Effect of Random Fracture Network Orientations on Sealing Performance of Caprock in CO2 Geological Sequestration
-
摘要: 在CO2地质封存过程中,为探究盖层中裂隙网络走向对CO2-咸水两相运移的影响规律,进而评价盖层密封性,本文数值模拟选用了6种不同走向的裂隙网络(其角度分别为0°~180°、30°~150°、45°~135°、60°~120°、90°~90°和90°~180°),实现显式裂隙网络下CO2驱替咸水的两相流研究.研究发现裂隙网络走向会直接改变液相饱和度的赋存情况,从而影响CO2-咸水驱替难度;当CO2在盖层中达到相同渗透深度时,驱替时间随裂隙倾角(0°~60°)降低了12.59倍,但倾角增大到60°后不再有明显影响;随着裂隙网络渗透范围的扩大,CO2在盖层中的渗透量增加.其中,正交裂隙(90°~180°)的渗透量最大.因此,考虑裂隙网络走向对于盖层密封性的评价具有重要意义.Abstract: In the process of CO2 geological storage, in order to explore the influence of fracture network orientations on the two-phase transport of CO2-salt water in the caprock and evaluate the sealing performance of the caprock, six fracture networks with different orientations (with angles of 0°-180°, 30°-150°, 45°-135°, 60°-120°, 90°-90° and 90°-180°, respectively) were selected for numerical simulation, so as to realize the two-phase flow study of CO2 displacement of salt water under explicit fracture network. It is found that the fracture network orientations directly change the occurrence of water saturation, thereby affecting the difficulty of CO2-salt water displacement. When CO2 reaches the same penetration depth in the caprock, the displacement time decreased by 12.59 times with the fracture angle (0°-60°), but there is no obvious effect after the inclination angle increased to 60°. With the expansion of the permeability range of the fracture network, the permeability of CO2 in the caprock increases. Among them, orthogonal fractures (90°-180°) have the largest permeability. Therefore, considering the fracture network direction is of great significance for the caprock sealing evaluation.
-
表 1 模型计算参数
Table 1. Computational parameters
参数 取值 参数物理意义 取值来源 $ {\mu }_{\mathrm{g}} $ 5.2×10‒5 Pa·s CO2粘度 Wang and Peng, 2014 pw0 13 MPa 盖层中初始液相压力 Rutqvist and Tsang, 2002 $ {p}_{\mathrm{g}0} $ 18 MPa 盖层中初始气相压力 Ec 8 GPa 页岩杨氏模量 Wang and Wang, 2018 $ {E}_{\mathrm{s}} $ 20 GPa 页岩颗粒杨氏模量 Wang and Wang, 2018 Srnw 0.05 气相残余饱和度 Rutqvist and Tsang, 2002 $ {S}_{\mathrm{r}\mathrm{w}} $ 0.3 液相残余饱和度 Rutqvist and Tsang, 2002 pe 5 MPa 毛细进入压力 T 315.5 K 温度 Wang and Peng, 2014 $ {k}_{0} $ 1.5×10‒19 m2 初始绝对渗透率 Wang and Peng, 2014 ϕ0 0.04 初始孔隙度 Wang and Peng, 2014 $ \nu $ 0.25 页岩泊松比 Rutqvistand Tsang, 2002 ρc 2 300 kg/m3 页岩密度 Wang and Wang, 2018 $ {\rho }_{\mathrm{w}} $ 1 020 kg/m3 液相密度 μw 3.6×10‒4 Pa·s 液相粘度 Wang and Wang, 2018 -
Adu-Gyamfi, B., Ampomah, W., Tu, J. W., et al., 2022. Assessment of Chemo-Mechanical Impacts of CO2 Sequestration on the Caprock Formation in Farnsworth Oil Field, Texas. Scientific Reports, 12(1): 1-23. https://doi.org/10.1038/s41598-022-16990-x Arif, M., Al-Yaseri, A. Z., Barifcani, A., et al., 2016. Impact of Pressure and Temperature on CO2–Brine– Mica Contact Angles and CO2–Brine Interfacial Tension: Implications for Carbon Geo-Sequestration. Journal of Colloid and Interface Science, 462: 208–215. https://doi.org/10.1016/j.jcis.2015.09.076 Bachu, S., 2015. Review of CO2 Storage Efficiency in Deep Saline Aquifers. International Journal of Greenhouse Gas Control, 40: 188–202. https://doi.org/10.1016/j.ijggc.2015.01.007 Bacon, D. H., Qafoku, N. P., Dai, Z. X., et al., 2016. Modeling the Impact of Carbon Dioxide Leakage into an Unconfined, Oxidizing Carbonate Aquifer. International Journal of Greenhouse Gas Control, 44: 290-299. https://doi.org/10.1016/j.ijggc.2015.04.008 Bai, X. F., 2009. Fracture Characteristics of Volcanic Reservoir in Yingcheng Formation, Songliao