• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    渤海湾盆地渤中19⁃6气田变质岩潜山储层三维岩石力学参数求取及意义

    张冠杰 程奇 张雷 刘文超 赵雨佳 吴昊 沈传波

    张冠杰, 程奇, 张雷, 刘文超, 赵雨佳, 吴昊, 沈传波, 2025. 渤海湾盆地渤中19⁃6气田变质岩潜山储层三维岩石力学参数求取及意义. 地球科学, 50(2): 551-568. doi: 10.3799/dqkx.2023.195
    引用本文: 张冠杰, 程奇, 张雷, 刘文超, 赵雨佳, 吴昊, 沈传波, 2025. 渤海湾盆地渤中19⁃6气田变质岩潜山储层三维岩石力学参数求取及意义. 地球科学, 50(2): 551-568. doi: 10.3799/dqkx.2023.195
    Zhang Guanjie, Cheng Qi, Zhang Lei, Liu Wenchao, Zhao Yujia, Wu Hao, Shen Chuanbo, 2025. Calculation of 3D Reservoir Rock Mechanical Parameters of Metamorphic Rock Reservoirs in the Bozhong 19⁃6 Gas Field of the Bohai Bay Basin and Their Significance. Earth Science, 50(2): 551-568. doi: 10.3799/dqkx.2023.195
    Citation: Zhang Guanjie, Cheng Qi, Zhang Lei, Liu Wenchao, Zhao Yujia, Wu Hao, Shen Chuanbo, 2025. Calculation of 3D Reservoir Rock Mechanical Parameters of Metamorphic Rock Reservoirs in the Bozhong 19⁃6 Gas Field of the Bohai Bay Basin and Their Significance. Earth Science, 50(2): 551-568. doi: 10.3799/dqkx.2023.195

    渤海湾盆地渤中19⁃6气田变质岩潜山储层三维岩石力学参数求取及意义

    doi: 10.3799/dqkx.2023.195
    基金项目: 

    湖北省自然科学基金创新群体项目 2021CFA031

    详细信息
      作者简介:

      张冠杰(1996-),男,博士研究生,从事储层地质力学方向研究. ORCID:0000-0003-3993-265X. E-mail:zgj199688@163.com

      通讯作者:

      沈传波, ORCID:0000-0001-5641-9714.E-mail:cbshen@cug.edu.cn

    • 中图分类号: P121

    Calculation of 3D Reservoir Rock Mechanical Parameters of Metamorphic Rock Reservoirs in the Bozhong 19⁃6 Gas Field of the Bohai Bay Basin and Their Significance

    • 摘要: 为明确渤海湾盆地渤中19⁃6气田变质岩潜山储层岩石力学参数特征,为该区后续地应力场及储层裂缝数值模拟提供可靠的基础数据,开展了三轴抗压试验、巴西劈裂试验以及三轴抗剪试验,并利用阵列声波曲线计算单井动态岩石力学参数,通过动态-静态校正,确定静态岩石力学参数单井分布特征;再利用叠前地震多属性检测方法反演三维非均质岩石力学参数,明确岩石力学参数空间分布特征. 在此基础上,结合物性测试、全岩矿物分析以及压汞试验资料,探讨岩石力学参数主控因素,并基于静态岩石力学参数构建裂缝发育指数和岩性相互关系的判别图版. 结果表明,渤海湾盆地渤中19⁃6气田变质岩潜山储层杨氏模量主要介于20~60 GPa,泊松比主要介于0.15~0.25,抗张强度主要介于5~15 MPa,内摩擦角主要介于30°~50°,岩石力学参数平面分布具有较强的非均质性,垂向分布主要与构造特征和风化作用强弱有关,并在一定程度上反映了储层物性特征. 储层物性、不同类型矿物含量以及孔隙半径是岩石力学参数的主要控制因素,变质岩潜山储层具有裂缝发育程度高、岩性复杂的特点,难以通过常规方法准确识别储层裂缝与岩性,而通过静态岩石力学参数构建的裂缝发育指数、岩性判别图版对变质岩潜山储层裂缝发育程度评价、复杂岩性划分具有较好的指导意义.

