• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    融合处理速度和加速度记录的地震检测模型及其在新丰江水库的应用

    蒋策 吕作勇 房立华

    蒋策, 吕作勇, 房立华, 2024. 融合处理速度和加速度记录的地震检测模型及其在新丰江水库的应用. 地球科学, 49(2): 469-479. doi: 10.3799/dqkx.2023.186
    引用本文: 蒋策, 吕作勇, 房立华, 2024. 融合处理速度和加速度记录的地震检测模型及其在新丰江水库的应用. 地球科学, 49(2): 469-479. doi: 10.3799/dqkx.2023.186
    Jiang Ce, Lü Zuoyong, Fang Lihua, 2024. Earthquake Detection Model Trained on Velocity and Acceleration Records and Its Application in Xinfengjiang Reservoir. Earth Science, 49(2): 469-479. doi: 10.3799/dqkx.2023.186
    Citation: Jiang Ce, Lü Zuoyong, Fang Lihua, 2024. Earthquake Detection Model Trained on Velocity and Acceleration Records and Its Application in Xinfengjiang Reservoir. Earth Science, 49(2): 469-479. doi: 10.3799/dqkx.2023.186

    融合处理速度和加速度记录的地震检测模型及其在新丰江水库的应用

    doi: 10.3799/dqkx.2023.186
    基金项目: 

    国家重点研发专项 2021YFC3000702

    国家自然科学基金项目 U2139205

    广东省地震局青年地震科研基金 GDDZY202301

    详细信息
      作者简介:

      蒋策(1991-),男,工程师,主要从事地震观测技术与方法研究. ORCID:0000-0003-1521-4549.E-mail:cehasone@outlook.com

      通讯作者:

      房立华,ORCID:0000-0003-2156-4406. E-mail: flh@cea-igp.ac.cn

    • 中图分类号: P315.61

    Earthquake Detection Model Trained on Velocity and Acceleration Records and Its Application in Xinfengjiang Reservoir

    • 摘要:

      随着国家地震烈度速报与预警工程的建设,加速度记录在地震科学中将得到越来越多的应用. 但目前的地震检测模型多使用速度记录训练,对加速度记录的检测效果较差.利用广东地震台网数据,训练得到了可检测速度记录的PhaseNet_GD模型和检测加速度记录的PhaseNet_ITS模型. 在此基础上,结合GaMMA震相关联和HYPOSAT地震定位方法,发展了一套新的地震数据智能处理流程,并处理了2023年新丰江水库ML4.8地震序列,检测出的事件数量是人工目录的3.8倍,匹配率为93.2%,误检测率为0.38%.这一系统可快速产出完备性高、高精度的地震目录,为水库地震监测和区域地震台网的数据实时处理提供技术支撑.

       

    • 图  1  广东及新丰江水库地震分布图

      a. 广东及周边地区台站与地震分布图(2008-2021年,ML≥0);b. 新丰江水库周边的地震分布(2008-2021年);图中红点为2008-2015年地震,黄点为2016-2021年地震,圆点大小与地震大小正相关,绿色正三角为速度计,蓝色倒三角为加速度计

      Fig.  1.  Earthquake distribution in Guangdong and Xinfengjiang Reservoir

      图  2  宽频带波形震相拾取偏差

      a. PhaseNet模型; b. PhaseNet_GD模型

      Fig.  2.  Picking difference of broad⁃band waveform seismic phases

      图  3  加速度波形震相拾取偏差

      Fig.  3.  Picking difference of of acceleration waveform seismic phases

      a. PhaseNet_GD; b. PhaseNet_ITS1;c. PhaseNet_ITS2;d. PhaseNet

      图  4  地震数据智能处理流程图

      Fig.  4.  Flowchart of intelligent seismic data processing

      图  5  自动目录与人工目录事件数量对比

      a. 不同震级段的地震数量对比;b. 每天地震数量对比

      Fig.  5.  Comparison of the number of automatic and manual events

      图  6  PhaseNet_GD自动目录和人工目录震中位置对比

      a. 基于PhaseNet_GD的自动目录;b. 人工目录;红色圆点为匹配事件,蓝色圆点为自动系统多检测出的地震事件

      Fig.  6.  Comparison of the epicenter locations between the PhaseNet_GD automatic catalog and the manual catalog

      图  7  自动目录与人工目录差异统计图

      a、b、c、d分别为发震时刻、震级、震中位置、震源深度差异

      Fig.  7.  Statistical analysis of differences between automatic and manual catalogs

