8.1677
      Reynolds, R. L., Goldhaber, M. B., 1983. Iron Disulfide Minerals and the Genesis of Roll-Type Uranium Deposits. Economic Geology, 78(1): 105-120. https://doi.org/10.2113/gsecongeo.78.1.105
      Rong, H., Jiao, Y. Q., Liu, W. H., et al., 2021. Influence Mechanism of Palaeoclimate of Uranium-Bearing Strata on Mineralization: A Case Study from the Qianjiadian Sandstone-Hosted Uranium Deposit, Songliao Basin, China. Ore Geology Reviews, 138: 104336. https://doi.org/10.1016/j.oregeorev.2021.104336
      Rong, H., Jiao, Y. Q., Liu, X. F., et al., 2020. Effects of Basic Intrusions on REE Mobility of Sandstones and Their Geological Significance: A Case Study from the Qianjiadian Sandstone-Hosted Uranium Deposit in the Songliao Basin. Applied Geochemistry, 120: 104665. https://doi.org/10.1016/j.apgeochem.2020.104665
      Rong, H., Jiao, Y. Q., Wu, L. Q., et al., 2016. Epigenetic Alteration and Its Constraints on Uranium Mineralization from the Qianjiadian Uranium Deposit, Southern Songliao Basin. Earth Science, 41(1): 153-166(in Chinese with English abstract).
      Rong, H., Jiao, Y. Q., Wu, L. Q., et al., 2019. Origin of the Carbonaceous Debris and Its Implication for Mineralization within the Qianjiadian Uranium Deposit, Southern Songliao Basin. Ore Geology Reviews, 107: 336-352. https://doi.org/10.1016/j.oregeorev.2019.02.036
      Temple, A. K., 1966. Alteration of Ilmenite. Economic Geology, 61: 695-714. https://doi.org/10.2113/gsecongeo.55.5.1064
      Teufer, G., Temple, A. K., 1966. Pseudorutile: A New Mineral Intermediate between Ilmenite and Rutile in the N Alteration of Ilmenite. Nature, 211: 179-181. https://doi.org/10.1038/211179b0
      Wang, W. G., 2015. The Discover of Brannerite and Uraninite in Lower Cambrian U-Bearing Phosphorite in West Hunan. Uranium Geology, 31(1): 19-28(in Chinese with English abstract). doi: 10.3969/j.issn.1000-0658.2015.01.002
      Wang, Y., Hu, B. Q., Sun, Z. X., et al., 2010. Occurring Characteristic and Genesis of Brannerite at Zoujiashan Uranium Deposits, Xiangshan Ore Field. Uranium Geology, 26(6): 344-349(in Chinese with English abstract). doi: 10.3969/j.issn.1000-0658.2010.06.004
      Wei, J. L., Tang, C., Jin, R. S., et al., 2019. A Study of the Relationship between the Fe-Ti Oxide and Sandstone-Hosted Uranium Mineralization in Longhupao Area, Northern Songliao Basin. Acta Petrologica et Mineralogica, 38(3): 375-389(in Chinese with English abstract). doi: 10.3969/j.issn.1000-6524.2019.03.007
      Wort, M. J., Jones, M. P., 1980. X-Ray Diffraction and Magnetic Studies of Altered Ilmenite and Pseudorutile. Mineralogical Magazine, 43(329): 659-663. https://doi.org/10.1180/minmag.1980.043.329.16
      Xia, F. Y., Jiao, Y. Q., Rong, H., et al., 2019. Geochemical Characteristics and Geological Implications of Sandstones from the Yaojia Formation in Qianjiadian Uranium Deposit, Southern Songliao Basin. Earth Science, 44(12): 4235-4251(in Chinese with English abstract).
      Xia, Y. L., 2015. Tracing the Metallization of In-Situ Leachable Sandstone Type Uranium Deposit with U-Pb Isotopes. Acta Geologica Sinica, 89(Suppl. 1): 69-70(in Chinese).
      Xia, Y. L., Lin, J. R., Li, Z. Y., et al., 2003. Perspective and Resource Evaluation and Metallogenic Studies on Sandstone-Type Uranium Deposit in Qianjiadian Depression of Songliao Basin. China Nuclear Science and Technology Report, (3): 105-117(in Chinese with English abstract).
      Xia, Y. L., Zheng, J. W., Li, Z. Y., et al., 2010. Metallogenic Characteristics and Metallogenic Model of Qianjiadian Uranium Deposit in Songliao Basin. Mineral Deposits, 29(Suppl. 1): 154-155(in Chinese).