       

    • 图  1  渤中19⁃6气田区域位置及地层综合柱状图

      Fig.  1.  Location and comprehensive stratigraphic histogram of Bozhong 19⁃6 gas field

      图  2  渤中19⁃6气田储层岩体微观特征

      a. B19⁃6⁃12井,5 272.8 m,二长片麻质碎裂岩,单偏光,微裂缝发育,形成微裂缝网;b. B19⁃6⁃12井,5 523.0 m,二长片麻质碎裂岩,单偏光,微裂缝发育,形成微裂缝网;c. B19⁃6⁃9井,5 190.0 m,斜长片麻岩,单偏光,黑云母粒内溶孔;d. B19⁃6⁃9井,5 210.0 m,混合岩化黑云斜长片麻岩,单偏光,斜长石粒内溶孔

      Fig.  2.  Microscopic characteristics of reservoir rock mass in Bozhong 19⁃6 gas field

      图  3  渤中19⁃6气田变质岩潜山储层岩石力学参数交汇图

      Fig.  3.  Crossplot of rock mechanical parameters in buried⁃hill reservoirs of metamorphic rocks in Bozhong 19⁃6 gas field

      图  4  B19⁃6⁃12井静态岩石力学参数计算成果图

      Fig.  4.  Computed results of static rock mechanical parameters in well B19⁃6⁃12

      图  5  B19⁃6⁃7井三维岩石力学参数与井上静态岩石参数对比图

      Fig.  5.  Comparison between 3D rock mechanical parameters in well B19⁃6⁃7 and ground static rock parameters

      图  6  岩石力学参数平面分布特征

      Fig.  6.  Horizontal distributions of rock mechanical parameters

      图  7  岩石力学参数剖面分布特征

      Fig.  7.  Vertical distributions of rock mechanical parameters

      图  8  储层孔隙度与杨氏模量、泊松比、抗张强度以及内摩擦角关系

      Fig.  8.  Relationships of reservoir porosity with Young's modulus, Poisson's ratio, tensile strength and internal friction angle

      图  9  储层渗透率与杨氏模量、泊松比、抗张强度以及内摩擦角关系

      Fig.  9.  Relationships of reservoir permeability with Young's modulus, Poisson's ratio, tensile strength and internal friction angle

      图  10  不同类型矿物含量与杨氏模量、泊松比、抗张强度以及内摩擦角关系

      Fig.  10.  Relationships of mineral contents with Young's modulus, Poisson's ratio, tensile strength and internal friction angle

      图  11  孔隙半径与杨氏模量、泊松比、抗张强度以及内摩擦角关系

      Fig.  11.  Relationships of pore radius with Young's modulus, Poisson's ratio, tensile strength and internal friction angle

      图  12  B19⁃6⁃9井岩石力学参数与裂缝响应关系图

      Fig.  12.  Relationship between rock mechanical parameters and fracture response in well B19⁃6⁃9

      图  13  基于岩石力学参数的不同岩性识别图版

      Fig.  13.  Lithology identification chart based on rock mechanics parameters

      表  1  三轴抗压试验方案及结果

      Table  1.   Scheme and results of triaxial compression test

      编号 井号 深度(m) 围压(MPa) 加载速率(mm/min) 轴向偏应力(MPa) 杨氏模量(GPa) 泊松比
      7-1 B19-6-7 4 604.31 65 0.1 193.0 41.6 0.208
      7-6 B19-6-7 4 537.27 65 0.1 66.7 19.9 0.321
      7-7 B19-6-7 4 536.56 65 0.1 301.6 30.7 0.258
      7-8 B19-6-7 4 534.29 65 0.1 300.6 25.3 0.212
      7-13 B19-6-7 4 684.53 65 0.1 459.8 48.3 0.194
      7-15 B19-6-7 4 686.32 65 0.1 229.2 49.7 0.166
      7-19 B19-6-7 4 686.24 65 0.1 236.0 35.5 0.271
      7-20 B19-6-7 4 679.90 65 0.1 351.6 62.8 0.352
      下载: 导出CSV

