Occurrence of Lithium and Geochronology of Magmatism and Mineralization in Dagang Granite-Associated Lithium Deposit, West Jiangxi Province
-
摘要: 大港锂矿床是赣西地区近年来新探明的超大型花岗岩型锂矿之一,成矿与白云母花岗岩密切相关.研究开展了云母矿物学特征及电子探针分析确定锂赋存状态,并利用锆石和锡石LA-ICPMS U-Pb定年法对白云母花岗岩进行了系统的年代学研究,精确厘定成岩成矿时代.年代学结果显示Ⅰ型热液锆石Tera-Wasserburg U-Pb下交点年龄为129±2 Ma,而颜色较暗的Ⅱ型锆石下交点年龄为100±4 Ma.锡石核部和边部Tera-Wasserburg U-Pb下交点年龄分别为125±3 Ma和108±7 Ma,同期结果与锆石年龄在误差范围内一致.这些年龄数据显示大港锂矿呈多期次成矿特点.成矿作用均形成于早白垩世,与江南造山带中段燕山期大规模稀有金属成矿时限一致.大港锂矿床中云母主要为富锂白云母、铁锂云母和锂云母,且云母具有明显环带特征,边部较核部富Si、Li和F等元素.云母微观结构及矿物化学特征表明大港高演化花岗岩型锂矿床经历了早期岩浆分异和晚期热液交代两个阶段.晚期富氟富锂热液对白云母花岗岩进行了强烈的交代改造,使锂元素在云母边部高度富集,从而形成富锂矿物.九岭南缘高演化花岗岩型锂矿床的厘定指示了江南造山带中段具有良好的锂矿找矿前景.Abstract: The Dagang lithium deposit is a giant granite-associated deposit in the West Jiangxi Province, central Jiangnan orogenic belt (JNOB). Lithium mineralization is closely associated with muscovite granites. However, the occurrence of lithium and geochronology of magmatism and mineralization are not well defined. In this study, it presents microtextural studies, electron probe microanalysis (EPMA) of micas, as well as laser ablation inductively coupled plasma (LA-ICPMS) zircon and cassiterite U-Pb dating results to further constrain the occurrence state, metallogenic mechanism, and geochronology. LA-ICPMS U-Pb dating of cassiterite core yielded a Tera-Wasserburg U-Pb lower intercept age of 125±3 Ma and cassiterite rim yielded a lower intercept age of 108±7 Ma. Type Ⅰ zircon, which shows lower content of U, has an LA-ICPMS Tera-Wasserburg U-Pb lower intercept age of 129±2 Ma, and Type Ⅱ zircon grains with higher U content yielded a lower intercept age of 100±4 Ma. Geochronological results reveal two episodic Li mineralization events during the Early Cretaceous in the Dagang deposit. In addition, the mineralization ages of the Dagang Li deposit are consistent with the large-scale magmatic and metallogenic events for rare metal deposits in the central JNOB. Zoned micas which are revealed by BSE images from the Dagang Li deposit are composed of Li-muscovite, zinnwaldite, as well as lepidolite. The Li-bearing micas are the principal ore minerals in the muscovite granites. A gradual increase in Li, Si, and F in all micas from core to rim is exhibited by electron probe microanalysis (EPMA). The occurrence and geochemical features indicate that the Dagang Li deposit formed through an early-stage magma fractional crystallization and a late-stage hydrothermal process. The temporal relationship between Early Cretaceous S-type granitic magmatism and Li mineralization in the central JNOB can be used as a guideline for mineral exploration of granite rare metal deposits.
