• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    陆相裂陷盆地深时源-汇系统关键地质问题及革新方向

    刘强虎 李志垚 陈贺贺 周子强 谈明轩 朱筱敏

    刘强虎, 李志垚, 陈贺贺, 周子强, 谈明轩, 朱筱敏, 2023. 陆相裂陷盆地深时源-汇系统关键地质问题及革新方向. 地球科学, 48(12): 4586-4612. doi: 10.3799/dqkx.2023.194
    引用本文: 刘强虎, 李志垚, 陈贺贺, 周子强, 谈明轩, 朱筱敏, 2023. 陆相裂陷盆地深时源-汇系统关键地质问题及革新方向. 地球科学, 48(12): 4586-4612. doi: 10.3799/dqkx.2023.194
    Liu Qianghu, Li Zhiyao, Chen Hehe, Zhou Ziqiang, Tan Mingxuan, Zhu Xiaomin, 2023. Key Geological Issues and Innovation Directions in Deep-Time Source-to-Sink System of Continental Rift Basins. Earth Science, 48(12): 4586-4612. doi: 10.3799/dqkx.2023.194
    Citation: Liu Qianghu, Li Zhiyao, Chen Hehe, Zhou Ziqiang, Tan Mingxuan, Zhu Xiaomin, 2023. Key Geological Issues and Innovation Directions in Deep-Time Source-to-Sink System of Continental Rift Basins. Earth Science, 48(12): 4586-4612. doi: 10.3799/dqkx.2023.194

    陆相裂陷盆地深时源-汇系统关键地质问题及革新方向

    doi: 10.3799/dqkx.2023.194
    基金项目: 

    国家自然科学基金项目 41902112

    国家自然科学基金项目 42306083

    国家自然科学基金项目 42002117

    详细信息
      作者简介:

      刘强虎(1988-),男,副教授,从事含油气盆地分析及地震地质综合解释教学与研究工作. ORCID:0000-0001-8505-1779. E-mail:liuqh@cug.edu.cn

    • 中图分类号: P624

    Key Geological Issues and Innovation Directions in Deep-Time Source-to-Sink System of Continental Rift Basins

    • 摘要: 依托洋陆边缘第四纪以来的解剖经验,源-汇系统研究已对陆相裂陷盆地开展深时探索实践,是当前国际沉积学研究的前沿领域,其中,涉及源-汇系统研究尺度与级次、物源区地貌演化与沉积碎屑产出、路径系统信号传递与示踪、多因素联合控制沉积-层序发育等关键问题亟待解决.针对上述问题,提出了火山作用改造沉积序列、古气候-植被群落调控风化效能、形态学与物源供给响应关联、路径系统交互模型预测、古水深-水动力制约砂体分散、正演模拟恢复源-汇过程及碳酸盐岩溶解质源-汇响应等潜在的革新方向,以期解决陆相裂陷盆地深时多驱动因素、多交互介质影响下沉积通量拾取及平衡恢复问题.此外,建议从多学科交叉融合及深时大数据系统多要素构建两方面拓展中国特色陆相深时源-汇系统研究内涵,服务能源矿产勘探预测.

       

    • 图  1  源-汇系统国内外近十年发表文章统计(基于SCI与CNKI数据库)

      Fig.  1.  Statistics of source-to-sink system research publications over the past decade (based on SCI and CNKI databases)

      图  2  断层下盘物源区河道-边坡耦合及沉积物产出示意图(据Attal et al., 2015修改)

      Fig.  2.  Channel-hillslope coupling and sediment production in a typical footwall catchment (modified from Attal et al., 2015)

      图  3  沉积物通量信号在沉积物路径系统中传递过程示意图(据Hodgson et al., 2018修改)

      Fig.  3.  Diagrammatic representation of sediment flux signal transmission in the sediment routing system (modified from Hodgson et al., 2018)

      图  4  渤海海域西南部沙垒田凸起与埕子口凸起联合供源区沙河街组滩坝沉积体物质转换及响应模式(据Liu et al., 2023修改)

      Fig.  4.  Material transformation and response model of beach bar sediments of Shahejie Formation in the joint provenance area of Shaleitian uplift and Chengzikou uplift in the southwestern Bohai Sea (modified from Liu et al., 2023)

      图  5  南海北部低纬度带裂陷盆地气候-植被群落风化及机械-物理风化过程模式

      Fig.  5.  Climate-vegetation community weathering and mechanical-physical weathering process model of the rift basin in the low-latitude belt of the northern South China Sea

      图  6  断层下盘物源区对构造隆升响应的综合示意图(据Whittaker, 2012修改)

      Fig.  6.  A schematic diagram showing a fault-bounded catchment responding to slip rate increase (modified from Whittaker, 2012)

      图  7  沉积物路径系统模型示意图(据Malkowski et al., 2022修改)

      Fig.  7.  Schematic diagrams of sediment routing system (modified from Malkowski et al., 2022)

      图  8  逆蒙特卡洛算法下混源算法逻辑示意图(据Sundell and Saylor, 2017)

      Fig.  8.  Schematic diagrams of the mixed-source algorithm under the inverse Monte Carlo algorithm (modified from Sundell and Saylor, 2017)

      图  9  南海北部裂陷盆地季风环流-水深-水动力三元作用模型及其改造砂体响应关系

      Fig.  9.  Monsoon circulation-water depth-hydrodynamic three-dimensional model and its reworked sandstone response in the continental rift basin of northern South China Sea

      图  10  咸化湖盆碳酸盐岩沉积源-汇概念模式(据Bouton et al., 2020修改)

      Fig.  10.  Source-to-sink conceptual model carbonate deposits in saline lacustrine basin (modified from Bouton et al., 2020)

      表  1  气候条件、植被群落及基岩组合风化剥蚀效能(mm/a, 据Larsen et al., 2023修改)

      Table  1.   Weathering and denudation efficiency of climatic conditions, vegetation community and bedrock combination(mm/a, modified from Larsen et al., 2023)

