• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    CO2地质封存中随机裂隙网络走向对盖层密封性影响

    盛丹娜 王惠民 盛金昌 郑惠峰 黄泰仁 吴洪涛 黄石峰

    盛丹娜, 王惠民, 盛金昌, 郑惠峰, 黄泰仁, 吴洪涛, 黄石峰, 2025. CO2地质封存中随机裂隙网络走向对盖层密封性影响. 地球科学, 50(1): 349-360. doi: 10.3799/dqkx.2023.192
    引用本文: 盛丹娜, 王惠民, 盛金昌, 郑惠峰, 黄泰仁, 吴洪涛, 黄石峰, 2025. CO2地质封存中随机裂隙网络走向对盖层密封性影响. 地球科学, 50(1): 349-360. doi: 10.3799/dqkx.2023.192
    Sheng Danna, Wang Huimin, Sheng Jinchang, Zheng Huifeng, Huang Tairen, Wu Hongtao, Huang Shifeng, 2025. Effect of Random Fracture Network Orientations on Sealing Performance of Caprock in CO2 Geological Sequestration. Earth Science, 50(1): 349-360. doi: 10.3799/dqkx.2023.192
    Citation: Sheng Danna, Wang Huimin, Sheng Jinchang, Zheng Huifeng, Huang Tairen, Wu Hongtao, Huang Shifeng, 2025. Effect of Random Fracture Network Orientations on Sealing Performance of Caprock in CO2 Geological Sequestration. Earth Science, 50(1): 349-360. doi: 10.3799/dqkx.2023.192

    CO2地质封存中随机裂隙网络走向对盖层密封性影响

    doi: 10.3799/dqkx.2023.192
    基金项目: 

    国家自然科学基金项目 42202286

    国家自然科学基金项目 62103198

    江苏省博士后科研资助项目 2021K350C

    河海大学自由探索专项‒新引进教师项目 B210201037

    河海大学大型仪器设备共享基金 B220370201

    详细信息
      作者简介:

      盛丹娜(2001—),女,硕士研究生,研究方向为岩土渗流力学.ORCID:0009-0007-3755-6589. E-mail:1964936153@qq.com

      通讯作者:

      王惠民,E-mail: huimin.wang@hhu.edu.cn

      盛金昌,E-mail: sh901@sina.com

    • 中图分类号: TU45

    Effect of Random Fracture Network Orientations on Sealing Performance of Caprock in CO2 Geological Sequestration

    • 摘要: 在CO2地质封存过程中,为探究盖层中裂隙网络走向对CO2-咸水两相运移的影响规律,进而评价盖层密封性,本文数值模拟选用了6种不同走向的裂隙网络(其角度分别为0°~180°、30°~150°、45°~135°、60°~120°、90°~90°和90°~180°),实现显式裂隙网络下CO2驱替咸水的两相流研究.研究发现裂隙网络走向会直接改变液相饱和度的赋存情况,从而影响CO2-咸水驱替难度;当CO2在盖层中达到相同渗透深度时,驱替时间随裂隙倾角(0°~60°)降低了12.59倍,但倾角增大到60°后不再有明显影响;随着裂隙网络渗透范围的扩大,CO2在盖层中的渗透量增加.其中,正交裂隙(90°~180°)的渗透量最大.因此,考虑裂隙网络走向对于盖层密封性的评价具有重要意义.

       

    • 图  1  盖层中渗流‒应力场耦合过程

      Fig.  1.  Coupling process of hydro-mechanical field in the caprock

      图  2  盖层模型和计算模型

      Fig.  2.  Caprock model and simulation model

      图  3  不同裂隙走向的裂隙网络

      Fig.  3.  Fracture networks with different fracture orientations

      图  4  第1年时不同随机离散网络的液相饱和度分布

      Fig.  4.  Distribution of water saturation for different random discrete networks in the 1st year

      图  5  第10年时不同随机离散网络的液相饱和度分布

      Fig.  5.  Distribution of water saturation for different random discrete networks in the 10th year

      图  6  第50年时不同随机离散网络的液相饱和度分布

      Fig.  6.  Distribution of water saturation for different random discrete networks in the 50th year

      图  7  B组裂隙网络10 m处液相饱和度随时间演化的分布

      Fig.  7.  Evolution of water saturation distribution at 10 m of fracture network in group B

      图  8  同一驱替深度不同走向裂隙基质模型所需驱替时间及速度

      Fig.  8.  Displacement time and velocity required for fracture matrix models with different orientations at the same penetration depth