Basin. Global Geology, 28(3): 318-325 (in Chinese with English abstract). doi: 10.3969/j.issn.1004-5589.2009.03.009 Berre, I., Doster, F., Keilegavlen, E., 2019. Flow in Fractured Porous Media: A Review of Conceptual Models and Discretization Approaches. Transport in Porous Media, 130(1): 215-236. https://doi.org/10.1007/s11242-018-1171-6 Chen, B. W., Wang, R., Li, Q., et al., 2023. Status and Advances of Research on Caprock Sealing Properties of CO2 Geological Storage. Geological Journal of China Universities, 29(1): 85-99 (in Chinese with English abstract). Chen, F., Yang, B. D., Ma, J., et al., 2016. Effects of CO2 Geological Storage Leakage on Soil Microbial Community. Journal of China University of Mining & Technology, 45(6): 1285-1293, 1299 (in Chinese with English abstract). Currie, N. D., 2017. Characterizing Injectite Related Fracture Networks and Their Impact on Seal Integrity, Rainbow Rocks Injectite Complex, Grand County, Utah (Dissertation). New Mexico Institute of Mining and Technology, New Mexico. Dai, L., You, L., Zhao, Z. J., et al., 2019. Petrological Characteristics and Sealing Analysis of Mesozoic Caprock in Dongfang-Ledong Area, Yinggehai Basin. Earth Science, 44(8): 2677-2685 (in Chinese with English abstract). Deng, Y. R., Wang, Y. H., Zhao, Y. J., et al., 2023. Carbon Dioxide Storage in China: Current Status, Main Challenges, and Future Outlooks. Earth Science Frontiers, 30(4): 429-439 (in Chinese with English abstract). Fu, B. C., Xu, Y., 2022. Preliminary Study on Environmental Monitoring and Assessment System for CO2 Geological Storage Project. Shanxi Chemical Industry, 42(8): 139-140, 143 (in Chinese with English abstract). Guo, B., 2020. Study on the Sealing Ability Evolution of Caprock System in the Process of CO2 Geological Storage: A Case Study of Ziniquanzi Formation Mudstone Caprock in Xinjiang Junggar Basin (Dissertation). Jilin University, Changchun (in Chinese with English abstract). He, S., Qin, Q. R., Qin, Z. J., et al., 2022. Natural Fracture Development Characteristics and Their Relationship with Gas Contents─A Case Study of Wufeng– Longmaxi Formation in Luzhou Area, Southern Sichuan Basin, China. ACS Omega, 7(38): 34066-34079. https://doi.org/10.1021/acsomega.2c03318 Hyman, J. D., Jiménez-Martínez, J., Gable, C. W., et al., 2020. Characterizing the Impact of Fractured Caprock Heterogeneity on Supercritical CO2 Injection. Transport in Porous Media, 131(3): 935-955. https://doi.org/10.1007/s11242-019-01372-1 Jiang, S., Zhang, K., Du, F. S., et al., 2023. Progress and Prospects of CO2 Storage and Enhanced Oil, Gas, and Geothermal Recovery. Earth Science, 48(7): 2733-2749 (in Chinese with English abstract). Olabode, A., Radonjic, M., 2017. Fracture Conductivity Modelling in Experimental Shale Rock Interactions with Aqueous CO2. Energy Procedia, 114: 4494-4507. https://doi.org/10.1016/j.egypro.2017.03.1610 Raduha, S., Butler, D., Mozley, P. S., et al., 2016. Potential Seal Bypass and Caprock Storage Produced by Deformation-Band-to-Opening-Mode-Fracture Transition at the Reservoir/Caprock Interface. Geofluids, 16(4): 752-768. https://doi.org/10.1111/gfl.12177 Rutqvist, J., Tsang, C. F., 2002. A Study of Caprock Hydromechanical Changes Associated with CO2-Injection into a Brine Formation. Environmental Geology, 42(2): 296-305. https://doi.org/10.1007/s00254-001-0499-2 Shang, X., Wang, J., Wang, H., et al., 2022. Combined Effects of CO2 Adsorption-Induced Swelling and