      气候 植被群落 花岗岩类 花岗岩 花岗
      闪长岩
      石英
      二长岩
      石英二长
      闪长岩
      碱长
      花岗岩
      正长
      花岗岩
      二长
      花岗岩
      热带 针叶-阔叶混交林 1.560 1.591 1.565 1.431 1.323 1.435 1.330
      落叶阔叶林 1.521 1.556 1.524 1.398 1.289 1.378 1.264
      针叶林 1.437 1.445 1.441 1.387 1.347 1.413 1.378
      混合落叶针叶-阔叶林 1.122 1.121 1.123 1.113 1.107 1.136 1.132
      草本植物 1.062 1.060 1.062 1.060 1.060 1.074 1.078
      落叶阔叶-阔叶林 0.994 0.992 0.994 0.999 1.004 1.004 1.010
      下载: 导出CSV
    • Aalto, R., Lauer, J. W., Dietrich, W. E., 2008. Spatial and Temporal Dynamics of Sediment Accumulation and Exchange along Strickland River Floodplains (Papua New Guinea) over Decadal-to-Centennial Timescales. Journal of Geophysical Research: Earth Surface, 113(F1). https://doi.org/10.1029/2006jf000627
      Abdelwahhab, M. A., Abdelhafez, N. A., Embabi, A. M., 2023.3D-Static Reservoir and Basin Modeling of a Lacustrine Fan-Deltaic System in the Gulf of Suez, Egypt. Petroleum Research, 8(1): 18-35. https://doi.org/10.1016/j.ptlrs.2022.05.002
      Allen, P. A., 1984. Reconstruction of Ancient Sea Conditions with an Example from the Swiss Molasse. Marine Geology, 60(1-4): 455-473. https://doi.org/10.1016/0025-3227(84)90162-2
      Allen, P. A., 2008a. From Landscapes into Geological History. Nature, 451: 274-276. https://doi.org/10.1038/nature06586
      Allen, P. A., 2008b. Time Scales of Tectonic Landscapes and Their Sediment Routing Systems. Geological Society, London, Special Publications, 296(1): 7-28. https://doi.org/10.1144/sp296.2
      Allen, P. A., 2017. Sediment Routing Systems: The Fate of Sediment from Source to Sink. Cambridge University Press, Cambridge, UK.
      Allen, P. A., Armitage, J. J., Carter, A., et al., 2013. The Qs Problem: Sediment Volumetric Balance of Proximal Foreland Basin Systems. Sedimentology, 60(1): 102-130. https://doi.org/10.1111/sed.12015
      Allen, P. A., Hovius, N., 1998. Sediment Supply from Landslide-Dominated Catchments: Implications for Basin-Margin Fans. Basin Research, 10(1): 19-35. doi: 10.1046/j.1365-2117.1998.00060.x
      Anthony, E. J., Julian, M., 1999. Source-to-Sink Sediment Transfers, Environmental Engineering and Hazard Mitigation in the Steep Var River Catchment, French Riviera, Southeastern France. Geomorphology, 31(1-4): 337-354. https://doi.org/10.1016/s0169-555x(99)00088-4
      Attal, M., Mudd, S. M., Hurst, M. D., et al., 2015. Impact of Change in Erosion Rate and Landscape Steepness on Hillslope and Fluvial Sediments Grain Size in the Feather River Basin (Sierra Nevada, California). Earth Surface Dynamics, 3(1): 201-222. doi: 10.5194/esurf-3-201-2015
      Beaumont, C., Kooi, H., Willet, S., 2000. Coupled Tectonic-Surface Process Models with Applications to Rifted Margins and Collisional Orogens. In: Summerfield, M. A., ed., Geomorphology and Global Tectonics. Wiley, Chichester, U. S. A..
      Bentley, S. J., Blum, M. D., Maloney, J., et al., 2016. The Mississippi River Source-to-Sink System: Perspectives on Tectonic, Climatic, and Anthropogenic Influences, Miocene to Anthropocene. Earth-Science Reviews, 153: 139-174. https://doi.org/10.1016/j.earscirev.2015.11.001
      Bhattacharya, J. P., Copeland, P., Lawton, T. F., et al., 2016. Estimation of Source Area, River Paleo-Discharge, Paleoslope, and Sediment Budgets of Linked Deep-Time Depositional Systems and Implications for Hydrocarbon Potential. Earth-Science Reviews, 153: 77-110. https://doi.org/10.1016/j.earscirev.2015.10.013
      Blum, M., 2019. Organization and Reorganization of Drainage and Sediment Routing through Time: The Mississippi River System. Geological Society, London, Special Publications, 488(1): 15-45. https://doi.org/10.1144/sp488-2018-166
      Blum, M., Pecha, M., 2014. Mid-Cretaceous to Paleocene North American Drainage Reorganization from Detrital Zircons. Geology, 42(7): 607-610. https://doi.org/10.1130/g35513.1
      Blum, M. D., Hattier-Womack, J., 2009. Climate Change, Sea-Level Change, and Fluvial Sediment Supply to Deepwater Depositional Systems. External Controls of Deep-Water Depositional Systems, SEPM, Special Publication, 92: 15-39. https://doi.org/10.2110/sepmsp.092.015
      Bouton, A., Vennin, E., Amiotte-Suchet, P., et al., 2020. Prediction of the Calcium Carbonate Budget in a Sedimentary Basin: A "Source-to-Sink" Approach Applied to Great Salt Lake, Utah, USA. Basin Research, 32(5): 1005-1034. https://doi.org/10.1111/bre.12412
      Brewer, C. J., Hampson, G. J., Whittaker, A. C., et al., 2020. Comparison of Methods to Estimate Sediment Flux in Ancient Sediment Routing Systems. Earth-Science Reviews, 207: 103217. https://doi.org/10.1016/j.earscirev.2020.103217
      Brown, W. M., Ritter, J. R., 1971. Sediment Transport and Turbidity in the Eel River Basin, California. US Government Printing Office, Washington, U. S. A..
      Buma, B., Johnson, A. C., 2015. The Role of Windstorm Exposure and Yellow Cedar Decline on Landslide Susceptibility in Southeast Alaskan Temperate Rainforests. Geomorphology, 228: 504-511. https://doi.org/10.1016/j.geomorph.2014.10.014
      Caldeira, K., 2006. Forests, Climate, and Silicate Rock Weathering. Journal of Geochemical Exploration, 88(1-3): 419-422. https://doi.org/10.1016/j.gexplo.2005.08.089
      Catuneanu, O., 2022. Principles of Sequence Stratigraphy(2nd). Elsevier Science, San Diego.
      Cawood, P. A., Mulder, J., Chowdhury, P., 2022. Secular Evolution of Tectonics and Volcano-Sedimentology. Proceedings of the 21st International Sedimentological Congress, Beijing.
      Chen, H. H., Wood, L. J., Gawthorpe, R. L., 2021. Sediment Dispersal and Redistributive Processes in Axial and Transverse Deep-Time Source-to-Sink Systems of Marine Rift Basins: Dampier Sub-Basin, Northwest Shelf, Australia. Basin Research, 33(1): 227-249. https://doi.org/10.1111/bre.12462
      Chen, H. H., Zhu, X. M., Gawthorpe, R. L., et al., 2022. The Interactions of Volcanism and Clastic Sedimentation in Rift Basins: Insights from the Palaeogene-Neogene Shaleitian Uplift and Surrounding Sub-Basins, Bohai Bay Basin, China. Basin Research, 34(3): 1084-1112 doi: 10.1111/bre.12651
      Chen, H. H., Zhu, X. M., Huang, H. D., et al., 2017. Sediment Provenance of Shahejie Formation in Lixian Slope of Raoyang Depression Based on the Detrital Zircon Dating Analysis. Earth Science, 42(11): 1955-1971(in Chinese with English abstract).
      Chen, H. H., Zhu, X. M., Wood, L. J., et al., 2020. Evolution of Drainage, Sediment-Flux and Fluvio-Deltaic Sedimentary Systems Response in Hanging Wall Depocentres in Evolving Non-Marine Rift Basins: Paleogene of Raoyang Sag, Bohai Bay Basin, China. Basin Research, 32(1): 116-145. https://doi.org/10.1111/bre.12371
      Chevalier, M., Davis, B. A. S., Heiri, O., et al., 2020. Pollen-Based Climate Reconstruction Techniques for Late Quaternary Studies. Earth-Science Reviews, 210: 103384. https://doi.org/10.1016/j.earscirev.2020.103384