      表  2  巴西劈裂试验方案及结果

      Table  2.   Scheme and results of Brazilian test

      编号 井号 深度(m) 直径(mm) 高度(mm) 破碎力(kN) 抗张强度(MPa)
      3-001B B19-6-12 5 224.58 25.20 23.00 5.09 5.60
      1-003A B19-6-12 5 270.67 25.10 32.00 13.78 10.92
      1-002A B19-6-12 5 269.74 25.21 30.00 11.50 9.68
      3-003A B19-6-12 5 226.03 25.17 32.00 8.88 7.02
      1-005B B19-6-12 5 272.47 25.16 23.50 8.82 9.50
      1-001B B19-6-12 5 269.10 25.09 23.00 7.97 8.80
      1 B19-6-7 4 679.56 25.45 33.10 9.75 7.37
      6 B19-6-7 4 206.60 25.52 53.00 13.01 6.13
      10 B19-6-7 4 682.22 25.49 40.00 7.43 4.64
      下载: 导出CSV

      表  3  三轴抗剪试验方案及结果

      Table  3.   Scheme and results of triaxial shear test

      编号 井号 深度(m) 围压(MPa) 杨氏模量(GPa) 泊松比 内摩擦角(°)
      12-1 B19-6-12 5 272.33 40 66.1 0.252 50.2
      12-2 B19-6-12 5 273.46 50 55.3 0.219 47.2
      12-4 B19-6-12 5 268.90 60 46.4 0.189 38.6
      12-5 B19-6-12 5 271.67 70 45.2 0.245 43.8
      下载: 导出CSV