-
图 1 赣西九岭岩体地质简图及花岗岩型矿床分布图(修改自Xie et al., 2019)
Fig. 1. Simplified geological map showing the distribution of granites and deposits in the West Jiangxi Province (modified from Xie et al., 2019)
图 9 大港白云母花岗岩云母成分分类图解(底图据Tischendorf et al., 1997修改)
Fig. 9. Positions of micas on the diagram of (Mg-Li) vs. (Fetot+Mn+Ti-AlⅥ) in the Dagang muscovite granite (modified from Tischendorf et al., 1997)
表 1 大港锂矿床白云母花岗岩锆石U-Pb定年结果
Table 1. Results of zircon LA-ICPMS U-Pb dating for the muscovite granites in the Dagang Li deposit
样品编号 Th(10-6) U(10-6) Th/U 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb 207Pb/235U 206Pb/238U Ratio 1σ Ratio 1σ Ratio 1σ t(Ma) 1σ t(Ma) 1σ t(Ma) 1σ 21DG-1-01 84.3 14 524 0.006 0.062 7 0.001 4 0.186 4 0.004 6 0.021 3 0.000 3 698 48.1 174 3.92 136 1.91 21DG-1-02 46.5 6 963 0.007 0.083 0 0.003 0 0.269 2 0.008 5 0.023 4 0.000 4 1 270 69.9 242 6.83 149 2.49 21DG-1-03 66.6 14 660 0.005 0.065 7 0.001 5 0.186 0 0.004 1 0.020 3 0.000 2 798 52.8 173 3.49 130 1.15 21DG-1-04 81.3 13 084 0.006 0.055 0 0.001 2 0.176 9 0.004 2 0.020 9 0.000 2 413 48.1 157 3.06 139 1.46 21DG-1-05 165 46 319 0.004 0.051 7 0.001 3 0.117 7 0.003 2 0.016 3 0.000 2 272 55.5 113 2.91 104 1.52 21DG-1-06 68.8 10 167 0.007 0.072 4 0.001 6 0.223 1 0.005 4 0.022 3 0.000 5 998 46.3 204 4.48 142 2.95 21DG-1-07 50.2 11 357 0.004 0.057 6 0.001 4 0.181 5 0.004 2 0.021 1 0.000 2 522 53.7 163 4.28 138 1.89 21DG-1-08 118 19 657 0.006 0.073 5 0.001 8 0.210 1 0.006 3 0.020 5 0.000 3 1 028 50.5 194 5.32 131 1.84 21DG-1-09 63.0 14 801 0.004 0.054 7 0.001 2 0.158 7 0.003 7 0.021 0 0.000 2 398 52.8 155 3.19 138 1.37 21DG-1-10 39.5 9 665 0.004 0.053 9 0.001 3 0.160 0 0.004 1 0.021 0 0.000 3 365 55.6 153 3.33 138 1.24 21DG-1-11 22.9 9 808 0.002 0.071 3 0.001 8 0.227 4 0.005 8 0.022 9 0.000 2 969 51.5 208 4.83 146 1.56 21DG-1-12 36.8 9 328 0.004 0.069 9 0.001 7 0.192 4 0.004 7 0.019 8 0.000 2 928 48.9 179 4.04 126 1.52 21DG-1-13 53.1 10 584 0.005 0.049 0 0.001 2 0.139 1 0.003 4 0.020 5 0.000 5 150 54.6 132 3.05 131 2.96 21DG-1-14 65.5 13 761 0.005 0.068 0 0.001 6 0.193 1 0.005 7 0.020 4 0.000 4 878 48.1 179 4.84 130 2.43 21DG-1-15 63.3 9 640 0.007 0.102 7 0.002 1 0.307 0 0.006 1 0.021 6 0.000 2 1 673 37.5 272 4.75 138 1.33 21DG-1-16 50.3 13 068 0.004 0.067 7 0.001 4 0.180 1 0.004 3 0.019 2 0.000 2 857 44.4 168 3.70 122 1.50 21DG-1-17 36.1 8 771 0.004 0.048 1 0.001 2 0.135 9 0.004 0 0.020 4 0.000 4 102 62.0 129 3.57 130 2.72 21DG-1-18 98 11 758 0.008 0.072 9 0.001 6 0.202 2 0.004 8 0.020 0 0.000 3 1 011 42.6 187 4.09 128 1.80 21DG-1-19 55.7 10 989 0.005 0.059 3 0.001 4 0.175 1 0.004 3 0.021 3 0.000 2 589 51.8 164 3.76 136 1.35 21DG-1-20 48.2 9 192 0.005 0.062 2 0.001 5 0.182 2 0.004 7 0.0212 0.000 2 680 51.8 170 4.08 135 1.54 表 2 大港锂矿床白云母花岗岩锡石U-Pb定年结果
Table 2. Results of cassiterite LA-ICPMS U-Pb dating for the muscovite granite in the Dagang Li deposit