      Clift, P. D., Jonell, T. N., 2021. Monsoon Controls on Sediment Generation and Transport: Mass Budget and Provenance Constraints from the Indus River Catchment, Delta and Submarine Fan over Tectonic and Multimillennial Timescales. Earth-Science Reviews, 220: 103682. https://doi.org/10.1016/j.earscirev.2021.103682
      Crockett, J. S., Nittrouer, C. A., Ogston, A. S., et al., 2008. Morphology and Filling of Incised Submarine Valleys on the Continental Shelf near the Mouth of the Fly River, Gulf of Papua. Journal of Geophysical Research: Earth Surface, 113(F1). https://doi.org/10.1029/2006jf000674
      Cullen, T. M., Collier, R. E. L., Gawthorpe, R. L., et al., 2020. Axial and Transverse Deep-Water Sediment Supply to Syn-Rift Fault Terraces: Insights from the West Xylokastro Fault Block, Gulf of Corinth, Greece. Basin Research, 32(5): 1105-1139. https://doi.org/10.1111/bre.12416
      D'Elia, L., Martí, J., Muravchik, M., et al., 2018. Impact of Volcanism on the Sedimentary Record of the Neuquén Rift Basin, Argentina: Towards a Cause and Effect Model. Basin Research, 30(S1): 311-335. https://doi.org/10.1111/bre.12222
      Dickinson, W. R., Gehrels, G. E., 2010. Insights into North American Paleogeography and Paleotectonics from U-Pb Ages of Detrital Zircons in Mesozoic Strata of the Colorado Plateau, USA. International Journal of Earth Sciences, 99(6): 1247-1265. https://doi.org/10.1007/s00531-009-0462-0
      Dickinson, W. R., Lawton, T. F., Gehrels, G. E., 2009. Recycling Detrital Zircons: A Case Study from the Cretaceous Bisbee Group of Southern Arizona. Geology, 37(6): 503-506. https://doi.org/10.1130/g25646a.1
      Druitt, T., Kutterolf, S., Höfig, T. W., 2022. Expedition 398 Scientific Prospectus: Hellenic Arc Volcanic Field. International Ocean Discovery Program. https://doi.org/10.14379/iodp.sp.398.2022
      Du, J. Y., Zhang, X. T., Liu, P., et al., 2021. Classification of Paleogene Source-to-Sink System and Its Petroleum Geological Significance in Zhuyi Depression of Pearl River Mouth Basin. Earth Science, 46(10): 3690-3706(in Chinese with English abstract).
      Elliott, G. M., Wilson, P., Jackson, C. A. L., et al., 2012. The Linkage between Fault Throw and Footwall Scarp Erosion Patterns: An Example from the Bremstein Fault Complex, Offshore Mid-Norway. Basin Research, 24(2): 180-197. https://doi.org/10.1111/j.1365-2117.2011.00524.x
      Emmel, B., de Jager, G., Zieba, K., et al., 2015. A 3D, Map Based Approach to Reconstruct and Calibrate Palaeo-Bathymetries—Testing the Cretaceous Water Depth of the Hammerfest Basin, Southwestern Barents Sea. Continental Shelf Research, 97: 21-31. https://doi.org/10.1016/j.csr.2015.02.003
      Ershov, S. V., 2016. Paleobathymetry of the Late Jurassic-Neocomian Basin in Northern West Siberia and the Impact of Natural Processes. Russian Geology and Geophysics, 57(8): 1221-1238. https://doi.org/10.1016/j.rgg.2016.08.008
      Fei, S. L., Phillips, J., Shouse, M., 2014. Biogeomorphic Impacts of Invasive Species. Annual Review of Ecology, Evolution, and Systematics, 45: 69-87. https://doi.org/10.1146/annurev-ecolsys-120213-091928
      Francis, J. M., Daniell, J. J., Droxler, A. W., et al., 2008. Deep Water Geomorphology of the Mixed Siliciclastic-Carbonate System, Gulf of Papua. Journal of Geophysical Research: Earth Surface, 113(F1). https://doi.org/10.1029/2007jf000851
      Fu, C. F., Fang, X. M., Song, Y. G., et al., 2005. Two Quantitative Methods of Studying Orogenic Belt Uplift and Denudation through Basin-Range Sedimentary Coupling. Marine Geology & Quaternary Geology, 25(1): 105-112(in Chinese with English abstract).
      Ganti, V., Lamb, M. P., McElroy, B., 2014. Quantitative Bounds on Morphodynamics and Implications for Reading the Sedimentary Record. Nature Communications, 5: 3298. https://doi.org/10.1038/ncomms4298
      Gao, Y. D., Peng, G. R., Zhang, X. T., et al., 2023. Characteristics and Evolution of the Source-to-Sink System of the Paleogene Wenchang Formation in Baiyun Sag, Pearl River Mouth Basin. Oil & Gas Geology, 44(3): 584-599(in Chinese with English abstract).
      Gawthorpe, R. L., Leeder, M. R., 2000. Tectono-Sedimentary Evolution of Active Extensional Basins. Basin Research, 12(3-4): 195-218. https://doi.org/10.1111/j.1365-2117.2000.00121.x
      Gazzetti, E., 2015. Autogenic Signals in an Experimental Source-To-Sink System (Dissertation). University of Minnesota, Minnesota, U. S. A..
      Geier, C., Bouchal, J. M., Ulrich, S., et al., 2022. Paleovegetation and Paleoclimate Inferences of the Early Late Sarmatian Palynoflora from the Gleisdorf Fm. at Gratkorn, Styria, Austria. Review of Palaeobotany and Palynology, 307: 104767. https://doi.org/10.1016/j.revpalbo.2022.104767
      Gérard, B., Rouby, D., Huismans, R. S., et al., 2023. Impact of Inherited Foreland Relief on Retro-Foreland Basin Architecture. Journal of Geophysical Research: Solid Earth, 128(3): e2022JB024967. https://doi.org/10.1029/2022jb024967
      Gernon, T. M., Hincks, T. K., Merdith, A. S., et al., 2021. Global Chemical Weathering Dominated by Continental Arcs since the Mid-Palaeozoic. Nature Geoscience, 14(9): 690-696. https://doi.org/10.1038/s41561-021-00806-0
      Gilbert, G. K., 1917. Hydraulic-Mining Debris in the Sierra Nevada (No. 105). US Government Printing Office, U. S. A..
      Gong, C. L., Qi, K., Xu, J., et al., 2021. Process-Product Linkages and Feedback Mechanisms of Deepwater Source-to-Sink Responses to Multi-Scale Climate Changes. Acta Sedimentologica Sinica, 39(1): 231-252(in Chinese with English abstract).
      Grodek, T., Morin, E., Helman, D., et al., 2020. Eco-Hydrology and Geomorphology of the Largest Floods along the Hyperarid Kuiseb River, Namibia. Journal of Hydrology, 582: 124450. https://doi.org/10.1016/j.jhydrol.2019.124450
      Harishidayat, D., Emmel, B. U., De Jager, G., et al., 2022. Assessment of Continental Margin Clinoform Systems in the Sørvestsnaget Basin, Western Barents Sea: From Clinoform Parameters towards Paleo-Water Depth. Marine Geophysical Research, 43(2): 22. https://doi.org/10.1007/s11001-022-09485-x
      Helland-Hansen, W., Sømme, T. O., Martinsen, O. J., et al., 2016. Deciphering Earth's Natural Hourglasses: Perspectives on Source-to-Sink Analysis. Journal of Sedimentary Research, 86(9): 1008-1033. https://doi.org/10.2110/jsr.2016.56
      Hinderer, M., 2012. From Gullies to Mountain Belts: A Review of Sediment Budgets at Various Scales. Sedimentary Geology, 280: 21-59. https://doi.org/10.1016/j.sedgeo.2012.03.009
      Hodgson, D. M., Bernhardt, A., Clare, M. A., et al., 2018. Grand Challenges (and Great Opportunities) in Sedimentology, Stratigraphy, and Diagenesis Research. Frontiers in Earth Science, 6: 173. https://doi.org/10.3389/feart.2018.00173