      表  4  孔隙度与分形盒维数

      Table  4.   Porosity and fractal box dimensions

      溶蚀孔隙发育程度 编号 井号 深度(m) 孔隙度(%) 分形盒维数D
      不发育 M-1 B19-6-1 4 044.0 2.9 2.593 1
      M-2 B19-6-1 4 045.0 2.8 2.647 9
      M-7 B19-6-1 4 052.0 4.5 2.586 3
      发育 M-5 B19-6-1 4 050.0 6.3 2.652 8
      M-9 B19-6-1 4 058.0 3.7 2.748 7
      M-12 B19-6-1 4 063.5 3.8 2.756 4
      下载: 导出CSV
    • Bowers, G. L., 1995. Pore Pressure Estimation from Velocity Data: Accounting for Overpressure Mechanisms Besides Undercompaction. SPE Drilling & Completion, 10(2): 89-95. https://doi.org/10.2118/27488⁃pa
      Cao, Z. L., Zheng, H. J., Gou, Y. C., et al., 2009. Method of Prediction and Application on Stochastical Simulating 3D Parameter Field of Rock Mechanics. Geoscience, 23(6): 1126-1130(in Chinese with English abstract). doi: 10.3969/j.issn.1000-8527.2009.06.018
      Cao, Z. Z., Lu, X. L., Mo, H. Y., et al., 2023. Ultimate Bearing Capacity of Coralline Sand Foundation Under High Internal Friction Angle. Chinese Journal of Rock Mechanics and Engineering, 42(S1): 3609-3617(in Chinese with English abstract).
      Chang, C. D., Zoback, M. D., Khaksar, A., 2006. Empirical Relations between Rock Strength and Physical Properties in Sedimentary Rocks. Journal of Petroleum Science and Engineering, 51(3/4): 223-237. https://doi.org/10.1016/j.petrol.2006.01.003
      Chen, M., 2004. Review of Study on Rock Mechanics at Great Depth and Its Applications to Petroleum Engineering of China. Chinese Journal of Rock Mechanics and Engineering, 23(14): 2455-2462(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2004.14.030
      Cheng, Z. L., Sui, W. B., Ning, Z. F., et al., 2018. Microstructure Characteristics and Its Effects on Mechanical Properties of Digital Core. Chinese Journal of Rock Mechanics and Engineering, 37(2): 449-460(in Chinese with English abstract).
      Du, T., Qu, X. Y., Wang, Q. B., et al., 2023. Vertical Evolution Characteristics of Compaction Diagenetic Fractures in Glutenite Reservoirs of Kongdian Formation in Bozhong 19⁃6 Condensate Gas Field. Journal of Jilin University (Earth Science Edition), 53(1): 17-29(in Chinese with English abstract).
      Gong, Z. S., 2004. Neotectonics and Petroleum Accumulation in Offshore Chinese Basins. Earth Science, 29(5): 513-517(in Chinese with English abstract). doi: 10.3321/j.issn:1000-2383.2004.05.002
      Han, D. H., Nur, A., Morgan, D., 1986. Effects of Porosity and Clay Content on Wave Velocities in Sandstones. Geophysics, 51(11): 2093-2107. https://doi.org/10.1190/1.1442062
      Hao, F., Zhou, X. H., Zhu, Y. M., et al., 2009. Charging of the Neogene Penglai 19⁃3 Field, Bohai Bay Basin, China: Oil Accumulation in a Young Trap in an Active Fault Zone. AAPG Bulletin, 93(2): 155-179. https://doi.org/10.1306/09080808092
      Hou, L. L., Liu, X. J., Liang, L. X., et al., 2020. Investigation of Coal and Rock Geo⁃Mechanical Properties Evaluation Based on the Fracture Complexity and Wave Velocity. Journal of Natural Gas Science and Engineering, 75: 103133. https://doi.org/10.1016/j.jngse.2019.103133
      Jia, L. C., Chen, Y., Yu, S., 2018. Analysis of Wellbore Stability for Horizontal Wells Based on Unified Strength Theory. FaultBlock Oil & Gas Field, 25(5): 639-643(in Chinese with English abstract).