样品 Common Pb (10-6) Pb(10-6) Th(10-6) U(10-6) 207Pb/206Pb 207Pb/235U 206Pb/238U Age (Ma) Ratios 1σ Ratios 1σ Ratios 1σ 206Pb/238U 2σ (abs) 21DG-1(CST)-1c 6.14 10.3 0.06 341 0.157 6 11.9 0.496 2 10.8 0.025 3 4.2 161 13 21DG-1(CST)-2c 3.09 8.86 0.06 389 0.082 1 12.2 0.238 3 11.8 0.022 9 2.9 146 8 21DG-1(CST)-3c 82.2 36.3 0.05 592 0.276 8 4.2 1.336 1 5.4 0.036 3 2.6 226 9 21DG-1(CST)-4c 5.54 19.1 0.00 657 0.120 5 7.6 0.378 5 7.7 0.023 5 2.5 149 7 21DG-1(CST)-5c 6.52 10.3 0.04 487 0.067 0 11.5 0.194 3 11.7 0.020 6 3.2 131 8 21DG-1(CST)-6r 0.00 7.97 0.00 359 0.069 6 18.4 0.202 8 15.2 0.021 5 4.2 137 11 21DG-1(CST)-7r 40.4 10.6 0.00 383 0.137 6 18.5 0.359 6 12.3 0.023 1 3.2 147 9 21DG-1(CST)-8c 3.31 9.3 0.11 405 0.076 3 13.3 0.212 5 13.7 0.022 6 3.1 144 9 21DG-1(CST)-9r 0.00 8.3 0.32 351 0.174 3 17.3 0.329 2 12.8 0.021 4 3.7 136 10 21DG-1(CST)-10r 23.5 8.57 0.06 391 0.105 2 15.2 0.221 5 12.2 0.022 1 3.5 141 10 21DG-1(CST)-11c 0.00 8.52 0.01 382 0.055 4 15.1 0.165 6 13.8 0.022 7 3.4 144 10 21DG-1(CST)-12c 32.4 23.4 5.87 635 0.145 3 9.6 0.451 1 8.9 0.025 4 3.3 162 10 21DG-1(CST)-13r 13.5 9.48 0.02 431 0.074 8 12.2 0.191 6 11.3 0.020 7 3.0 132 8 21DG-1(CST)-14c 0.00 8.09 0.03 362 0.094 6 14.6 0.314 2 13.9 0.021 7 5.4 138 15 21DG-1(CST)-15c 36.7 169 3.05 848 0.456 2 4.2 4.628 7 5.0 0.076 4 4.3 476 38 21DG-1(CST)-16c 9.60 17.8 0.04 842 0.063 1 15.8 0.133 9 15.7 0.021 2 2.2 135 6 21DG-1(CST)-17c 0.00 5.92 0.02 268 0.080 6 20.3 0.386 2 27.0 0.023 2 4.6 148 13 21DG-1(CST)-18r 8.19 26.7 0.17 341 0.372 6 7.0 1.556 1 7.2 0.032 5 4.4 205 18 21DG-1(CST)-19c 54.1 7.06 0.05 250 0.107 7 14.0 0.314 2 12.3 0.023 0 3.8 147 11 21DG-1(CST)-20r 0.00 7.70 0.02 344 0.088 9 14.9 0.212 7 12.8 0.021 5 3.7 138 10 21DG-1(CST)-21r 0.00 8.56 0.00 415 0.067 4 13.9 0.154 0 13.4 0.020 2 3.6 128 9 21DG-1(CST)-22c 39.74 33.9 2.57 543 0.301 5 4.7 1.452 5 4.8 0.036 6 3.0 226 10 21DG-1(CST)-23r 49.61 58.3 0.07 455 0.510 9 4.8 3.169 8 4.7 0.050 1 2.8 316 17 21DG-1(CST)-24c 0.00 23.9 0.27 534 0.201 9 6.3 0.765 0 5.8 0.029 8 2.7 189 10 21DG-1(CST)-25r 0.00 6.19 0.02 196 0.2118 18.4 0.570 2 15.0 0.025 3 4.7 161 15 -
Bartels, A., Vetere, F., Holtz, F., et al., 2011. Viscosity of Flux-Rich Pegmatitic Melts. Contributions to Mineralogy and Petrology, 162(1): 51-60. https://doi.org/10.1007/s00410-010-0582-3 Beus, A. A., Zalashkova, N. Y., 1964. Post-Magmatic High Temperature Metasomatic Processes in Granitic Rocks. International Geology Review, 6(4): 668-681. https://doi.org/10.1080/00206816409473947 Breiter, K., Ďurišová, J., Hrstka, T., et al., 2017. Assessment of Magmatic vs. Metasomatic Processes in Rare-Metal Granites: A Case Study of the Cínovec/Zinnwald Sn-W-Li Deposit, Central Europe. Lithos, 292-293: 198-217. https://doi.org/10.1016/j.lithos.2017.08.015 Carr, P. A., Moreira, E., Neymark, L., et al., 2023. A LA-ICPMS Comparison of Reference Materials Used in Cassiterite U-Pb Geochronology. Geostandards and Geoanalytical Research, 47(1): 67-87. https://doi.org/10.1111/ggr.12469 Chen, X. Y., Wu, J. H., Tang, W. X., et al., 2023. Newly Found Giant Granite-Associated Lithium Resources in the Western Jiangxi Province, South China. Earth Science, 48(10): 3957-3960(in Chinese with English abstract). Cuney, M., Marignac, C., Weisbrod, A., 1992. The Beauvoir Topaz-Lepidolite Albite Granite (Massif Central, France); The Disseminated Magmatic Sn-Li-Ta-Nb-Be Mineralization. Economic Geology, 87(7): 1766-1794. https://doi.org/10.2113/gsecongeo.87.7.1766 Ding, X., Su, K. L., Yan, H. B., et al., 2022. Effect of F-Rich Fluids on the A-Type Magmatism and Related Metal Mobilization: New Insights from the Fogang-Nankunshan-Yajishan Igneous Rocks in Southeast China. Journal of Earth Science, 33(3): 