      Hu, X. F., Pan, B. T., Li, Q., 2014. Principles of the Stream Power Erosion Model and Its Latest Progress in Research. Journal of Lanzhou University (Natural Sciences), 50(6): 824-831(in Chinese with English abstract).
      Hu, X. M., Xue, W. W., Lai, W., et al., 2021. Sedimentary Basins in Orogenic Belt and Continental Geodynamics. Acta Geologica Sinica, 95(1): 139-158(in Chinese with English abstract).
      Jackson, C. A. L., Schofield, N., Golenkov, B., 2013. Geometry and Controls on the Development of Igneous Sill-Related Forced Folds: A 2-D Seismic Reflection Case Study from Offshore Southern Australia. Geological Society of America Bulletin, 125(11-12): 1874-1890. https://doi.org/10.1130/b30833.1
      Jerolmack, D. J., Paola, C., 2010. Shredding of Environmental Signals by Sediment Transport. Geophysical Research Letters, 37(19): L19401.. https://doi.org/10.1029/2010gl044638
      John, C. M., Karner, G. D., Mutti, M., 2004. δ18O and Marion Plateau Backstripping: Combining Two Approaches to Constrain Late Middle Miocene Eustatic Amplitude. Geology, 32(9): 829. https://doi.org/10.1130/g20580.1
      Jones, D. J. R., Dodd, T. J. H., McCarthy, D. J., 2023. The Influence of Complex Palaeobathymetry on Development of Deep-Lacustrine Fan Systems. Marine and Petroleum Geology, 149: 106090. https://doi.org/10.1016/j.marpetgeo.2022.106090
      Kataoka, K. S. 2022. Volcanic Source to Sink: From Subaerial Eruptions to Deep-Water Turbidity Currents. Proceedings of the 21st International Sedimentological Congress, Beijing.
      Kimiaghalam, N., Goharrokhi, M., Clark, S. P., et al., 2015. A Comprehensive Fluvial Geomorphology Study of Riverbank Erosion on the Red River in Winnipeg, Manitoba, Canada. Journal of Hydrology, 529: 1488-1498. https://doi.org/10.1016/j.jhydrol.2015.08.033
      Kirby, E., Whipple, K. X., 2012. Expression of Active Tectonics in Erosional Landscapes. Journal of Structural Geology, 44: 54-75. https://doi.org/10.1016/j.jsg.2012.07.009
      Larsen, I. J., Eger, A., Almond, P. C., et al., 2023. The Influence of Erosion and Vegetation on Soil Production and Chemical Weathering Rates in the Southern Alps, New Zealand. Earth and Planetary Science Letters, 608: 118036. doi: 10.1016/j.epsl.2023.118036
      Li, J. B., Gao, S., 2004. Basin Evolution and Resource Effect of China Marginal Sea. Ocean Press, Beijing(in Chinese).
      Li, Y. H., Song, F. X., Han, P., et al., 2019. A Ternary Sand Control Model of River-Dominated Delta in Tectonic Stability Period. Journal of Palaeogeography, 21(3): 397-406(in Chinese).
      Li, Y. T., Clift, P. D., O'Sullivan, P., 2019. Millennial and Centennial Variations in Zircon U-Pb Ages in the Quaternary Indus Submarine Canyon. Basin Research, 31(1): 155-170. https://doi.org/10.1111/bre.12313
      Li, Z. Q., Yang, B., Han, Z. J., et al., 2022. Tectonic-Thermal Evolution of Meso-Cenozoic Rift Basin in South Yellow Sea, Offshore Eastern China: Implications for Basin-Forming Mechanism and Thermal Evolution of Source Rocks. Earth Science, 47(5): 1652-1668(in Chinese with English abstract).
      Li, Z. Y., Liu, Q. H., Zhu, H. T., et al., 2021a. Compositional Relationship between the Source-to-Sink Segments and Their Sedimentary Response to Diverse Geomorphology Types in the Intrabasinal Lower Uplift of Continental Basins. Marine and Petroleum Geology, 123: 104716. https://doi.org/10.1016/j.marpetgeo.2020.104716
      Li, Y. Q., Yu, K. F., Bian, L. Z., et al., 2021b. Paleo-Water Depth Variations since the Pliocene as Recorded by Coralline Algae in the South China Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 562: 110107. https://doi.org/10.1016/j.palaeo.2020.110107
      Lin, C. S., Shi, H. S., Li, H., et al., 2018. Sequence Architecture, Depositional Evolution and Controlling Processes of Continental Slope in Pearl River Mouth Basin, Northern South China Sea. Earth Science, 43(10): 3407-3422(in Chinese with English abstract).
      Lin, C. S., Xia, Q. L., Shi, H. S., et al., 2015. Geomorphological Evolution, Source to Sink System and Basin Analysis. Earth Science Frontiers, 22(1): 9-20(in Chinese with English abstract).
      Liu, H., Tom van Loon, A. J., Xu, J. E., et al., 2020. Relationships between Tectonic Activity and Sedimentary Source-to-Sink System Parameters in a Lacustrine Rift Basin: A Quantitative Case Study of the Huanghekou Depression (Bohai Bay Basin, China). Basin Research, 32(4): 587-612. https://doi.org/10.1111/bre.12374
      Liu, J., Peng, G. R., Zheng, J. Y., et al., 2023. Sedimentary Transformation and Source-to-Sink Response to the Eocene Rifting Detachment in the Western Baiyun Sag, Pearl River Mouth Basin. Oil & Gas Geology, 44(3): 600-612(in Chinese with English abstract).
      Liu, J. P., Xian, B. Z., Tan, X. F., et al., 2022. Depositional Process and Dispersal Pattern of a Faulted Margin Hyperpycnal System: The Eocene Dongying Depression, Bohai Bay Basin, China. Marine and Petroleum Geology, 135: 105405. https://doi.org/10.1016/j.marpetgeo.2021.105405
      Liu, Q. H., 2016. "Source-to-Sink" System Coupling Analysis of the Paleogene, Shaleitian Uplift, Bohai Bay Basin, China (Dissertation). China University of Petroleum, Beijing(in Chinese with English abstract).
      Liu, Q. H., Zhu, H. T., Zhu, X. M., et al., 2019a. Proportional Relationship between the Flux of Catchment-Fluvial Segment and Their Sedimentary Response to Diverse Bedrock Types in Subtropical Lacustrine Rift Basins. Marine and Petroleum Geology, 107: 351-364. https://doi.org/10.1016/j.marpetgeo.2019.05.031
      Liu, Q. H., Zhu, X. M., Zeng, H. L., et al., 2019b. Source-to-Sink Analysis in an Eocene Rifted Lacustrine Basin Margin of Western Shaleitian Uplift Area, Offshore Bohai Bay Basin, Eastern China. Marine and Petroleum Geology, 107: 41-58. https://doi.org/10.1016/j.marpetgeo.2019.05.013
      Liu, Q. H., Zhu, X. M., Li, S. L., et al., 2016. Pre-Palaeogene Bedrock Distribution and Source-to-Sink System Analysis in the Shaleitian Uplift. Earth Science, 41(11): 1935-1949(in Chinese with English abstract).
      Liu, Z. F., Zhao, Y. L., Colin, C., et al., 2016a. Source-to-Sink Transport Processes of Fluvial Sediments in the South China Sea. Earth-Science Reviews, 153: 238-273. https://doi.org/10.1016/j.earscirev.2015.08.005.
      Liu, Q. H., Zhu, X. M., Yang, Y., et al., 2016b. Sequence Stratigraphy and Seismic Geomorphology Application of Facies Architecture and Sediment-Dispersal Patterns Analysis in the Third Member of Eocene Shahejie Formation, Slope System of Zhanhua Sag, Bohai Bay Basin, China. Marine and Petroleum Geology, 78: 766-784. https://doi.org/10.1016/j.marpetgeo.2015.11.015
      Liu, Q. H., Zhu, X. M., Zhou, Z. Q., et al., 2023. Provenance Identification and Source-to-Sink Studies from an Intrabasinal Subaqueous Uplift in the Eocene Western Bohai Bay Basin, Eastern North China. Marine and Petroleum Geology, 149: 106087. https://doi.org/10.1016/j.marpetgeo.2022.106087