      图  8  漏检地震事件波形示例

      红线为遗漏的Pg震相,蓝线为遗漏的Sg震相,纵轴为台站编号,台站波形按震中距由小到大的顺序排列

      Fig.  8.  Example waveforms of a missed event

      表  1  宽频带速度计震相拾取结果统计

      Table  1.   Statistics of phase pickup results of broadband velocimetry

      场景 Pg Sg
      Recall(%) Precision(%) F1 Recall(%) Precision(%) F1
      PhaseNet_GD在广东 87.5 83.5 0.855 80.8 79.5 0.801
      PhaseNet在广东 76.2 72.7 0.744 68.3 67.2 0.677
      PhaseNet在北加州 85.7 93.9 0.896 75.5 85.3 0.801
      注:残差小于0.1 s记为TP,Precision用事件波形作为基础.
      下载: 导出CSV

      表  2  加速度计震相拾取结果统计

      Table  2.   Statistics of accelerometer phase pickup results

      训练集 Pg Sg Total
      Recall(%) Precision(%) Recall(%) Precision(%) Recall(%) Precision(%)
      PhaseNet_GD 48.4 56.3 59.8 56.8 56.1 56.7
      PhaseNet_ITS1 73.5 60.4 71.2 60.5 72.0 60.5
      PhaseNet_ITS2 80.2 58.4 57.4 59.5 64.8 59.0
      PhaseNet 72.1 46.1 60.4 34.8 64.2 38.2
      注:残差小于0.5 s记为TP.
      下载: 导出CSV
    • Allen, R. V., 1978. Automatic Earthquake Recognition and Timing from Single Traces. Bulletin of the Seismological Society of America, 68(5): 1521-1532. https://doi.org/10.1785/bssa0680051521
      Ester, M., Kriegel, H. P., Sander, J., et al., 1996. A Density⁃Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise, Proceedings of the Second International Conference on Knowledge Discovery and Data Mining. AAAI Press, Portland, Oregon, 226-231.
      Fan, Y., Lin, J., Hu, R., et al., 1990. The Development of Traveltimetable for near Earthquake in South China. South China Seismological Journal, 10(2) : 1-16(in Chinese).
      Hu, J., Ding, Y., Zhang, H., Jin, C., et al., 2023. A Real⁃Time Seismic Intensity Prediction Model Based on Long Short⁃Term Memory Neural Network. Earth Science, 48(5): 1853-1864(in Chinese with English abstract).
      Jiang, C., Fang, L. H., Fan, L. P., et al., 2021. Comparison of the Earthquake Detection Abilities of PhaseNet and EQTransformer with the Yangbi and Maduo Earthquakes. Earthquake Science, 34(5): 425-435. https://doi.org/10.29382/eqs⁃2021⁃0038
      Kato, A., Obara, K., Igarashi, T., et al., 2012. Propagation of Slow Slip Leading up to the 2011 Mw9.0 Tohoku⁃Oki Earthquake. Science, 335(6069): 705-708. https://doi.org/10.1126/science.1215141
      Lapins, S., Goitom, B., Kendall, J. M., et al., 2021. A Little Data Goes a Long Way: Automating Seismic Phase Arrival Picking at Nabro Volcano with Transfer Learning. Journal of Geophysical Research: Solid Earth, 126(7). https://doi.org/10.1029/2021jb021910
      Li, B. R., Fan, L. P., Jiang, C., et al., 2023. CSESnet: A Deep Learning P⁃Wave Detection Model Based on UNet++ Designed for China Seismic Experimental Site. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.1032839
      Liao, S., Zhang, H., Fan, L., et al., 2021. Development of a Real⁃Time Intelligent Seismic Processing System and Its Application in the 2021 Yunnan Yangbi MS6.4 Earthquake. Chinese J. Geophys, 64(10): 3632-3645(in Chinese with English abstract).
      Meng, X., Yang, H., Peng, Z., et al., 2018. Foreshocks, b Value Map, and Aftershock Triggering for the 2011 Mw 5.7 Virginia Earthquake. Journal of Geophysical Research: Solid Earth, 123(6): 5082-5098. https://doi.org/10.1029/2017jb015136
      Mousavi, S. M., Ellsworth, W. L., Zhu, W. Q., et al., 2020. Earthquake Transformer: an Attentive Deep⁃Learning Model for Simultaneous Earthquake Detection and Phase Picking. Nature Communications, 11(1): 3952. https://doi.org/10.1038/s41467⁃020⁃17591⁃w