      Li, K. H., Cheng, Y., Yin, Z. Y., et al., 2020. Size Effects in a Transversely Isotropic Rock under Brazilian Tests: Laboratory Testing. Rock Mechanics and Rock Engineering, 53(6): 2623-2642. https://doi.org/10.1007/s00603⁃020⁃02058⁃7
      Li, X. B., Gong, F. Q., 2021. Research Progress and Prospect of Deep Mining Rock Mechanics Based on Coupled Static⁃Dynamic Loading Testing. Journal of China Coal Society, 46(3): 846-866(in Chinese with English abstract).
      Li, X. Y., Qin, R. B., 2023. Method of Fracture Characterization and Productivity Prediction of 19⁃6 Buried⁃Hill Fractured Reservoirs, Bohai Bay Basin. Earth Science, 48(2): 475-487(in Chinese with English abstract).
      Li, J., Kong, X. C., Song, M. S., et al., 2019. Study on the Influence of Reservoir Rock Micropore Structure on Rock Mechanical Properties and Crack Propagation. Rock and Soil Mechanics, 40(11): 4149-4156, 4164(in Chinese with English abstract).
      Liu, J. H., Wu, C., Tao, X. H., 2020. Three⁃Dimensional Modeling Method for Drilling Rock Mechanics and Its Field Application. Drilling & Production Technology, 43(1): 13-16, 7-8(in Chinese with English abstract). doi: 10.3969/J.ISSN.1006-768X.2020.01.04
      Lu, B. P., Bao, H. Z., 2005. Advances in Calculation Methods for Rock Mechanics Parameters. Petroleum Drilling Techniques, 33(5): 44-47(in Chinese with English abstract). doi: 10.3969/j.issn.1001-0890.2005.05.010
      Lu, S. K., Wang, D., Li, Y. K., et al., 2015. Research on Three⁃Dimensional Mechanical Parameters' Distribution of the Tight Sandstone Reservoirs in Daniudi Gasfield. Natural Gas Geoscience, 26(10): 1844-1850(in Chinese with English abstract). doi: 10.11764/j.issn.1672-1926.2015.10.1844
      Ni, J. L., Xia, B., 2006. Fault Block Movement and Formation of Buried Hill Hydrocarbon Reservoir: Taking Bohai Bay Basin as an Example. Natural Gas Industry, 26(2): 32-35, 161-162(in Chinese with English abstract). doi: 10.3321/j.issn:1000-0976.2006.02.009
      Peng, X. D., Zhang, H., Wang, X. G., et al., 2023. Enhanced Water⁃Drive Recovery Based on Microscopic Seepage Mechanism for Low Permeability Glutenite Reservoir with Ternary Pore⁃Throat Structure Charateristics of WS Field. Earth Science, 48(8): 2960-2978(in Chinese with English abstract).
      Qi, Y. M., 2022. Microscopic Characteristics of Pores and Controlling Factors of Bedrock Buried Hill Reservoirs in Bozhong 19⁃6 Gasfield of Bohai Sea. Complex Hydrocarbon Reservoirs, 15(2): 12-16(in Chinese with English abstract).
      Rickman, R., Mullen, M., Petre, E., et al., 2008. A Practical Use of Shale Petrophysics for Stimulation Design Optimization: All Shale Plays Are Not Clones of the Barnett Shale. SPE Annual Technical Conference and Exhibition. September 21-24, 2008. Denver, Colorado, USA. SPE. https://doi.org/10.2118/115258-ms
      Shi, H. S., Wang, Q. B., Wang, J., et al., 2019. Discovery and Exploration Significance of Large Condensate Gas Fields in BZ19⁃6 Structure in Deep Bozhong Sag. China Petroleum Exploration, 24(1): 36-45(in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2019.01.005
      Song, G. M., Zhang, Y., Li, H. Y., et al., 2020. Types and Identification Characteristics of Archean Metamorphic Rocks of Buried Hill in 19: 6 Area of Bozhong Sag. Global Geology, 39(2): 344-352(in Chinese with English abstract). doi: 10.3969/j.issn.1004-5589.2020.02.009