      Liu, Q. H., Zhu, X. M., Zhu, H. T., et al., 2017. Three-Dimensional Forward Stratigraphic Modelling of the Gravel-to Mud-Rich Fan-Delta in the Slope System of Zhanhua Sag, Bohai Bay Basin, China. Marine and Petroleum Geology, 79: 18-30. https://doi.org/10.1016/j.marpetgeo.2016.10.030
      Liu, Z. F., Colin, C., Huang, W., et al., 2007a. Clay Minerals in Surface Sediments of Pearl River Basin and Their Contribution to Sediments in South China Sea. Chinese Science Bulletin, 52(4): 448-456(in Chinese). doi: 10.1360/csb2007-52-4-448
      Liu, Z. F., Zhao, Y. L., Li, J. R., et al., 2007b. Late Quaternary Clay Mineral Records off Vietnam Coast in Western South China Sea: Provenance Analysis and Evolution of East Asian Monsoon. Science in China (Series D), 37(9): 1176-1184(in Chinese).
      Liu, Z. F., Li, X. J., Colin, C., et al., 2010. High-Resolution Clay Mineral Records and Their Time Series Provenance Analysis since the last Glacial Maximum in the Northern South China Sea. Chinese Science Bulletin, 55(29): 2852-2862(in Chinese). doi: 10.1360/csb2010-55-29-2852
      Liu, Z. F., Trentesaux, A. S. C. C., Wang, P. X., 2003. Quaternary Clay Mineral Records at ODP1146 Station on the Northern Slope of the South China Sea: Ocean Current Transport and East Asian Monsoon Evolution. Science in China (Series D), 33(3): 271-280(in Chinese).
      Liu, Z. F., Zhao, Y. L., Wang, Y. J., et al., 2017. Clay Mineralogical Proxy of the East Asian Monsoon Evolution during the Quaternary in the South China Sea. Quaternary Sciences, 37(5): 921-933(in Chinese with English abstract).
      Magee, C., Jackson, C. A. L., Schofield, N., 2013. The Influence of Normal Fault Geometry on Igneous Sill Emplacement and Morphology. Geology, 41(4): 407-410. https://doi.org/10.1130/g33824.1
      Malkowski, M., Johnstone, S., Sharman, G., et al., 2022. Continental Shelves as Detrital Mixers: U-Pb and Lu-Hf Detrital Zircon Provenance of the Pleistocene-Holocene Bering Sea and Its Margins. The Depositional Record, 8: 1008-1030. https://doi.org/10.1002/dep2.203
      Michael, N. 2013. Functioning of an Ancient Routing System, the Escanilla Formation, South Central Pyrenee. Imperial College London, London, UK.
      Nyberg, B., Gawthorpe, R. L., Helland-Hansen, W., 2018b. The Distribution of Rivers to Terrestrial Sinks: Implications for Sediment Routing Systems. Geomorphology, 316: 1-23. https://doi.org/10.1016/j.geomorph.2018.05.007
      Nyberg, B., Helland-Hansen, W., Gawthorpe, R. L., et al., 2018a. Revisiting Morphological Relationships of Modern Source-to-Sink Segments as a First-Order Approach to Scale Ancient Sedimentary Systems. Sedimentary Geology, 373: 111-133. https://doi.org/10.1016/j.sedgeo.2018.06.007
      Olsen, P. E., 1986. A 40-Million-Year Lake Record of Early Mesozoic Orbital Climatic Forcing. Science, 234(4778): 842-848. https://doi.org/10.1126/science.234.4778.842
      Pang, X., Peng, D. J., Chen, C. M., et al., 2007. Three Hierarchies "Source-Conduit-Sink" Coupling Analysis of the Pearl River Deep-Water Fan System. Acta Geologica Sinica, 81(6): 857-864(in Chinese with English abstract).
      Pawlik, Ł., Phillips, J. D., Šamonil, P., 2016. Roots, Rock, and Regolith: Biomechanical and Biochemical Weathering by Trees and Its Impact on Hillslopes: A Critical Literature Review. Earth-Science Reviews, 159: 142-159. https://doi.org/10.1016/j.earscirev.2016.06.002
      Pechlivanidou, S., Cowie, P. A., Hannisdal, B., et al., 2018. Source-to-Sink Analysis in an Active Extensional Setting: Holocene Erosion and Deposition in the Sperchios Rift, Central Greece. Basin Research, 30(3): 522-543. https://doi.org/10.1111/bre.12263
      Peng, G. R., Wang, X. C., Chen, W. T., et al., 2023. Source-to-Sink System during Rifting-Depression Transition Period and Its Exploration Significance: A Case Study of the Upper Enping Formation at Southeastern Margin of Huizhou 26 Sub-Sag, Pearl River Mouth Basin. Oil & Gas Geology, 44(3): 613-625(in Chinese with English abstract).
      Pérez, F. L., 2023. Geoecology of a Granite Dome: Spatial Interactions between Gnammas, Rills, Soils, and Plant Cover, Enchanted Rock (Texas, USA). Catena, 223: 106938. https://doi.org/10.1016/j.catena.2023.106938
      Phillips, J. D., Turkington, A. V., Marion, D. A., 2008. Weathering and Vegetation Effects in Early Stages of Soil Formation. Catena, 72(1): 21-28. https://doi.org/10.1016/j.catena.2007.03.020
      Planke, S., Millett, J. M., Maharjan, D., et al., 2017. Igneous Seismic Geomorphology of Buried Lava Fields and Coastal Escarpments on the Vøring Volcanic Rifted Margin. Interpretation, 5(3): SK161-SK177. https://doi.org/10.1190/int-2016-0164.1
      Quick, L., Sinclair, H. D., Attal, M., et al., 2020. Conglomerate Recycling in the Himalayan Foreland Basin: Implications for Grain Size and Provenance. GSA Bulletin, 132(7-8): 1639-1656. https://doi.org/10.1130/b35334.1
      Reiners, P. W., Campbell, I. H., Nicolescu, S., et al., 2005. (U-Th)/(He-Pb) Double Dating of Detrital Zircons. American Journal of Science, 305(4): 259-311. https://doi.org/10.2475/ajs.305.4.259
      Ren, J. Y., Lu, Y. C., Zhang, Q. L., 2004. Forming Mechanism of Structural Slope-Break and Its Control on Sequence Style in Faulted Basin. Earth Science, 29(5): 596-602(in Chinese with English abstract).
      Roda-Boluda, D. C., Whittaker, A. C., 2018. Normal Fault Evolution and Coupled Landscape Response: Examples from the Southern Apennines, Italy. Basin Research, 30(Suppl. 1): 186-209. https://doi.org/10.1111/bre.12215.
      Romans, B. W., Castelltort, S., Covault, J. A., et al., 2016. Environmental Signal Propagation in Sedimentary Systems across Timescales. Earth-Science Reviews, 153: 7-29. https://doi.org/10.1016/j.earscirev.2015.07.012
      Romans, B. W., Graham, S. A., 2013. A Deep-Time Perspective of Land-Ocean Linkages in the Sedimentary Record. Annual Review of Marine Science, 5: 69-94. https://doi.org/10.1146/annurev-marine-121211-172426
      Rowley, D. B., Garzione, C. N., 2007. Stable Isotope-Based Paleoaltimetry. Annual Review of Earth and Planetary Sciences, 35: 463-508. https://doi.org/10.1146/annurev.earth.35.031306.140155
      Ryan, D. A., Bostock, H. C., Brooke, B. P., et al., 2007. Bathymetric Expression of the Fitzroy River Palaeochannel, Northeast Australia: Response of a Major River to Sea-Level Change on a Semi-Rimmed, Mixed Siliciclastic-Carbonate Shelf. Sedimentary Geology, 201(1-2): 196-211. https://doi.org/10.1016/j.sedgeo.2007.05.018
      Sadler, P. M., 1981. Sediment Accumulation Rates and the Completeness of Stratigraphic Sections. The Journal of Geology, 89(5): 569-584. https://doi.org/10.1086/628623