591-608. https://doi.org/10.1007/s12583-022-1611-7 Duan, Z., Liao, S. B., Chu, P. L., et al., 2019. Zircon U-Pb Ages of the Neoproterozoic Jiuling Complex Granitoid in the Eastern Segment of the Jiangnan Orogen and Its Tectonic Significance. Geology in China, 46(3): 493-516(in Chinese with English abstract). Gahlan, H. A., Azer, M. K., Asimow, P. D., et al., 2023. Geochemistry, Petrogenesis and Alteration of Rare-Metal-Bearing Granitoids and Mineralized Silexite of the Al-Ghurayyah Stock, Arabian Shield, Saudi Arabia. Journal of Earth Science, 34(5): 1488-1510. https://doi.org/10.1007/s12583-022-1708-z Gao, P., Zheng, Y. F., Zhao, Z. F., 2016. Experimental Melts from Crustal Rocks: A Lithochemical Constraint on Granite Petrogenesis. Lithos, 266-267: 133-157. https://doi.org/10.1016/j.lithos.2016.10.005 Gulson, B. L., Jones, M. T., 1992. Cassiterite: Potential for Direct Dating of Mineral Deposits and a Precise Age for the Bushveld Complex Granites. Geology, 20(4): 355. https://doi.org/10.1130/0091-7613(1992)0200355:cpfddo>2.3.co;2 doi: 10.1130/0091-7613(1992)0200355:cpfddo>2.3.co;2 Harrison, T. M., Watson, E. B., 1984. The Behavior of Apatite during Crustal Anatexis: Equilibrium and Kinetic Considerations. Geochimica et Cosmochimica Acta, 48(7): 1467-1477. https://doi.org/10.1016/0016-7037(84)90403-4 Huang, L. C., Jiang, S. Y., 2012. Zircon U-Pb Geochronology, Geochemistry and Petrogenesis of the Porphyric-Like Muscovite Granite in the Dahutang Tungsten Deposit, Jiangxi Province. Acta Petrologica Sinica, 28(12): 3887-3900(in Chinese with English abstract). Huang, X. B., Yu, Z. Z., Zou, G. Q., 2003. Sedimentary Features of the Mesoproterozoic Shuangqiaoshan Group in Northwestern Jiangxi. Geological Bulletin of China, 22(1): 43-49(in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2003.01.007 Jiang, S. Y., Su, H. M., Xiong, Y. Q., et al., 2020. Spatial-Temporal Distribution, Geological Characteristics and Ore-Formation Controlling Factors of Major Types of Rare Metal Mineral Deposits in China. Acta Geologica Sinica (English Edition), 94(6): 1757-1773. https://doi.org/10.1111/1755-6724.14595 Jiang, S. Y., Wang, C. L., Zhang, L., et al., 2021. In Situ Trace Element Tracing and Isotopic Dating of Pegmatite Type Lithium Deposits: An Overview. Acta Geologica Sinica, 95(10): 3017-3038(in Chinese with English abstract). Kigai, I. N., 2011. Redox Problems in the "Metallogenic Specialization" of Magmatic Rocks and the Genesis of Hydrothermal Ore Mineralization. Petrology, 19(3): 303-321. https://doi.org/10.1134/S0869591111030052 Leech, M. L., 2008. Does the Karakoram Fault Interrupt Mid-Crustal Channel Flow in the Western Himalaya? Earth and Planetary Science Letters, 276(3-4): 314-322. https://doi.org/10.1016/j.epsl.2008.10.006 Li, J., 2015. Mineralogical Constraints on Magmatic and Hydrothermal Evolutions of the Mesozoic Rare-Metal Granites in South China (Dissertation). The University of Chinese Academy of Sciences, Guangzhou (in Chinese with English abstract). Li, J. H., Dong, S. W., Zhang, Y. Q., et al., 2016. New Insights into Phanerozoic Tectonics of South China: Part 1, Polyphase Deformation in the Jiuling and Lianyunshan Domains of the Central Jiangnan Orogen. Journal of Geophysical Research: Solid Earth, 121(4): 