      Yan, X. L., 2018. Characteristics and Uranium Mineralization of Upper Cretaceous Diabase in Qianjiadian Area, Songliao Basin. Journal of Northeast Petroleum University, 42(1): 40-48, 123-124(in Chinese with English abstract) doi: 10.3969/j.issn.2095-4107.2018.01.005
      Yang, S. Y., Jiang, S. Y., Mao, Q., et al., 2022. Electron Probe Microanalysis in Geosciences: Analytical Procedures and Recent Advances. Atomic Spectroscopy, 43(1): 186-200. https://doi.org/10.46770/as.2021.912
      Yang, S. Y., Zhang, R. X., Jiang, S. Y., et al., 2018. Electron Probe Microanalysis of Variable Oxidation State Oxides: Protocol and Pitfalls. Geostandards and Geoanalytical Research, 42(1): 131-137. https://doi.org/10.1111/ggr.12199
      Yin, J. H., Zhang, H., Zan, G. J., et al., 2000. Sedimentation Factors Analysis of Uranium Mineralization of Qianjiadian Depression, Kailu Basin, East Inner Mongolia Autonomous Region. Journal of Palaeogeography, 2(4): 82-89(in Chinese with English abstract).
      Zhang, M. Y., Zheng, J. W., Tian, S. F., et al., 2005. Research on Existing State of Uranium and Uranium Ore-Formation Age at Qianjiadian Uranium Deposit in Kailu Depression. Uranium Geology, 21(4): 213-218(in Chinese with English abstract). doi: 10.3969/j.issn.1000-0658.2005.04.005
      Zhang, R. X., Yang, S. Y., 2016. A Mathematical Model for Determining Carbon Coating Thickness and Its Application in Electron Probe Microanalysis. Microscopy and Microanalysis, 22(6): 1374-1380. https://doi.org/10.1017/s143192761601182x
      Zhao, L., Cai, C. F., Jin, R. S., et al., 2018. Mineralogical and Geochemical Evidence for Biogenic and Petroleum-Related Uranium Mineralization in the Qianjiadian Deposit, NE China. Ore Geology Reviews, 101: 273-292. https://doi.org/10.1016/j.oregeorev.2018.07.025
      Zhao, Y. M., Li, D. X., Han, J. Y., et al., 2008. Mineralogical Characteristics of Anatase, Rutile and Ilmenite in Yangtizashan-Moshishan Titanium Ore Deposit, Inner Mongolia. Mineral Deposits, 27(4): 466-473(in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2008.04.004
      蔡根庆, 黄志章, 李胜祥, 2006. 十红滩地浸砂岩铀矿层间氧化带蚀变矿物群. 地质学报, 80(1): 119-125, 173. doi: 10.3321/j.issn:0001-5717.2006.01.013
      曹民强, 荣辉, 陈振岩, 等, 2021. 松辽盆地钱家店铀矿床层间氧化带结构定量表征及制约因素. 地球科学, 46(10): 3453-3466. doi: 10.3799/dqkx.2020.375
      陈方鸿, 张明瑜, 林畅松, 2005. 开鲁盆地钱家店凹陷含铀岩系姚家组沉积环境及其富铀意义. 沉积与特提斯地质, 25(3): 74-79. doi: 10.3969/j.issn.1009-3850.2005.03.012
      陈晓林, 方锡珩, 郭庆银, 等, 2008a. 对松辽盆地钱家店凹陷铀成矿作用的重新认识. 地质学报, 82(4): 553-561. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200804013.htm
      陈晓林, 郭庆银, 方锡珩, 等, 2008b. 试论后生氧化红层与原生红层的区别. 世界核地质科学, 25(4): 187-194. https://www.cnki.com.cn/Article/CJFDTOTAL-GWYD200804003.htm
      陈晓林, 向伟东, 李田港, 等, 2006. 松辽盆地QJD铀矿床层间氧化带的展布特征及其与沉积相、铀成矿的关系. 世界核地质科学, 23(3): 137-144. doi: 10.3969/j.issn.1672-0636.2006.03.003
      陈晓林, 向伟东, 李田港, 等, 2007. 松辽盆地钱家店铀矿床含矿层位的岩相特征及其与铀成矿的关系. 铀矿地质, 23(6): 335-341, 355. doi: 10.3969/j.issn.1000-0658.2007.06.003
      邓刘敏, 葛祥坤, 刘章月, 等, 2021. 松辽盆地西南部DL铀矿带铀赋存状态及矿物组成特征. 铀矿地质, 37(2): 192-204. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ202102006.htm
      丁波, 刘红旭, 张宾, 等, 2020. 鄂尔多斯盆地北缘砂岩型铀矿含矿砂岩中钛铁矿蚀变及其聚铀过程探讨. 地质论评, 66(2): 467-474. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202002018.htm