      Sun, J. M., Han, Z. L., Qin, R. B., et al., 2015. Log Evaluation Method of Fracturing Performance in Tight Gas Reservoir. Acta Petrolei Sinica, 36(1): 74-80(in Chinese with English abstract).
      Wang, D. Y., Liu, X. J., Deng, H., et al., 2022. Characteristics of the Meso⁃Cenozoic Tectonic Transformation and Its Control on the Formation of Large⁃Scale Reservoirs in the Archean Buried Hills in Bozhong 19⁃6 Area, Bohai Bay Basin. Oil & Gas Geology, 43(6): 1334-1346(in Chinese with English abstract).
      Wang, J. F., Yang, S., Li, S. H., et al., 2023. Microscopic Pore Structure and Rock Mechanics Characteristics of Basalt Reservoir in Southwest Sichuan. Unconventional Oil & Gas, 10(4): 126-131, 138(in Chinese with English abstract).
      Wu, Z. P., Hou, X. B., Li, W., 2007. Discussion on Mesozoic Basin Patterns and Evolution in the Eastern North China Block. Geotectonica et Metallogenia, 31(4): 385-399(in Chinese with English abstract). doi: 10.3969/j.issn.1001-1552.2007.04.001
      Xu, C. G., Du, X. F., Liu, X. J., et al., 2020. Formation Mechanism of High⁃Quality Deep Buried⁃Hill Reservoir of Archaean Metamorphic Rocks and Its Significance in Petroleum Exploration in Bohai Sea Area. Oil & Gas Geology, 41(2): 235-247, 294(in Chinese with English abstract).
      Xue, Y. A., Wei, A. J., Peng, J. S., et al., 2016. Accumulation Models and Regularities of Large⁃Middle Scale Oilfields in Bohai Sea, Bohai Bay Basin. China Offshore Oil and Gas, 28(3): 10-19(in Chinese with English abstract).
      Ye, T., Niu, C. M., Wang, Q. B., et al., 2021. Characteristics and Controlling Factors of Large Bedrock Buried⁃Hill Reservoirs in the Bohai Bay Basin: A Case Study of the BZ19⁃6 Condensate Field. Acta Geologica Sinica, 95(6): 1889-1902(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2021.06.015
      Yin, S., Sun, X. G., Wu, Z. H., et al., 2022. Coupling Control of Tectonic Evolution and Fractures on the Upper Paleozoic Gas Reservoirs in the Northeastern Margin of the Ordos Basin. Journal of Central South University (Science and Technology), 53(9): 3724-3737(in Chinese with English abstract).
      Yin, S., Sun, X. G., Wu, Z. H., et al., 2022. Oil Enrichment Law of the Jurassic Yan'an Formation, Hongde Block, Longdong area, Ordos Basin. Oil & Gas Geology, 43(5): 1167-1179(in Chinese with English abstract).
      Zhao, J. Y., Ji, D. S., Wu, J., et al., 2022. Research on Rock Mechanics Parameters of the Jurassic⁃Cretaceous Reservoir in the Sikeshu Sag, Junggar Basin, China. Journal of Geomechanics, 28(4): 573-582(in Chinese with English abstract).
      Zhou, H. W., Xie, H. P., Zuo, J. P., et al., 2010. Experimental Study of the Effect of Depth on Mechanical Parameters of Rock. Chinese Science Bulletin, 55(34): 3276-3284(in Chinese with English abstract). doi: 10.1360/972010-786
      Zhou, W., Gao, Y. Q., Shan, Y. M., et al., 2008. Lithomechanical Property of Tight Sand Reservoirs in the Second Member of Shaximiao Formation in Xinchang Gas Field, West Sichuan Basin. Natural Gas Industry, 28(2): 34-37, 163(in Chinese with English abstract).