3048-3080. https://doi.org/10.1002/2015jb012778 Li, J. K., Liu, X. F., Wang, D. H., 2014. The Metallogenetic Regularity of Lithium Deposit in China. Acta Geologica Sinica, 88(12): 2269-2283(in Chinese with English abstract). Li, P., Li, J. K., Liu, X., et al., 2020. Geochronology and Source of the Rare-Metal Pegmatite in the Mufushan Area of the Jiangnan Orogenic Belt: A Case Study of the Giant Renli Nb-Ta Deposit in Hunan, China. Ore Geology Reviews, 116: 103237. https://doi.org/10.1016/j.oregeorev.2019.103237 Li, P., Liu, X., Li, J. K., et al., 2019. Petrographic and Geochemical Characteristics of Renli-Chuanziyuan No. 5 Pegmatite, NE Hunan, and Its Metallogenic Age. Acta Geologica Sinica, 93(6): 1374-1391(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2019.06.016 Li, X. H., Tang, G. Q., Gong, B., et al., 2013. Qinghu Zircon: A Working Reference for Microbeam Analysis of U-Pb Age and Hf and O Isotopes. Chinese Science Bulletin, 58(36): 4647-4654. https://doi.org/10.1007/s11434-013-5932-x Li, Y. J., Wei, J. H., Zhang, W. S., et al., 2021. Microplagioclase Pegmatite-Type Nb-Ta Mineralization Newly Discovered in the Northwestern Margin of Mufushan Complex Batholith. Bulletin of Geological Science and Technology, 40(2): 208-210(in Chinese with English abstract). Li, Y. J., Zhang, R. Q., Ji, H., et al., 2022. Chemistry and U-Pb Geochronology of Cassiterite in the Xiasai Deposit, Central Yidun Terrane (SW China): Link between Sn and Ag-Pb-Zn Mineralisation. Ore Geology Reviews, 149: 105106. https://doi.org/10.1016/j.oregeorev.2022.105106 Liu, C. S., Chen, X. M., Wang, R. C., et al., 2005. Isotopic Dating and Origin of Complexly Zoned Micas for A-Type Nankunshan Aluminous Granite. Geological Review, 51(2): 193–200, 227(in Chinese with English abstract). doi: 10.3321/j.issn:0371-5736.2005.02.013 Liu, T., Jiang, S. Y., Su, H. M., et al., 2022. Petrogenesis of Ta-Nb Mineralization Related Early Cretaceous Lingshan Granite Complex, Jiangxi Province, Southeast China: Constraints from Geochronology, Whole-Rock and In-Situ Mineral Geochemistry, and Nd-Hf Isotopic Compositions. Ore Geology Reviews, 143: 104788. https://doi.org/10.1016/j.oregeorev.2022.104788 Liu, X. C., Zhang, D. H., Yang, J. W., et al., 2023. High Heat Producing Granites and Prolonged Extraction of Tungsten and Tin from Melts. Geochimica et Cosmochimica Acta, 348: 340-354. https://doi.org/10.1016/j.gca.2023.03.012 Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2): 537-571. https://doi.org/10.1093/petrology/egp082 Long, X. Y., Chen, Z. Q., Liu, Z. J., et al., 2021. Contrasting Metallogenic Geological Characteristics of Yashan 414 and Lingshan Songshugang Ta-Nb Deposits in Jiangxi. Journal of East China University of Technology (Natural Science), 44(3): 239-248(in Chinese with English abstract). Mao, J. W., Xie, G. Q., Guo, C. L., et al., 2008. Spatial-Temporal Distribution of Mesozoic Ore Deposits in South China and Their Metallogenic Settings. Geological Journal of China Universities, 14(4): 510-526(in Chinese with English abstract). doi: 10.3969/j.issn.1006-7493.2008.04.005 Mungall, J. E., 2002. Empirical Models Relating Viscosity and Tracer Diffusion in Magmatic Silicate Melts. Geochimica et Cosmochimica Acta, 66(1): 125-143. https://doi.org/10.1016/s0016-7037(01)00736-0 Neves, L., 