Dehydration-Induced Shrinkage on Caprock Sealing Efficiency. International Journal of Environmental Research and Public Health, 19(21): 14574. https://doi.org/10.3390/ijerph192114574 Song, J., Zhang, D. X., 2013. Comprehensive Review of Caprock-Sealing Mechanisms for Geologic Carbon Sequestration. Environmental Science & Technology, 47(1): 9-22. https://doi.org/10.1021/es301610p Verdon, J. P., Kendall, J. M., Stork, A. L., et al., 2013. Comparison of Geomechanical Deformation Induced by Megatonne-Scale CO2 Storage at Sleipner, Weyburn, and in Salah. Proceedings of the National Academy of Sciences of the United States of America, 110(30): E2762-E2771. https://doi.org/10.1073/pnas.1302156110 Wang, J. G., Peng, Y., 2014. Numerical Modeling for the Combined Effects of Two-Phase Flow, Deformation, Gas Diffusion and CO2 Sorption on Caprock Sealing Efficiency. Journal of Geochemical Exploration, 144: 154–167. https://doi.org/10.1016/j.gexplo.2013.12.011 Wang, J. G., Wang, H. M., 2018. Sealing Efficiency Analysis for Shallow-Layer Caprocks in CO2 Geological Storage. Environmental Earth Sciences, 77(21): 1-14. https://doi.org/10.1007/s12665-018-7924-2 Wang, Z. N., Yuan, J. S., Pang, B., et al., 2022. The Interpretation and Highlights on Mitigation of Climate Change in IPCC AR6 WGⅢ Report. Climate Change Research, 18(5): 531-537 (in Chinese with English abstract). Wu, Z. D., 2011. Research on the Stability of Cavern in Bedded Rock Salt Based on Permeability and Time Dependent Behavior (Dissertation). China University of Mining and Technology, Beijing (in Chinese with English abstract). Yin, Q., Jing, H. W., Su, H. J., et al., 2017. CO2 Permeability Analysis of Caprock Containing a Single Fracture Subject to Coupled Thermal-Hydromechanical Effects. Mathematical Problems in Engineering, 2017(1): 1-13. https://doi.org/10.1155/2017/1290748 Zeng, L. B., Ma, S. J., Tian, H., et al., 2023. Research Progress of Natural Fractures in Organic Rich Shale. Earth Science, 48(7): 2427-2442 (in Chinese with English abstract). Zhao, Z. Y., Yao, S., Yang, S. P., et al., 2023. Under Goals of Carbon Peaking and Carbon Neutrality: Status, Problems, and Suggestions of CCUS in China. Environmental Science, 44(2): 1128-1138 (in Chinese with English abstract). Zhou, X. F., Zhang, Y. S., Yan, D. T., et al., 2018. Quantitative Evaluation of Sealing Ability of Tertiary Mudstone Caprock in Lenghu Area of Qaidam Basin. Earth Science, 43(S2): 226-233 (in Chinese with English abstract). 白雪峰, 2009. 松辽盆地营城组火山岩储层裂缝特征. 世界地质, 28(3): 318-325. 陈博文, 王锐, 李琦, 等, 2023. CO2地质封存盖层密闭性研究现状与进展. 高校地质学报, 29(1): 85-99. 陈浮, 杨宝丹, 马静, 等, 2016. CO2地质封存泄漏对土壤微生物群落的影响. 中国矿业大学学报, 45(6): 1285-1293, 1299. 代龙, 尤丽, 招湛杰, 等, 2019. 莺歌海盆地东方‒乐东区中新统盖层岩石学特征及封盖性分析. 地球科学, 44(8): 2677-2685. doi: 10.3799/dqkx.2019.176 邓一荣, 汪永红, 赵岩杰, 等, 2023. 碳中和背景下二氧化碳封存研究进展与展望. 地学前缘, 30(4): 429-439. 付葆春, 许媛, 2022. CO2地质封存项目环境监测评估体系初步研究. 山西化工, 42(8): 139-140, 143. 郭兵, 2020. CO2地质封存过程中盖层系统的封闭性演化研究——以新疆准噶尔盆地紫泥泉子组泥岩盖层为例(硕士学位论文). 长春: 吉林大学. 蒋恕, 张凯, 杜凤双, 等, 2023. 二氧化碳地质封存及提高油气和地热采收率技术进展与展望. 地球科学, 48(7): 2733-2749. doi: 10.3799/dqkx.2023.084 王卓妮, 袁佳双, 庞博, 等, 2022. IPCC AR6 WGⅢ报告减缓主要结论、亮点和启示. 气候变化研究进展, 18(5): 531-537. 武志德, 2011. 考虑渗流及时间效应的层状盐岩溶腔稳定分析(博士学位论文). 北京: 中国矿业大学. 曾联波, 马诗杰, 田鹤, 等, 2023. 富有机质页岩天然裂缝研究进展. 地球科学, 48(7): 2427-2442. doi: 10.3799/dqkx.2022.190 赵震宇, 姚舜, 杨朔鹏, 等, 2023. "双碳"目标下: 中国CCUS发展现状、存在问题及建议. 环境科学, 44(2): 1128-1138. 周雪峰, 张永庶, 严德天, 等, 2018. 柴达木盆地冷湖地区第三系泥岩盖层封盖能力定量评价. 地球科学, 43(S2): 226-233. doi: 10.3799/dqkx.2018.183 -