      Zhou, X. H., Xiang, H., Yu, S., et al., 2005. Reservoir Characteristics and Development Controlling Factors of JZS Neo⁃Archean Metamorphic Buried Hill Oil Pool in Bohai Sea. Petroleum Exploration and Development, 32(6): 17-20(in Chinese with English abstract). doi: 10.3321/j.issn:1000-0747.2005.06.004
      Zoback, M. D., 2007. . Cambridge University Press, Cambridg. https://doi.org/10.1017/cbo9780511586477
      曹振中, 卢秀莲, 莫红艳, 等, 2023. 高内摩擦角下珊瑚礁砂地基极限承载力初步分析. 岩石力学与工程学报, 42(S1): 3609-3617.
      曹正林, 郑红军, 苟迎春, 等, 2009. 三维岩石力学参数场随机模拟预测方法及应用. 现代地质, 23(6): 1126-1130. doi: 10.3969/j.issn.1000-8527.2009.06.018
      陈勉, 2004. 我国深层岩石力学研究及在石油工程中的应用. 岩石力学与工程学报, 23(14): 2455-2462. doi: 10.3321/j.issn:1000-6915.2004.14.030
      陈勉, 金衍, 张广清, 2011. 石油工程岩石力学基础. 北京: 石油工业出版社.
      程志林, 隋微波, 宁正福, 等, 2018. 数字岩芯微观结构特征及其对岩石力学性能的影响研究. 岩石力学与工程学报, 37(2): 449-460.
      杜涛, 曲希玉, 王清斌, 等, 2023. 渤中19⁃6凝析气田孔店组砂砾岩储层压实成岩裂缝垂向演化特征. 吉林大学学报(地球科学版), 53(1): 17-29.
      龚再升, 2004. 中国近海含油气盆地新构造运动与油气成藏. 地球科学, 29(5): 513-517. doi: 10.3321/j.issn:1000-2383.2004.05.002
      贾利春, 陈杨, 余晟, 2018. 基于统一强度理论的水平井井壁稳定性分析. 断块油气田, 25(5): 639-643.
      李静, 孔祥超, 宋明水, 等, 2019. 储层岩石微观孔隙结构对岩石力学特性及裂缝扩展影响研究. 岩土力学, 40(11): 4149-4156, 4164.
      李夕兵, 宫凤强, 2021. 基于动静组合加载力学试验的深部开采岩石力学研究进展与展望. 煤炭学报, 46(3): 846-866.
      李雄炎, 秦瑞宝, 2023. 渤海湾盆地渤中19⁃6气田潜山储层裂缝表征与产能预测方法. 地球科学, 48(2): 475-487.
      刘建华, 吴超, 陶兴华, 2020. 钻井岩石力学参数三维建模方法及其现场应用. 钻采工艺, 43(1): 13-16, 7-8.
      陆诗阔, 王迪, 李玉坤, 等, 2015. 鄂尔多斯盆地大牛地气田致密砂岩储层三维岩石力学参数场研究. 天然气地球科学, 26(10): 1844-1850.
      路保平, 鲍洪志, 2005. 岩石力学参数求取方法进展. 石油钻探技术, 33(5): 44-47.
      倪金龙, 夏斌, 2006. 断块运动与潜山油气藏的形成: 以渤海湾盆地为例. 天然气工业, 26(2): 32-35, 161-162.
      彭小东, 张辉, 汪新光, 等, 2023. 低渗砂砾岩储层三元孔隙结构特征及其渗流机理与改善水驱对策. 地球科学, 48(8): 2960-2978. doi: 10.3799/dqkx.2023.032
      齐玉民, 2022. 渤海海域渤中19⁃6基岩潜山储层孔隙微观特征及其发育控制因素. 复杂油气藏, 15(2): 12-16.
      施和生, 王清斌, 王军, 等, 2019. 渤中凹陷深层渤中19⁃6构造大型凝析气田的发现及勘探意义. 中国石油勘探, 24(1): 36-45.
      宋国民, 张艳, 李慧勇, 等, 2020. 渤中凹陷19⁃6区太古界潜山变质岩岩石类型及鉴别特征. 世界地质, 39(2): 344-352.
      孙建孟, 韩志磊, 秦瑞宝, 等, 2015. 致密气储层可压裂性测井评价方法. 石油学报, 36(1): 74-80.
      王德英, 刘晓健, 邓辉, 等, 2022. 渤海湾盆地渤中19⁃6区中-新生代构造转换特征及其对太古宇潜山大规模储层形成的控制作用. 石油与天然气地质, 43(6): 1334-1346.
      王峻峰, 杨苏, 李素华, 等, 2023. 川西南玄武岩储层微观孔隙结构及岩石力学特征. 非常规油气, 10(4): 126-131, 138.
      吴智平, 侯旭波, 李伟, 2007. 华北东部地区中生代盆地格局及演化过程探讨. 大地构造与成矿学, 31(4): 385-399.
      徐长贵, 杜晓峰, 刘晓健, 等, 2020. 渤海海域太古界深埋变质岩潜山优质储集层形成机制与油气勘探意义. 石油与天然气地质, 41(2): 235-247, 294.
      薛永安, 韦阿娟, 彭靖淞, 等, 2016. 渤海湾盆地渤海海域大中型油田成藏模式和规律. 中国海上油气, 28(3): 10-19.
      叶涛, 牛成民, 王清斌, 等, 2021. 渤海湾盆地大型基岩潜山储层特征及其控制因素: 以渤中19⁃6凝析气田为例. 地质学报, 95(6): 1889-1902.
      尹帅, 丁文龙, 林利飞, 等, 2023. 鄂尔多斯盆地西部志丹-吴起地区延长组裂缝特征及其控藏作用. 地球科学, 48(7): 2614-2629. doi: 10.3799/dqkx.2022.217
      尹帅, 孙晓光, 邬忠虎, 等, 2022. 鄂尔多斯盆地东北缘上古生界构造演化及裂缝耦合控气作用. 中南大学学报(自然科学版), 53(9): 3724-3737.
      赵进雍, 冀冬生, 吴见, 等, 2022. 准噶尔盆地四棵树凹陷侏罗系-白垩系储层岩石力学参数研究. 地质力学学报, 28(4): 573-582.
      周宏伟, 谢和平, 左建平, 等, 2010. 赋存深度对岩石力学参数影响的实验研究. 科学通报, 55(34): 3276-3284.
      周文, 高雅琴, 单钰铭, 等, 2008. 川西新场气田沙二段致密砂岩储层岩石力学性质. 天然气工业, 28(2): 34-37, 163.
      周心怀, 项华, 于水, 等, 2005. 渤海锦州南变质岩潜山油藏储集层特征与发育控制因素. 石油勘探与开发, 32(6): 17-20.
    • 加载中
    图(13) / 表(4)
    计量
    • 文章访问数:  191
    • HTML全文浏览量:  111
    • PDF下载量:  28
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-12-22
    • 网络出版日期:  2025-02-26
    • 刊出日期:  2025-02-25

    目录

      /

      返回文章
      返回