      图  9  D组、E组和F组裂隙基质模型同一渗透深度处的液相饱和度分布

      Fig.  9.  Distribution of water saturation at the same penetration depth of fracture matrix models in groups D, E and F

      图  10  不同裂隙网络下的CO2渗透量

      Fig.  10.  CO2 permeability under different fracture networks

      表  1  模型计算参数

      Table  1.   Computational parameters

      参数 取值 参数物理意义 取值来源
      $ {\mu }_{\mathrm{g}} $ 5.2×10‒5 Pa·s CO2粘度 Wang and Peng, 2014
      pw0 13 MPa 盖层中初始液相压力 Rutqvist and Tsang, 2002
      $ {p}_{\mathrm{g}0} $ 18 MPa 盖层中初始气相压力
      Ec 8 GPa 页岩杨氏模量 Wang and Wang, 2018
      $ {E}_{\mathrm{s}} $ 20 GPa 页岩颗粒杨氏模量 Wang and Wang, 2018
      Srnw 0.05 气相残余饱和度 Rutqvist and Tsang, 2002
      $ {S}_{\mathrm{r}\mathrm{w}} $ 0.3 液相残余饱和度 Rutqvist and Tsang, 2002
      pe 5 MPa 毛细进入压力
      T 315.5 K 温度 Wang and Peng, 2014
      $ {k}_{0} $ 1.5×10‒19 m2 初始绝对渗透率 Wang and Peng, 2014
      ϕ0 0.04 初始孔隙度 Wang and Peng, 2014
      $ \nu $ 0.25 页岩泊松比 Rutqvistand Tsang, 2002
      ρc 2 300 kg/m3 页岩密度 Wang and Wang, 2018
      $ {\rho }_{\mathrm{w}} $ 1 020 kg/m3 液相密度
      μw 3.6×10‒4 Pa·s 液相粘度 Wang and Wang, 2018
      下载: 导出CSV
    • Adu-Gyamfi, B., Ampomah, W., Tu, J. W., et al., 2022. Assessment of Chemo-Mechanical Impacts of CO2 Sequestration on the Caprock Formation in Farnsworth Oil Field, Texas. Scientific Reports, 12(1): 1-23. https://doi.org/10.1038/s41598-022-16990-x
      Arif, M., Al-Yaseri, A. Z., Barifcani, A., et al., 2016. Impact of Pressure and Temperature on CO2–Brine– Mica Contact Angles and CO2–Brine Interfacial Tension: Implications for Carbon Geo-Sequestration. Journal of Colloid and Interface Science, 462: 208–215. https://doi.org/10.1016/j.jcis.2015.09.076
      Bachu, S., 2015. Review of CO2 Storage Efficiency in Deep Saline Aquifers. International Journal of Greenhouse Gas Control, 40: 188–202. https://doi.org/10.1016/j.ijggc.2015.01.007
      Bacon, D. H., Qafoku, N. P., Dai, Z. X., et al., 2016. Modeling the Impact of Carbon Dioxide Leakage into an Unconfined, Oxidizing Carbonate Aquifer. International Journal of Greenhouse Gas Control, 44: 290-299. https://doi.org/10.1016/j.ijggc.2015.04.008
      Bai, X. F., 2009. Fracture Characteristics of Volcanic Reservoir in Yingcheng Formation, Songliao Basin. Global Geology, 28(3): 318-325 (in Chinese with English abstract). doi: 10.3969/j.issn.1004-5589.2009.03.009
      Berre, I., Doster, F., Keilegavlen, E., 2019. Flow in Fractured Porous Media: A Review of Conceptual Models and Discretization Approaches. Transport in Porous Media, 130(1): 215-236. https://doi.org/10.1007/s11242-018-1171-6
      Chen, B. W., Wang, R., Li, Q., et al., 2023. Status and Advances of Research on Caprock Sealing Properties of CO2 Geological Storage. Geological Journal of China Universities, 29(1): 85-99 (in Chinese with English abstract).
      Chen, F., Yang, B. D., Ma, J., et al., 2016. Effects of CO2 Geological Storage Leakage on Soil Microbial Community. Journal of China University of Mining & Technology, 45(6): 1285-1293, 1299 (in Chinese with English abstract).
      Currie, N. D., 2017. Characterizing Injectite Related Fracture Networks and Their Impact on Seal Integrity, Rainbow Rocks Injectite Complex, Grand County, Utah (Dissertation). New Mexico Institute of Mining and Technology, New Mexico.