      Salles, T., Husson, L., Rey, P., et al., 2023. Hundred Million Years of Landscape Dynamics from Catchment to Global Scale. Science, 379(6635): 918-923. https://doi.org/10.1126/science.add2541
      Santos, A., Da Silva, R., Neto, E., et al., 2021. Weathering and Pedogenesis of Mafic Rock in the Brazilian Atlantic Forest. Journal of South American Earth Sciences, 111: 103452. https://doi.org/10.1016/j.jsames.2021.103452
      Saylor, J. E., Stockli, D. F., Horton, B. K., et al., 2012. Discriminating Rapid Exhumation from Syndepositional Volcanism Using Detrital Zircon Double Dating: Implications for the Tectonic History of the Eastern Cordillera, Colombia. Geological Society of America Bulletin, 124(5-6): 762-779. https://doi.org/10.1130/b30534.1
      Scholz, C. A., Johnson, T. C., Cohen, A. S., et al., 2007. East African Megadroughts between 135 and 75 Thousand Years ago and Bearing on Early-Modern Human Origins. Proceedings of the National Academy of Sciences of the United States of America, 104(42): 16416-16421. https://doi.org/10.1073/pnas.0703874104
      Schumer, R., Jerolmack, D. J., 2009. Real and Apparent Changes in Sediment Deposition Rates through Time. Journal of Geophysical Research: Earth Surface, 114(F3). https://doi.org/10.1029/2009jf001266.
      Sennikov, N. V., Obut, O. T., Bukolova, E. V., et al., 2011. The Depths of the Early Paleozoic Sedimentary Basins of the Paleoasian Ocean: Lithofacies and Bioindicator Estimates. Russian Geology and Geophysics, 52(10): 1171-1194. https://doi.org/10.1016/j.rgg.2011.09.010
      Shaanan, U., Rosenbaum, G., 2018. Detrital Zircons as Palaeodrainage Indicators: Insights into Southeastern Gondwana from Permian Basins in Eastern Australia. Basin Research, 30(Suppl. 1): 36-47. https://doi.org/10.1111/bre.12204
      Shao, L., Cao, L. C., Qiao, P. J., et al., 2017. Cretaceous-Eocene Provenance Connections between the Palawan Continental Terrane and the Northern South China Sea Margin. Earth and Planetary Science Letters, 477: 97-107. https://doi.org/10.1016/j.epsl.2017.08.019
      Shao, L. Y., Wang, X. T., Li, Y. N., et al., 2019. Review on Palaeogeographic Reconstruction of Deep-Time Source-to-Sink Systems. Journal of Palaeogeography, 21(1): 67-81(in Chinese with English abstract).
      Sharman, G. R., Hubbard, S. M., Covault, J. A., et al., 2018. Sediment Routing Evolution in the North Alpine Foreland Basin, Austria: Interplay of Transverse and Longitudinal Sediment Dispersal. Basin Research, 30(3): 426-447. doi: 10.1111/bre.12259
      Sharman, G. R., Johnstone, S. A., 2017. Sediment Unmixing Using Detrital Geochronology. Earth and Planetary Science Letters, 477: 183-194. https://doi.org/10.1016/j.epsl.2017.07.044
      Sklar, L. S., Riebe, C. S., Marshall, J. A., et al., 2017. The Problem of Predicting the Size Distribution of Sediment Supplied by Hillslopes to Rivers. Geomorphology, 277: 31-49. https://doi.org/10.1016/j.geomorph.2016.05.005
      Slingerland, R., Driscoll, N. W., Milliman, J. D., et al., 2008. Anatomy and Growth of a Holocene Clinothem in the Gulf of Papua. Journal of Geophysical Research: Earth Surface, 113(F1). https://doi.org/10.1029/2006jf000628 doi: 10.1029/2009jf001266
      Sømme, T. O., Helland-Hansen, W., Martinsen, O. J., et al., 2009. Relationships between Morphological and Sedimentological Parameters in Source-to-Sink Systems: A Basis for Predicting Semi-Quantitative Characteristics in Subsurface Systems. Basin Research, 21(4): 361-387. https://doi.org/10.1111/j.1365-2117.2009.00397.x
      Sømme, T. O., Martinsen, O. J., Lunt, I., 2013. Linking Offshore Stratigraphy to Onshore Paleotopography: The Late Jurassic-Paleocene Evolution of the South Norwegian Margin. Geological Society of America Bulletin, 125(7-8): 1164-1186. https://doi.org/10.1130/b30747.1
      Soreghan, G. S., Bralower, T. J., Chandler, M. A., et al. 2005. Geosystems; Probing Earth's Deep-Time Climate and Linked Systems. University of Oklahoma Printing Service, Oklahoma, U. S. A..
      Sun, S., Wang, C. S., 2009. Deep Time and Sedimentology. Acta Sedimentologica Sinica, 27(5): 792-810(in Chinese with English abstract).
      Sundell, K. E., Saylor, J. E., 2017. Unmixing Detrital Geochronology Age Distributions. Geochemistry, Geophysics, Geosystems, 18(8): 2872-2886. https://doi.org/10.1002/2016gc006774
      Syvitski, J. P. M., Milliman, J. D., 2007. Geology, Geography, and Humans Battle for Dominance over the Delivery of Fluvial Sediment to the Coastal Ocean. The Journal of Geology, 115(1): 1-19. https://doi.org/10.1086/509246
      Syvitski, J. P. M., Paola, R., Slingerland, R., et al. 2004. Building a Community Surface Dynamics Modeling System Rationale and Strategy. A Report to the National Science Foundation. State College. Penn State University, Pennsylvania, U. S. A..
      Tamura, T., 2012. Beach Ridges and Prograded Beach Deposits as Palaeoenvironment Records. Earth-Science Reviews, 114(3-4): 279-297. https://doi.org/10.1016/j.earscirev.2012.06.004
      Tan, M., Zhu, X., Wei, W., et al., 2018. The Sequence Stratigraphy and Depositional Characteristics of Fan-Delta Complexes in the Upper Bayingebi Member (Lower Cretaceous) in Chagan Sag, Inner Mongolia, China. Geological Journal, 53(1): 349-370. doi: 10.1002/gj.2901
      Tan, M. X., Scholz, C. A., 2021. Source-to-Sink Response to High-Amplitude Lake Level Rise Driven by Orbital-Scale Climate Change: An Example from the Pleistocene Lake Malawi (Nyasa) Rift, East Africa. Sedimentology, 68(7): 3494-3522. https://doi.org/10.1111/sed.12909
      Tan, M. X., Zhu, X. M., Zhang, Z. L., et al., 2020. Summary of Sedimentological Issues and Fundamental Approaches in Terms of Ancient "Source-to-Sink" Systems. Oil & Gas Geology, 41(5): 1107-1118(in Chinese with English abstract).
      Taylor, L. L., Banwart, S. A., Valdes, P. J., et al., 2012. Evaluating the Effects of Terrestrial Ecosystems, Climate and Carbon Dioxide on Weathering over Geological Time: A Global-Scale Process-Based Approach. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1588): 565-582. https://doi.org/10.1098/rstb.2011.0251
      Thomas, A. L., Fujita, K., Iryu, Y., et al., 2012. Assessing Subsidence Rates and Paleo Water-Depths for Tahiti Reefs Using U-Th Chronology of Altered Corals. Marine Geology, 295/296/297/298: 86-94. https://doi.org/10.1016/j.margeo.2011.12.006
      Tian, L. X., 2021. Sedimentary-Reservoir Characteristics under Control of Transfer Model and Implications for Hydrocarbon Exploration in Huizhou Depression, Pearl River Mouth Basin. Earth Science, 46(11): 4043-4056(in Chinese with English abstract).
      Walsh, J. P., Wiberg, P. L., Aalto, R., et al., 2016. Source-to-Sink Research: Economy of the Earth's Surface and Its Strata. Earth-Science Reviews, 153: 1-6. https://doi.org/10.1016/j.earscirev.2015.11.010