1997. Trace Element Content and Partitioning between Biotite and Muscovite of Granitic Rocks: A Study in the Viseu Region (Central Portugal). European Journal of Mineralogy, 9(4), 849-858. https://doi.org/10.1127/ejm/9/4/0849 Nie, X. L., Wang, S. L., Liu, S., et al., 2022. Geological and Geochemical Characteristics of the Xikeng Lithium Deposit and the 40Ar/39Ar Chronology of Lepidolite of the Deposit in Jiangxi Province, China. Acta Mineralogica Sinica, 42(3): 285-294(in Chinese with English abstract). Sami, M., El Monsef, M. A., Abart, R., et al., 2022. Unraveling the Genesis of Highly Fractionated Rare-Metal Granites in the Nubian Shield via the Rare-Earth Elements Tetrad Effect, Sr-Nd Isotope Systematics, and Mineral Chemistry. ACS Earth and Space Chemistry, 6(10): 2368-2384. https://doi.org/10.1021/acsearthspacechem.2c00125 Schmitt, A. K., Trumbull, R. B., Dulski, P., et al., 2002. Zr-Nb-REE Mineralization in Peralkaline Granites from the Amis Complex, Brandberg (Namibia): Evidence for Magmatic Pre-Enrichment from Melt Inclusions. Economic Geology, 97(2): 399-413. https://doi.org/10.2113/gsecongeo.97.2.399 Shu, L. S., 2012. An Analysis of Principal Features of Tectonic Evolution in South China Block. Geological Bulletin of China, 31(7): 1035-1053(in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2012.07.003 Shu, L. S., Sun, Y., Wang, D. Z., et al., 1998. Mesozoic Doming Extensional Tectonics of Wugongshan, South China. Science in China (Series D), 41(6): 601-608. https://doi.org/10.1007/bf02878742 Tischendorf, G., Gottesmann, B., Förster, H. J., et al., 1997. On Li-Bearing Micas: Estimating Li from Electron Microprobe Analyses and an Improved Diagram for Graphical Representation. Mineralogical Magazine, 61(6): 809-834. Tu, J. R., Cui, Y. R., Zhou, H. Y., et al., 2019. Review of U-Pb Dating Methods for Cassiterite. Geological Survey and Research, 42(4): 241-249(in Chinese with English abstract). U. S. Geological Survey, 2022. Mineral Commodity Summaries 2022. U. S. Geological Survey, Virginia, U. S. A. . Vasyukova, O., Williams-Jones, A., 2020. Partial Melting, Fractional Crystallisation, Liquid Immiscibility and Hydrothermal Mobilisation—A 'Recipe' for the Formation of Economic A-Type Granite-Hosted HFSE Deposits. Lithos, 356-357: 105300. https://doi.org/10.1016/j.lithos.2019.105300 Wang, C. H., Wang, D. H., Chen, C., et al., 2019. Progress of Research on the Shiliing Rare Meatals Mineralization from Jiuling-Type Rock and Its Significance for Prospecting. Acta Geologica Sinica, 93(6): 1359-1373(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2019.06.015 Wang, D., Wang, X. L., Cai, Y., et al., 2017. Heterogeneous Conservation of Zircon Xenocrysts in Late Jurassic Granitic Intrusions within the Neoproterozoic Jiuling Batholith, South China: A Magma Chamber Growth Model in Deep Crustal Hot Zones. Journal of Petrology, 58(9): 1781-1810. https://doi.org/10.1093/petrology/egx074 Wang, R. C., Wu, B., Xie, L., et al., 2021. Global Tempo-Spatial Distribution of Rare-Metal Mineralization and Continental Evolution. Acta Geologica Sinica, 95(1): 182-193(in Chinese with English abstract). Wang, X. L., Zhou, J. C., Wan, Y. S., et al., 2013. Magmatic Evolution and Crustal Recycling for Neoproterozoic Strongly Peraluminous Granitoids from Southern China: Hf and O Isotopes in Zircon. Earth and Planetary Science Letters, 366: 71-82. https://doi.org/10.1016/j.epsl.2013.02.011 White, L. T., Ireland, T. R., 2012. High-Uranium Matrix Effect in Zircon and Its Implications for SHRIMP U-Pb Age Determinations. Chemical Geology, 306-307: 78-91. https://doi.org/10.1016/j.chemgeo.2012.02.025 Wiedenbeck, M., Allé, P., Corfu, F., et al., 1995. Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and Ree Analyses. Geostandards Newsletter, 19(1): 1-23. https://doi.org/10.1111/j.1751-908x.1995.tb00147.x Williams, I. S., Hergt, J. M., 2000. U-Pb Dating of Tasmanian Dolerites: A Cautionary Tale of SHRIMP Analysis of High-U Zircon. In: Woodhead, J. D., Hergt, J. M., Noble, W. P., eds., Beyond 2000: New Frontiers in Isotope Geoscience. Lorne, Abstract Proceedings, 185-188. Wu, F. Y., Guo, C. L., Hu, F. Y., et al., 2023. Petrogenesis of the Highly Fractionated Granites and Their Mineralizations in Nanling Range, South China. Acta Petrologica Sinica, 39(1): 1-36(in Chinese with English abstract). doi: 10.18654/1000-0569/2023.01.01 Wu, M. Q., Samson, I. M., Qiu, K. F., et al., 2021. Concentration Mechanisms of Rare Earth Element-Nb-Zr-Be Mineralization in the Baerzhe Deposit, Northeast China: Insights from Textural and Chemical Features of Amphibole and Rare Metal Minerals. Economic Geology, 116(3): 651-679. https://doi.org/10.5382/econgeo.4789 Xie, L., Liu, Y., Wang, R. C., et al., 2019. Li-Nb-Ta Mineralization in the Jurassic Yifeng Granite-Aplite Intrusion within the Neoproterozoic Jiuling Batholith, South China: A Fluid-Rich and Quenching Ore-Forming Process. Journal of Asian Earth Sciences, 185: 104047. https://doi.org/10.1016/j.jseaes.2019.104047 Xiong, X. L., Zhao, Z. H., Zhu, J. C., et al., 1998. Experiment on the Fluid/Melt Partition of Fluorine in the System Albite Granite-H2O-Hf. Geochimica, 27(1): 66-73(in Chinese with English abstract). doi: 10.3321/j.issn:0379-1726.1998.01.008 Yang, M., Romer, R. L., Yang, Y. H., et al., 2022. U-Pb Isotopic Dating of Cassiterite: Development of Reference Materials and In Situ Applications by LA-SF-ICP-MS. Chemical Geology, 593: 120754. https://doi.org/10.1016/j.chemgeo.2022.120754 Yang, Z. L., Qiu, J. S., Xing, G. F., et al., 2014. Petrogenesis and Magmatic Evolution of the Yashan Granite Pluton in Yichun, Jiangxi Province, and Their Constraints on Mineralization. Acta Geologica Sinica, 88(5): 850-868(in Chinese with English abstract). Yin, R., Huang, X. L., Wang, R. C., et al., 2022. Rare-Metal Enrichment and Nb-Ta Fractionation during Magmatic-Hydrothermal Processes in Rare-Metal Granites: Evidence from Zoned Micas from the Yashan Pluton, South China. Journal of Petrology, 63(10): egac093. https://doi.org/10.1093/petrology/egac093 Zhang, L., Jiang, S. Y., 2021. Two Episodic Nb-Ta Mineralization Events and Genesis of the Zhaojinggou Rare-Metal Deposit, North Margin of the North China Craton. Ore Geology Reviews, 131: 103994. https://doi.org/10.1016/j.oregeorev.2021.103994 Zhang, R. Q., Lehmann, B., Seltmann, R., et al., 2017. Cassiterite U-Pb Geochronology Constrains Magmatic-Hydrothermal Evolution in Complex Evolved Granite Systems: The Classic Erzgebirge Tin Province (Saxony and Bohemia). Geology, 45(12): 1095-1098. https://doi.org/10.1130/g39634.1 