      Dai, L., You, L., Zhao, Z. J., et al., 2019. Petrological Characteristics and Sealing Analysis of Mesozoic Caprock in Dongfang-Ledong Area, Yinggehai Basin. Earth Science, 44(8): 2677-2685 (in Chinese with English abstract).
      Deng, Y. R., Wang, Y. H., Zhao, Y. J., et al., 2023. Carbon Dioxide Storage in China: Current Status, Main Challenges, and Future Outlooks. Earth Science Frontiers, 30(4): 429-439 (in Chinese with English abstract).
      Fu, B. C., Xu, Y., 2022. Preliminary Study on Environmental Monitoring and Assessment System for CO2 Geological Storage Project. Shanxi Chemical Industry, 42(8): 139-140, 143 (in Chinese with English abstract).
      Guo, B., 2020. Study on the Sealing Ability Evolution of Caprock System in the Process of CO2 Geological Storage: A Case Study of Ziniquanzi Formation Mudstone Caprock in Xinjiang Junggar Basin (Dissertation). Jilin University, Changchun (in Chinese with English abstract).
      He, S., Qin, Q. R., Qin, Z. J., et al., 2022. Natural Fracture Development Characteristics and Their Relationship with Gas Contents─A Case Study of Wufeng– Longmaxi Formation in Luzhou Area, Southern Sichuan Basin, China. ACS Omega, 7(38): 34066-34079. https://doi.org/10.1021/acsomega.2c03318
      Hyman, J. D., Jiménez-Martínez, J., Gable, C. W., et al., 2020. Characterizing the Impact of Fractured Caprock Heterogeneity on Supercritical CO2 Injection. Transport in Porous Media, 131(3): 935-955. https://doi.org/10.1007/s11242-019-01372-1
      Jiang, S., Zhang, K., Du, F. S., et al., 2023. Progress and Prospects of CO2 Storage and Enhanced Oil, Gas, and Geothermal Recovery. Earth Science, 48(7): 2733-2749 (in Chinese with English abstract).
      Olabode, A., Radonjic, M., 2017. Fracture Conductivity Modelling in Experimental Shale Rock Interactions with Aqueous CO2. Energy Procedia, 114: 4494-4507. https://doi.org/10.1016/j.egypro.2017.03.1610
      Raduha, S., Butler, D., Mozley, P. S., et al., 2016. Potential Seal Bypass and Caprock Storage Produced by Deformation-Band-to-Opening-Mode-Fracture Transition at the Reservoir/Caprock Interface. Geofluids, 16(4): 752-768. https://doi.org/10.1111/gfl.12177
      Rutqvist, J., Tsang, C. F., 2002. A Study of Caprock Hydromechanical Changes Associated with CO2-Injection into a Brine Formation. Environmental Geology, 42(2): 296-305. https://doi.org/10.1007/s00254-001-0499-2
      Shang, X., Wang, J., Wang, H., et al., 2022. Combined Effects of CO2 Adsorption-Induced Swelling and Dehydration-Induced Shrinkage on Caprock Sealing Efficiency. International Journal of Environmental Research and Public Health, 19(21): 14574. https://doi.org/10.3390/ijerph192114574
      Song, J., Zhang, D. X., 2013. Comprehensive Review of Caprock-Sealing Mechanisms for Geologic Carbon Sequestration. Environmental Science & Technology, 47(1): 9-22. https://doi.org/10.1021/es301610p
      Verdon, J. P., Kendall, J. M., Stork, A. L., et al., 2013. Comparison of Geomechanical Deformation Induced by Megatonne-Scale CO2 Storage at Sleipner, Weyburn, and in Salah. Proceedings of the National Academy of Sciences of the United States of America, 110(30): E2762-E2771. https://doi.org/10.1073/pnas.1302156110