      Pan, H., Yan, J., Zhang, Z., et al., 2009. Review on 1918 Nan'ao Ms 7. 3 Earthquake and Its Strong Aftershocks. Technology for Earthquake Disaster Prevention, 4(1): 40-48(in Chinese with English abstract).
      Peng, Z. G., Zhao, P., 2009. Migration of Early Aftershocks Following the 2004 Parkfield Earthquake. Nature Geoscience, 2(12): 877-881. https://doi.org/10.1038/ngeo697
      Ross, Z. E., Meier, M. A., Hauksson, E., et al., 2018. Generalized Seismic Phase Detection with Deep Learning. Bulletin of the Seismological Society of America, 108(5A): 2894-2901. https://doi.org/10.1785/0120180080
      Schweitzer, J., 2001. HYPOSAT: an Enhanced Routine to Locate Seismic Events. Pure and Applied Geophysics, 158(1): 277-289. https://doi.org/10.1007/pl00001160
      Wang, D., Chen, G. X., 2022. Seismic Wave Impedance Inversion Based on Temporal Convolutional Network. Earth Science, 47(4): 1492-1506(in Chinese with English abstract).
      Wang, J., Xiao, Z., Liu, C., et al., 2019. Deep Learning for Picking Seismic Arrival Times. Journal of Geophysical Research: Solid Earth, 124(7): 6612-6624. https://doi.org/10.1029/2019jb017536
      Woollam, J., Münchmeyer, J., Tilmann, F., et al., 2022. SeisBench⁃A Toolbox for Machine Learning in Seismology. Seismological Research Letters, 93(3): 1695-1709. https://doi.org/10.1785/0220210324
      Xiao, Z., Wang, J., Liu, C., et al., 2021. Siamese Earthquake Transformer: A Pair‐Input Deep‐Learning Model for Earthquake Detection and Phase Picking on a Seismic Array. Journal of Geophysical Research: Solid Earth, 126(5): e2020JB021444. https://doi.org/10.1029/2020jb021444
      Yu, Z., Wang, W. 2022. LPPN: A Lightweight Network for Fast Phase Picking. Seismological Research Letters, 93(5): 2834-2846. https://doi.org/10.1785/0220210309
      Zhou, Y. J., Yue, H., Kong, Q. K., et al., 2019. Hybrid Event Detection and Phase‐Picking Algorithm Using Convolutional and Recurrent Neural Networks. Seismological Research Letters, 90(3): 1079-1087. https://doi.org/10.1785/0220180319
      Zhu, W. Q., Beroza, G. C., 2019. PhaseNet: A Deep-Neural⁃Network⁃Based Seismic Arrival Time Picking Method. Geophysical Journal International, 216(1): 261-273. https://doi.org/10.1093/gji/ggy423
      Zhu, W. Q., McBrearty, I. W., Mousavi, S. M., et al., 2021. Earthquake Phase Association Using a Bayesian Gaussian Mixture Model. Journal of Geophysical Research: Solid Earth, 127(5): 1-10. https://doi.org/10.1029/2021jb023249
      范玉兰, 林纪曾, 胡瑞贺, 等, 1990. 华南地区近震走时表的研制. 华南地震, 10(2): 1-16. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDI199002000.htm
      胡进军, 丁祎天, 张辉, 等, 2023. 基于长短期记忆神经网络的实时地震烈度预测模型. 地球科学, 48(5): 1853-1864. doi: 10.3799/dqkx.2022.338
      廖诗荣, 张红才, 范莉苹, 等, 2021. 实时智能地震处理系统研发及其在2021年云南漾濞Ms6.4地震中的应用. 地球物理学报, 64: 3632-3645. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202110018.htm
      潘华, 鄢家全, 张志中, 等, 2009. 1918年南澳7.3级地震与强余震之参数复核. 震灾防御技术, 4(1): 40-48. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZFY200901006.htm
      王德涛, 陈国雄, 2022. 基于时间卷积网络的地震波阻抗反演. 地球科学, 47(4): 1492-1506. doi: 10.3799/dqkx.2021.070
    • 加载中
    图(8) / 表(2)
    计量
    • 文章访问数:  195
    • HTML全文浏览量:  222
    • PDF下载量:  42
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-01-22
    • 刊出日期:  2024-02-25

    目录

      /

      返回文章
      返回