      Wang, J. D., Yu, J. G., Sun, M. J., 1998. Depositional Mode and Seismic Recognition of Sandstone and Conglomerate Fan Bodies in the Abrupt Slope Zone of Terrestrial Facies Lake Basin. Geophysical Prospecting for Petroleum, 37(3): 40-47(in Chinese with English abstract).
      Wang, P. J., Zhang, G. C., Meng, Q. A., et al., 2011. Applications of Seismic Volcanostratigraphy to the Volcanic Rifted Basins of China. Chinese Journal of Geophysics, 54(2): 597-610(in Chinese with English abstract).
      Wang, X. H., Wang, Y. K., Danzengpingcuo, et al., 2022. Sediment Flux Simulation Paleogeomorphological Implications in the Terrestrial Source-to-Sink System: A Case Study in Nima Area, Central Tibet. Acta Sedimentologica Sinica, 40(4): 912-923(in Chinese with English abstract).
      Wang, X. S., Zhang, J., Qin, Z., 2013. Methods for Measuring Erosion Rate of Rock: An Overview. Advances in Earth Science, 28(4): 447-454(in Chinese with English abstract).
      Wang, X. T., Shao, L. Y., Eriksson, K., et al., 2022. Using BQART Model to Reconstruct Paleo-Relief in Deep Time Based on Quantitative Paleogeography: A Case Study from the Late Permian Central Emeishan Large Igneous Province. Acta Sedimentologica Sinica, 40(6): 1461-1480, 1449(in Chinese with English abstract).
      Watkins, S. E., Whittaker, A. C., Bell, R. E., et al., 2019. Are Landscapes Buffered to High-Frequency Climate Change? A Comparison of Sediment Fluxes and Depositional Volumes in the Corinth Rift, Central Greece, over the Past 130 k. y.. GSA Bulletin, 131(3-4): 372-388. https://doi.org/10.1130/b31953.1
      Weltje, G. J., 2012. Quantitative Models of Sediment Generation and Provenance: State of the Art and Future Developments. Sedimentary Geology, 280: 4-20. https://doi.org/10.1016/j.sedgeo.2012.03.010
      Whipple, K. X., Tucker, G. E., 1999. Dynamics of the Stream-Power River Incision Model: Implications for Height Limits of Mountain Ranges, Landscape Response Timescales, and Research Needs. Journal of Geophysical Research: Solid Earth, 104(B8): 17661-17674. https://doi.org/10.1029/1999jb900120
      Whittaker, A. C., 2012. How do Landscapes Record Tectonics and Climate? Lithosphere, 4(2): 160-164. https://doi.org/10.1130/rf.l003.1
      Whittaker, A. C., Attal, M., Allen, P. A., 2010. Characterising the Origin, Nature and Fate of Sediment Exported from Catchments Perturbed by Active Tectonics. Basin Research, 22(6): 809-828. https://doi.org/10.1111/j.1365-2117.2009.00447.x
      Whittaker, A. C., Walker, A. S., 2015. Geomorphic Constraints on Fault Throw Rates and Linkage Times: Examples from the Northern Gulf of Evia, Greece. Journal of Geophysical Research: Earth Surface, 120(1): 137-158. https://doi.org/10.1002/2014jf003318
      Wolf, L., Huismans, R. S., Rouby, D., et al., 2022. Links between Faulting, Topography, and Sediment Production during Continental Rifting: Insights from Coupled Surface Process, Thermomechanical Modeling. Journal of Geophysical Research: Solid Earth, 127(3). https://doi.org/10.1029/2021jb023490
      Wrona, T., Whittaker, A. C., Bell, R. E., et al., 2022. Rift Kinematics Preserved in Deep-Time Erosional Landscape below the Northern North Sea. Basin Research, 35(2): 744-761. https://doi.org/10.1111/bre.12732
      Wu, H., Ji, Y. L., Wu, C. L., et al., 2019. Stratigraphic Response to Spatiotemporally Varying Tectonic Forcing in Rifted Continental Basin: Insight from a Coupled Tectonic-Stratigraphic Numerical Model. Basin Research, 31(2): 311-336. https://doi.org/10.1111/bre.12322
      Xu, C. G., 2013. Controlling Sand Principle of Source-Sink Coupling in Time and Space in Continental Rift Basins: Basic Idea, Conceptual Systems and Controlling Sand Models. China Offshore Oil and Gas, 25(4): 1-11, 21, 88(in Chinese with English abstract).
      Xu, C. G., Du, X. F., Zhu, H. T., 2020. Principle and Application of Sand Control in Source-Sink System of Continental Rift Basin. Science Press, Beijing(in Chinese).
      Xu, C. G., Gong, C. L., 2023. Predictive Stratigraphy: From Sequence Stratigraphy to Source-to-Sink System. Oil & Gas Geology, 44(3): 521-538(in Chinese with English abstract).
      Xu, J., Jiang, Z. X., 2019. Provenance Analysis of Clastic Rocks: Current Research Status and Prospect. Journal of Palaeogeography, 21(3): 379-396(in Chinese with English abstract).
      Xu, J., Stockli, D. F., Snedden, J. W., 2017. Enhanced Provenance Interpretation Using Combined U-Pb and (U-Th)/He Double Dating of Detrital Zircon Grains from Lower Miocene Strata, Proximal Gulf of Mexico Basin, North America. Earth and Planetary Science Letters, 475: 44-57. https://doi.org/10.1016/j.epsl.2017.07.024
      Xu, M. M., Wei, X. C., Yang, R., et al., 2021. Research Progress of Provenance Tracing Method for Heavy Mineral Analysis. Advances in Earth Science, 36(2): 154-171(in Chinese with English abstract).
      Yan, B., Jia, D., Lai, W., et al., 2023. Sandbox Modeling on Development of Source-to-Sink System along Strike-Slip Fault. Acta Geologica Sinica, 97(9): 3043-3055(in Chinese with English abstract).
      Yan, B., Jia, D., Wang, M. M., 2023. Drainage Development on the Northern Tibetan Plateau Controlled by the Altyn Tagh Fault: Insights from Analogue Modelling. Earth Surface Processes and Landforms, 48(10): 2005-2022. https://doi.org/10.1002/esp.5600
      Yang, J. H., Ma, Y., 2017. Paleoclimate Perspectives of Source-to-Sink Sedimentary Processes. Earth Science, 42(11): 1910-1921(in Chinese with English abstract).
      Yang, R., 2017. A Brief Review of Several Models of Topographic Evolution. Seismology and Geology, 39(6): 1173-1184(in Chinese with English abstract).
      Yao, G. Q., Jiang, P., 2021. Method and Application of Reservoir "Source-Route-Sink-Rock" System Analysis. Earth Science, 46(8): 2934-2943(in Chinese with English abstract).
      Yao, W. T., Guan, Y. N., Guo, S., et al., 2017. Spatial Distribution of Land Surface Vegetation-Energy Relationship in Sanya Tropical Rain Forest Regions. Journal of Geo-Information Science, 19(7): 950-961(in Chinese with English abstract).
      Zhang, J. Y., Covault, J., Pyrcz, M., et al., 2018. Quantifying Sediment Supply to Continental Margins: Application to the Paleogene Wilcox Group, Gulf of Mexico. AAPG Bulletin, 102(9): 1685-1702. https://doi.org/10.1306/01081817308
      Zhang, J. Y., Olariu, C., Steel, R., et al., 2020. Climatically Controlled Lacustrine Clinoforms: Theory and Modelling Results. Basin Research, 32(2): 240-250. https://doi.org/10.1111/bre.12383
      Zhang, P., Najman, Y., Mei, L. F., et al., 2019. Palaeodrainage Evolution of the Large Rivers of East Asia, and Himalayan-Tibet Tectonics. Earth-Science Reviews, 192: 601-630. https://doi.org/10.1016/j.earscirev.2019.02.003
      Zheng, H. B., Wei, X. C., Wang, P., et al., 2017. Geological Evolution of the Yangtze River. Science in China (Series D), 47(4): 385-393(in Chinese).