      丁兴, 何俊杰, 刘灼瑜, 2018. 热液条件下锐钛矿晶体生长的实验. 地球科学, 43(5): 1763-1772. doi: 10.3799/dqkx.2018.428
      高玉友, 禹宝利, 于文斌, 等, 2008. 松辽盆地西南部钱家店—架玛吐地区姚家组铀成矿条件及控矿因素分析. 世界核地质科学, 25(3): 150-156. doi: 10.3969/j.issn.1672-0636.2008.03.005
      何俊杰, 丁兴, 王玉荣, 等, 2015. 温度、浓度对流体中氟钛络合物水解的影响: 对深部地质过程中钛元素活动的制约. 岩石学报, 31(3): 802-810. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201503014.htm
      贾俊民, 荣辉, 焦养泉, 等, 2018. 松辽盆地钱家店铀矿床中碳酸盐胶结物赋存状态及其与铀成矿关系. 地球科学, 43(增刊2): 149-161. doi: 10.3799/dqkx.2018.115
      焦养泉, 吴立群, 彭云彪, 等, 2015. 中国北方古亚洲构造域中沉积型铀矿形成发育的沉积-构造背景综合分析. 地学前缘, 22(1): 189-205. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201501018.htm
      焦养泉, 吴立群, 荣辉, 等, 2021. 中国盆地铀资源概述. 地球科学, 46(8): 2675-2696. doi: 10.3799/dqkx.2020.304
      焦养泉, 吴立群, 荣辉, 等, 2022. 沉积、成岩与铀成矿: 中国砂岩型铀矿研究的创新发现与认知挑战. 地球科学, 47(10): 3580-3602. doi: 10.3799/dqkx.2022.284
      李西得, 刘军港, 易超, 2017. 鄂尔多斯盆地北东部纳岭沟铀矿床红色蚀变矿石成因及其地质意义. 地质通报, 36(4): 511-519. doi: 10.3969/j.issn.1671-2552.2017.04.003
      刘汉彬, 金贵善, 韩娟, 等, 2021. 钱家店铀矿床辉绿岩元素及同位素地球化学特征. 世界核地质科学, 38(2): 135-143. doi: 10.3969/j.issn.1672-0636.2021.02.001
      罗毅, 马汉峰, 夏毓亮, 等, 2007. 松辽盆地钱家店铀矿床成矿作用特征及成矿模式. 铀矿地质, 23(4): 193-200. doi: 10.3969/j.issn.1000-0658.2007.04.001
      罗毅, 何中波, 马汉峰, 等, 2012. 松辽盆地钱家店砂岩型铀矿成矿地质特征. 矿床地质, 31(2): 391-400. doi: 10.3969/j.issn.0258-7106.2012.02.018
      庞雅庆, 陈晓林, 方锡珩, 等, 2010. 松辽盆地钱家店铀矿床层间氧化与铀成矿作用. 铀矿地质, 26(1): 9-16, 23. doi: 10.3969/j.issn.1000-0658.2010.01.002
      荣辉, 焦养泉, 吴立群, 等, 2016. 松辽盆地南部钱家店铀矿床后生蚀变作用及其对铀成矿的约束. 地球科学, 41(1): 153-166. doi: 10.3799/dqkx.2016.012
      王文广, 2015. 湘西下寒武统含铀磷块岩中钛铀矿和晶质铀矿的发现及其成因分析. 铀矿地质, 31(1): 19-28. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ201501003.htm
      王运, 胡宝群, 孙占学, 等, 2010. 相山铀矿田邹家山矿床钛铀矿赋存特征及成因. 铀矿地质, 26(6): 344-349. doi: 10.3969/j.issn.1000-0658.2010.06.004
      魏佳林, 汤超, 金若时, 等, 2019. 松辽盆地北部龙虎泡地区铁钛氧化物与砂岩型铀矿化关系探讨. 岩石矿物学杂志, 38(3): 375-389. doi: 10.3969/j.issn.1000-6524.2019.03.007
      夏飞勇, 焦养泉, 荣辉, 等, 2019. 松辽盆地南部钱家店铀矿床姚家组砂岩地球化学特征及地质意义. 地球科学, 44(12): 4235-4251. doi: 10.3799/dqkx.2019.045
      夏毓亮, 2015. U-Pb同位素示踪地浸砂岩型铀矿成矿作用. 地质学报, 89(增刊1): 69-70. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE2015S1030.htm
      夏毓亮, 林锦荣, 李子颖, 等, 2003. 松辽盆地钱家店凹陷砂岩型铀矿预测评价和铀成矿规律研究. 中国核科技报告, (3): 105-117. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHBG200303008.htm
      夏毓亮, 郑纪伟, 李子颖, 等, 2010. 松辽盆地钱家店铀矿床成矿特征和成矿模式. 矿床地质, 29(增刊1): 154-155. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2010S1082.htm
      颜新林, 2018. 松辽盆地钱家店地区上白垩统辉绿岩特征及铀成矿作用. 东北石油大学学报, 42(1): 40-48, 123-124. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSY201801006.htm
      殷敬红, 张辉, 昝国军, 等, 2000. 内蒙古东部开鲁盆地钱家店凹陷铀矿成藏沉积因素分析. 古地理学报, 2(4): 82-89. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX200004012.htm
      张明瑜, 郑纪伟, 田时丰, 等, 2005. 开鲁坳陷钱家店铀矿床铀的赋存状态及铀矿形成时代研究. 铀矿地质, 21(4): 213-218. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ200504004.htm
      赵一鸣, 李大新, 韩景仪, 等, 2008. 内蒙古羊蹄子山-磨石山钛矿床锐钛矿、金红石和钛铁矿的矿物学特征. 矿床地质, 27(4): 466-473. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200804003.htm
    • 加载中
    图(11) / 表(3)
    计量
    • 文章访问数:  477
    • HTML全文浏览量:  222
    • PDF下载量:  63
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-04-12
    • 网络出版日期:  2024-07-11
    • 刊出日期:  2024-06-25

    目录

      /

      返回文章
      返回