      Wang, J. G., Peng, Y., 2014. Numerical Modeling for the Combined Effects of Two-Phase Flow, Deformation, Gas Diffusion and CO2 Sorption on Caprock Sealing Efficiency. Journal of Geochemical Exploration, 144: 154–167. https://doi.org/10.1016/j.gexplo.2013.12.011
      Wang, J. G., Wang, H. M., 2018. Sealing Efficiency Analysis for Shallow-Layer Caprocks in CO2 Geological Storage. Environmental Earth Sciences, 77(21): 1-14. https://doi.org/10.1007/s12665-018-7924-2
      Wang, Z. N., Yuan, J. S., Pang, B., et al., 2022. The Interpretation and Highlights on Mitigation of Climate Change in IPCC AR6 WGⅢ Report. Climate Change Research, 18(5): 531-537 (in Chinese with English abstract).
      Wu, Z. D., 2011. Research on the Stability of Cavern in Bedded Rock Salt Based on Permeability and Time Dependent Behavior (Dissertation). China University of Mining and Technology, Beijing (in Chinese with English abstract).
      Yin, Q., Jing, H. W., Su, H. J., et al., 2017. CO2 Permeability Analysis of Caprock Containing a Single Fracture Subject to Coupled Thermal-Hydromechanical Effects. Mathematical Problems in Engineering, 2017(1): 1-13. https://doi.org/10.1155/2017/1290748
      Zeng, L. B., Ma, S. J., Tian, H., et al., 2023. Research Progress of Natural Fractures in Organic Rich Shale. Earth Science, 48(7): 2427-2442 (in Chinese with English abstract).
      Zhao, Z. Y., Yao, S., Yang, S. P., et al., 2023. Under Goals of Carbon Peaking and Carbon Neutrality: Status, Problems, and Suggestions of CCUS in China. Environmental Science, 44(2): 1128-1138 (in Chinese with English abstract).
      Zhou, X. F., Zhang, Y. S., Yan, D. T., et al., 2018. Quantitative Evaluation of Sealing Ability of Tertiary Mudstone Caprock in Lenghu Area of Qaidam Basin. Earth Science, 43(S2): 226-233 (in Chinese with English abstract).
      白雪峰, 2009. 松辽盆地营城组火山岩储层裂缝特征. 世界地质, 28(3): 318-325.
      陈博文, 王锐, 李琦, 等, 2023. CO2地质封存盖层密闭性研究现状与进展. 高校地质学报, 29(1): 85-99.
      陈浮, 杨宝丹, 马静, 等, 2016. CO2地质封存泄漏对土壤微生物群落的影响. 中国矿业大学学报, 45(6): 1285-1293, 1299.
      代龙, 尤丽, 招湛杰, 等, 2019. 莺歌海盆地东方‒乐东区中新统盖层岩石学特征及封盖性分析. 地球科学, 44(8): 2677-2685. doi: 10.3799/dqkx.2019.176
      邓一荣, 汪永红, 赵岩杰, 等, 2023. 碳中和背景下二氧化碳封存研究进展与展望. 地学前缘, 30(4): 429-439.
      付葆春, 许媛, 2022. CO2地质封存项目环境监测评估体系初步研究. 山西化工, 42(8): 139-140, 143.
      郭兵, 2020. CO2地质封存过程中盖层系统的封闭性演化研究——以新疆准噶尔盆地紫泥泉子组泥岩盖层为例(硕士学位论文). 长春: 吉林大学.
      蒋恕, 张凯, 杜凤双, 等, 2023. 二氧化碳地质封存及提高油气和地热采收率技术进展与展望. 地球科学, 48(7): 2733-2749. doi: 10.3799/dqkx.2023.084
      王卓妮, 袁佳双, 庞博, 等, 2022. IPCC AR6 WGⅢ报告减缓主要结论、亮点和启示. 气候变化研究进展, 18(5): 531-537.
      武志德, 2011. 考虑渗流及时间效应的层状盐岩溶腔稳定分析(博士学位论文). 北京: 中国矿业大学.
      曾联波, 马诗杰, 田鹤, 等, 2023. 富有机质页岩天然裂缝研究进展. 地球科学, 48(7): 2427-2442. doi: 10.3799/dqkx.2022.190
      赵震宇, 姚舜, 杨朔鹏, 等, 2023. "双碳"目标下: 中国CCUS发展现状、存在问题及建议. 环境科学, 44(2): 1128-1138.
      周雪峰, 张永庶, 严德天, 等, 2018. 柴达木盆地冷湖地区第三系泥岩盖层封盖能力定量评价. 地球科学, 43(S2): 226-233. doi: 10.3799/dqkx.2018.183
    • 加载中
    图(10) / 表(1)
    计量
    • 文章访问数:  249
    • HTML全文浏览量:  124
    • PDF下载量:  31
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-05-24
    • 网络出版日期:  2025-02-10
    • 刊出日期:  2025-01-25

    目录

      /

      返回文章
      返回