Zhang, Y., Pan, J. Y., Ma, D. S., 2020. Lithium Element Enrichment and Inspiration for Prospecting for Rare-Metal Mineralization in the Dahutang Tungsten Deposit: Constraints from Mineralogy and Geochemistry of Hydrothermal Alteration. Acta Geologica Sinica, 94(11): 3321-3342(in Chinese with English abstract). Zhang, Z. H., Zhang, D., He, X. L., et al., 2021. Biotite Granodiorite Age of Jiuling Complex in Jiangxi Province and Its Limitation on the Collision and Splicing Time of the Yangtze and Cathay Plates. Geology in China, 48(5): 1562-1579(in Chinese with English abstract). Zhao, B., Zhang, D. H., Zhang, R. Z., et al., 2015. The Progress of Geochemical Properties and Metallogenic Effect of F-Rich Silicate Melt-Solution Fluid System. Chinese Journal of Geology (Scientia Geologica Sinica), 50(1): 222-240(in Chinese with English abstract). Zhou, Q., Jiang, Y. H., Zhao, P., et al., 2012. SHRIMP U-Pb Dating on Hydrothermal Zircons; Evidence for an Early Cretaceous Epithermal Event in the Middle Jurassic Dexing Porphyry Copper Deposit, Southeast China. Economic Geology, 107(7): 1507-1514. https://doi.org/10.2113/econgeo.107.7.1507 Zhou, X. H., Chen, R., Zhang, W., et al., 2019. Zircon SHRIMP Geochronology and Hf Isotopic Characteristics of Volcanic Rocks from the Yifeng Formation in the Southern Margin of the Jiuling Uplift in the Jiangnan Orogen. Acta Geologica Sinica, 93(5): 1069-1080(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2019.05.006 陈祥云, 吴俊华, 唐维新, 等, 2023. 赣西地区新探明巨量花岗岩型锂矿资源. 地球科学, 48(10): 3957-3960. doi: 10.3799/dqkx.2023.189 段政, 廖圣兵, 褚平利, 等, 2019. 江南造山带东段新元古代九岭复式岩体锆石U-Pb年代学及构造意义. 中国地质, 46(3): 493-516. 黄兰椿, 蒋少涌, 2012. 江西大湖塘钨矿床似斑状白云母花岗岩锆石U-Pb年代学、地球化学及成因研究. 岩石学报, 28(12): 3887-3900. 黄修保, 余忠珍, 邹国庆, 2003. 赣西北地区中元古界双桥山群沉积学特征. 地质通报, 22(1): 43-49. 蒋少涌, 王春龙, 张璐, 等, 2021. 伟晶岩型锂矿中矿物原位微区元素和同位素示踪与定年研究进展. 地质学报, 95(10): 3017-3038. 李建康, 刘喜方, 王登红, 2014. 中国锂矿成矿规律概要. 地质学报, 88(12): 2269-2283. 李洁, 2015. 华南中生代稀有金属花岗岩岩浆演化与热液作用过程的矿物学约束(博士学位论文). 广州: 中国科学院研究生院(广州地球化学研究所). 李鹏, 刘翔, 李建康, 等, 2019. 湘东北仁里-传梓源矿床5号伟晶岩岩相学、地球化学特征及成矿时代. 地质学报, 93(6): 1374-1391. 李艳军, 魏俊浩, 张文胜, 等, 2021. 幕阜山复式岩基西北缘新发现微斜长石伟晶岩型铌钽矿化. 地质科技通报, 40(2): 208-210. 刘昌实, 陈小明, 王汝成, 等, 2005. 广东南昆山A型花岗岩定年和环带云母研究. 地质论评, 51(2): 193-200, 227. 龙细友, 陈正钱, 刘志军, 等, 2021. 江西雅山414和灵山松树岗钽铌矿成矿特征对比分析研究. 东华理工大学学报(自然科学版), 44(3): 239-248. 毛景文, 谢桂青, 郭春丽, 等, 2008. 华南地区中生代主要金属矿床时空分布规律和成矿环境. 高校地质学报, 14(4): 510-526. 聂晓亮, 王水龙, 刘爽, 等, 2022. 江西茜坑锂矿床地质地球化学特征与锂云母40Ar/39Ar年代学研究. 矿物学报, 42(3): 285-294. 舒良树, 2012. 华南构造演化的基本特征. 地质通报, 31(7): 1035-1053. 涂家润, 崔玉荣, 周红英, 等, 2019. 锡石U-Pb定年方法评述. 地质调查与研究, 42(4): 241-249. 王成辉, 王登红, 陈晨, 等, 2019. 九岭式狮子岭岩体型稀有金属成矿作用研究进展及其找矿意义. 地质学报, 93(6): 1359-1373. 王汝成, 邬斌, 谢磊, 等, 2021. 稀有金属成矿全球时空分布与大陆演化. 地质学报, 95(1): 182-193. 吴福元, 郭春丽, 胡方泱, 等, 2023. 南岭高分异花岗岩成岩与成矿. 岩石学报, 39(1): 1-36. 熊小林, 赵振华, 朱金初, 等, 1998. 钠长花岗岩-H2O-HF体系中流体/熔体间氟的分配实验研究. 地球化学, 27(1): 66-73. 杨泽黎, 邱检生, 邢光福, 等, 2014. 江西宜春雅山花岗岩体的成因与演化及其对成矿的制约. 地质学报, 88(5): 850-868. 张勇, 潘家永, 马东升, 2020. 赣西北大湖塘钨矿富锂-云母化岩锂元素富集机制及其对锂等稀有金属找矿的启示. 地质学报, 94(11): 3321-3342. 张志辉, 张达, 贺晓龙, 等, 2021. 江西九岭杂岩体中黑云母花岗闪长岩年龄及对扬子和华夏板块碰撞拼合时间限定. 中国地质, 48(5): 1562-1579. 赵博, 张德会, 张荣臻, 等, 2015. 富F熔体-溶液流体体系的地球化学性状及成矿效应研究进展. 地质科学, 50(1): 222-240. 周效华, 陈荣, 张炜, 等, 2019. 江南造山带九岭南缘宜丰岩组火山岩锆石SHRIMP年代学及Hf同位素特征. 地质学报, 93(5): 1069-1080. -
dqkxzx-48-12-4370-附表.docx
-