      Zhou, Z. Q., Zhu, H. T., Liu, Q. H., et al., 2022. Coupled Response of Concordant-Discordant Input Systems and Depositional Interactions within Beibuwan Basin, South China Sea: A Case Study from C Sag, Weixinan Depression. Earth Science, 47(7): 2521-2535(in Chinese with English abstract).
      Zhu, H. T., Yang, X. H., Liu, K. Y., et al., 2014. Seismic-Based Sediment Provenance Analysis in Continental Lacustrine Rift Basins: An Example from the Bohai Bay Basin, China. AAPG Bulletin, 98(10): 1995-2018. https://doi.org/10.1306/05081412159
      Zhu, H. T., Yang, X. H., Zhou, X. H., et al., 2013. Sediment Transport Pathway Characteristics of Continental Lacustrine Basins Based on 3-D Seismic Data: An Example from Dongying Formation of Western Slope of Bozhong Sag. Earth Science, 38(1): 121-129(in Chinese with English abstract).
      Zhu, X. M., Chen, H. H., Ge, J. W., et al., 2022. Characterization of Sequence Architectures and Sandbody Distribution in Continental Rift Basins. Oil & Gas Geology, 43(4): 746-762(in Chinese with English abstract).
      Zhu, X. M., Kang, A., Han, D. X., et al., 2003. Relation among Quaternary Environmental Evolution, Tectonic Deformation in the Qaidam Basin and Uplifting of the Qinghai-Tibet Plateau. Chinese Journal of Geology, 38(3): 367-376(in Chinese with English abstract).
      Zhu, X. M., Li, S. L., Liu, Q. H., et al., 2017. Source to Sink Studies between the Shaleitian Uplift and Surrounding Sags: Perspectives on the Importance of Hinterland Relief and Catchment Area for Sediment Budget, Western Bohai Bay Basin, China. Interpretation, 5(4): ST65-ST84. https://doi.org/10.1190/int-2017-0027.1
      Zhu, X. M., Liu, Y., Fang, Q., et al., 2012. Formation and Sedimentary Model of Shallow Delta in Large-Scale Lake. Example from Cretaceous Quantou Formation in Sanzhao Sag, Songliao Basin. Earth Science Frontiers, 19(1): 89-99(in Chinese with English abstract).
      Zhu, Y. H., Zhu, W. L., Xu, Q., et al., 2011. Sedimentary Response to Shelf-Edge Delta and Slope Deep-Water Fan in 13.8 Ma of Miocene Epoch in Pearl River Mouth Basin. Journal of Central South University (Science and Technology), 42(12): 3827-3834 (in Chinese with English abstract).
      Zhu, Y. J., Xia, R., Zheng, Y. K., et al., 2020. Architectures and Evolution of Arid Alluvial Fans: Insights from a Flume Experiment. Journal of Palaeogeography, 22(6): 1081-1094(in Chinese with English abstract).
      陈贺贺, 朱筱敏, 黄捍东, 等, 2017. 基于碎屑锆石定年的饶阳凹陷蠡县斜坡沙河街组物源分析. 地球科学, 42(11): 1955-1971. doi: 10.3799/dqkx.2017.124
      杜家元, 张向涛, 刘培, 等, 2021. 珠江口盆地珠一坳陷古近系"源-汇" 系统分类及石油地质意义. 地球科学, 46(10): 3690-3706. doi: 10.3799/dqkx.2020.133
      符超峰, 方小敏, 宋友桂, 等, 2005. 盆山沉积耦合原理在定量恢复造山带隆升剥蚀过程中的应用. 海洋地质与第四纪地质, 25(1): 105-112.
      高阳东, 彭光荣, 张向涛, 等, 2023. 珠江口盆地白云凹陷古近系文昌组源-汇系统特征及演化. 石油与天然气地质, 44(3): 584-599.
      龚承林, 齐昆, 徐杰, 等, 2021. 深水源—汇系统对多尺度气候变化的过程响应与反馈机制. 沉积学报, 39(1): 231-252.
      胡小飞, 潘保田, 李琼, 2014. 基岩河道水力侵蚀模型原理及其最新研究进展. 兰州大学学报(自然科学版), 50(6): 824-831.
      胡修棉, 薛伟伟, 赖文, 等, 2021. 造山带沉积盆地与大陆动力学. 地质学报, 95(1): 139-158.
      李家彪, 高抒, 2004. 中国边缘海海盆演化与资源效应. 北京: 海洋出版社.
      李元昊, 宋方新, 韩鹏, 等, 2019. 构造稳定时期河控三角洲三元控砂模式. 古地理学报, 21(3): 397-406.
      李志强, 杨波, 韩自军, 等, 2022. 南黄海中-新生代裂谷盆地构造-热演化: 对成盆机制和烃源岩热演化的指示. 地球科学, 47(5): 1652-1668. doi: 10.3799/dqkx.2021.152
      林畅松, 施和生, 李浩, 等, 2018. 南海北部珠江口盆地陆架边缘斜坡带层序结构和沉积演化及控制作用. 地球科学, 43(10): 3407-3422. doi: 10.3799/dqkx.2018.311
      林畅松, 夏庆龙, 施和生, 等, 2015. 地貌演化、源-汇过程与盆地分析. 地学前缘, 22(1): 9-20.
      刘军, 彭光荣, 郑金云, 等, 2023. 珠江口盆地白云凹陷西区始新世张裂-拆离作用下沉积转换及源-汇响应. 石油与天然气地质, 44(3): 600-612.
      刘强虎, 2016. 渤海湾盆地沙垒田凸起古近系"源-渠-汇"系统耦合研究(博士学位论文). 北京: 中国石油大学.
      刘强虎, 朱筱敏, 李顺利, 等, 2016. 沙垒田凸起前古近系基岩分布及源-汇过程. 地球科学, 41(11): 1935-1949. doi: 10.3799/dqkx.2016.134
      刘志飞, Colin, C., 黄维, 等, 2007a. 珠江流域盆地表层沉积物的黏土矿物及其对南海沉积物的贡献. 科学通报, 52(4): 448-456.
      刘志飞, 赵玉龙, 李建如, 等, 2007b. 南海西部越南岸外晚第四纪黏土矿物记录: 物源分析与东亚季风演化. 中国科学(D辑), 37(9): 1176-1184.
      刘志飞, 李夏晶, Colin, C., 等, 2010. 南海北部末次冰盛期以来高分辨率黏土矿物记录及其时间序列物源区分析. 科学通报, 55(29): 2852-2862.
      刘志飞, Trentesaux, A. S. C. C., 汪品先, 2003. 南海北坡ODP1146站第四纪粘土矿物记录: 洋流搬运与东亚季风演化. 中国科学(D辑), 33(3): 271-280.
      刘志飞, 赵玉龙, 王轶婕, 等, 2017. 南海第四纪东亚季风演化的粘土矿物指标. 第四纪研究, 37(5): 921-933.
      庞雄, 彭大钧, 陈长民, 等, 2007. 三级"源-渠-汇"耦合研究珠江深水扇系统. 地质学报, 81(6): 857-864.
      彭光荣, 王绪诚, 陈维涛, 等, 2023. 珠江口盆地惠州26洼东南缘古近系恩平组上段断-拗转换期源-汇系统及勘探意义. 石油与天然气地质, 44(3): 613-625.
      任建业, 陆永潮, 张青林, 2004. 断陷盆地构造坡折带形成机制及其对层序发育样式的控制. 地球科学, 29(5): 596-602.
      邵龙义, 王学天, 李雅楠, 等, 2019. 深时源-汇系统古地理重建方法评述. 古地理学报, 21(1): 67-81.
      孙枢, 王成善, 2009. "深时"(Deep Time)研究与沉积学. 沉积学报, 27(5): 792-810.
      谈明轩, 朱筱敏, 张自力, 等, 2020. 古"源-汇"系统沉积学问题及基本研究方法简述. 石油与天然气地质, 41(5): 1107-1118.
      田立新, 2021. 珠江口盆地惠州凹陷转换体控沉-控储特性及其油气地质意义. 地球科学, 46(11): 4043-4056. doi: 10.3799/dqkx.2021.121
      王金铎, 于建国, 孙明江, 1998. 陆相湖盆陡坡带砂砾岩扇体的沉积模式及地震识别. 石油物探, 37(3): 40-47.
      王璞珺, 张功成, 蒙启安, 等, 2011. 地震火山地层学及其在我国火山岩盆地中的应用. 地球物理学报, 54(2): 597-610.
      王新航, 汪银奎, 旦增平措, 等, 2022. 陆相流域盆地沉积通量模拟及古地貌意义: 以西藏尼玛地区为例. 沉积学报, 40(4): 912-923.
      王兴山, 张捷, 秦中, 2013. 岩石侵蚀速率测算方法研究综述及展望. 地球科学进展, 28(4): 447-454.
      王学天, 邵龙义, Eriksson, K., 等, 2022. 基于定量古地理的BQART模型深时古地势重建方法: 以晚二叠世峨眉山大火成岩省内带为例. 沉积学报, 40(6): 1461-1480, 1449.
      徐长贵, 2013. 陆相断陷盆地源-汇时空耦合控砂原理: 基本思想、概念体系及控砂模式. 中国海上油气, 25(4): 1-11, 21, 88.
      徐长贵, 杜晓峰, 朱红涛, 2020. 陆相断陷盆地源汇系统控砂原理与应用. 北京: 科学出版社.
      徐长贵, 龚承林, 2023. 从层序地层走向源-汇系统的储层预测之路. 石油与天然气地质, 44(3): 521-538.
      徐杰, 姜在兴, 2019. 碎屑岩物源研究进展与展望. 古地理学报, 21(3): 379-396.
      许苗苗, 魏晓椿, 杨蓉, 等, 2021. 重矿物分析物源示踪方法研究进展. 地球科学进展, 36(2): 154-171.
      闫兵, 贾东, 赖文, 等, 2023. 走滑断层相关源-汇体系演化的砂箱物理模拟实验. 地质学报, 97(9): 3043-3055.
      杨江海, 马严, 2017. 源-汇沉积过程的深时古气候意义. 地球科学, 42(11): 1910-1921. doi: 10.3799/dqkx.2017.121
      杨蓉, 2017. 几种地形演化的数值模拟模型简述. 地震地质, 39(6): 1173-1184.
      姚光庆, 姜平, 2021. 储层"源-径-汇-岩" 系统分析的思路方法与应用. 地球科学, 46(8): 2934-2943. doi: 10.3799/dqkx.2020.327
      姚武韬, 关燕宁, 郭杉, 等, 2017. 三亚热带雨林环境植被和地表能量空间分布特征. 地球信息科学学报, 19(7): 950-961.
      郑洪波, 魏晓椿, 王平, 等, 2017. 长江的前世今生. 中国科学: 地球科学, 47(4): 385-393.
      周子强, 朱红涛, 刘强虎, 等, 2022. 南海北部湾盆地协调-非协调供源样式与沉积交互作用耦合响应: 以涠西南凹陷C洼为例. 地球科学, 47(7): 2521-2535. doi: 10.3799/dqkx.2022.106
      朱红涛, 杨香华, 周心怀, 等, 2013. 基于地震资料的陆相湖盆物源通道特征分析: 以渤中凹陷西斜坡东营组为例. 地球科学, 38(1): 121-129. doi: 10.3799/dqkx.2013.012
      朱筱敏, 陈贺贺, 葛家旺, 等, 2022. 陆相断陷湖盆层序构型与砂体发育分布特征. 石油与天然气地质, 43(4): 746-762.
      朱筱敏, 康安, 韩德馨, 等, 2003. 柴达木盆地第四纪环境演变、构造变形与青藏高原隆升的关系. 地质科学, 38(3): 367-376.
      朱筱敏, 刘媛, 方庆, 等, 2012. 大型坳陷湖盆浅水三角洲形成条件和沉积模式: 以松辽盆地三肇凹陷扶余油层为例. 地学前缘, 19(1): 89-99.
      朱一杰, 夏瑞, 郑云柯, 等, 2020. 干旱条件下冲积扇的沉积构型和演化过程: 基于水槽模拟实验. 古地理学报, 22(6): 1081-1094.
      祝彦贺, 朱伟林, 徐强, 等, 2011. 珠江口盆地13.8Ma陆架边缘三角洲与陆坡深水扇的"源-汇"关系. 中南大学学报(自然科学版), 42(12): 3827-3834.
    • 加载中
    图(10) / 表(1)
    计量
    • 文章访问数:  519
    • HTML全文浏览量:  562
    • PDF下载量:  105
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-07-11
    • 刊出日期:  2023-12-25

    目录

      /

      返回文章
      返回