• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    磷循环及磷组分在古海洋环境重建中的应用

    李婷婷 朱光有 张义杰 陈志勇

    李婷婷, 朱光有, 张义杰, 陈志勇, 2025. 磷循环及磷组分在古海洋环境重建中的应用. 地球科学, 50(1): 246-268. doi: 10.3799/dqkx.2023.202
    引用本文: 李婷婷, 朱光有, 张义杰, 陈志勇, 2025. 磷循环及磷组分在古海洋环境重建中的应用. 地球科学, 50(1): 246-268. doi: 10.3799/dqkx.2023.202
    Li Tingting, Zhu Guangyou, Zhang Yijie, Chen Zhiyong, 2025. Phosphorus Cycling and Phosphorus Speciation Application in Reconstruction of Paleo-Marine Environment. Earth Science, 50(1): 246-268. doi: 10.3799/dqkx.2023.202
    Citation: Li Tingting, Zhu Guangyou, Zhang Yijie, Chen Zhiyong, 2025. Phosphorus Cycling and Phosphorus Speciation Application in Reconstruction of Paleo-Marine Environment. Earth Science, 50(1): 246-268. doi: 10.3799/dqkx.2023.202

    磷循环及磷组分在古海洋环境重建中的应用

    doi: 10.3799/dqkx.2023.202
    基金项目: 

    中国石油天然气股份有限公司科学研究与技术开发项目 2021DJ05

    国家自然科学基金项目 42230812

    详细信息
      作者简介:

      李婷婷(1989-),女,工程师,硕士,主要从事石油地质研究. ORCID:0009-0001-0339-8881. E-mail:lttjy@petrochina.com.cn

      通讯作者:

      朱光有, E-mail: zhuguangyou@yangtzeu.edu.cn

    • 中图分类号: P595

    Phosphorus Cycling and Phosphorus Speciation Application in Reconstruction of Paleo-Marine Environment

    • 摘要: 磷作为地球生命DNA和RNA的核心组成部分,是地质历史时期海洋表层初级生产力的主要限制性营养元素,对全球大气‒海洋氧化还原状态及气候变化具有重要调节作用.总结了海洋中磷的源及汇,阐述了磷组分的构成及其在研究磷的埋藏、转化与循环中的应用,分析了古老地层中磷的沉积特征与生物‒环境演化的关系,明确了不同地质时期磷循环特征、机制及其与大气‒海洋‒生态之间的反馈作用,这对于认识生命与地球环境的关系具有深远意义.

       

    • 图  1  磷的海洋生物地球化学循环简图(据Kraal et al.(2017)修改)

      Fig.  1.  Schematic diagram of biogeochemical cycle of P (modified after Kraal et al. (2017))

      图  2  河流输送的磷“源”与埋藏于沉积物的磷“汇”的组分构成

      Fig.  2.  Phosphorus speciation of phosphorus sources carried by rivers and sinks buried in sediments

      图  3  不同氧化还原底水条件下沉积物中磷的埋藏及成岩转化

      Pi.被释放的磷;Pdetri.碎屑磷;Porg.有机磷;Pauth.自生成因磷;PFe.铁(氢)氧化物结合磷;Pads.主要吸附于CaCO3及黏土矿物的磷;Fe(Ⅱ)-P.含铁矿物(如蓝铁矿)结合磷;CC.化跃层;SWI.沉积物‒水界面

      Fig.  3.  P burial and diagenetic processes in the sediment under different bottom water redox conditions

      图  4  海洋中磷循环与初级生产力及碳、氧循环的关系(据Algeo and Ingall (2007)修改)

      Fig.  4.  Marine P cycling and its relationships with primary production, and carbon and oxygen cycles (modified after Algeo and Ingall (2007))

      图  5  不同时期地层中磷的沉积特征及其与生物‒环境演化的关系

      a. 磷含量及预测磷块岩产出丰度(Planavsky et al.,2014Reinhard et al.,2017);b. TOC(Och and Shields-Zhou,2012)及δ13CcarbKipp and Stüeken,2017)与δ13CorgBrasier and Lindsay,1998Bergman et al.,2004Halverson et al.,2005Och and Shields-Zhou,2012)分布;c. 海洋氧化还原状态(Poulton,2017);d. 大气氧含量(Sahoo et al.,2012);e.超大陆及冰期(Och and Shields-Zhou,2012);f. 生物演化(Och and Shields-Zhou,2012

      Fig.  5.  Sedimentary characteristics of P and its link with life-environment evolution on geological times

      表  1  不同时代沉积物中Corg/Porg及Corg/Preact比值分布

      Table  1.   Corg/Porg and Corg/Preact ratios of sediments from different periods

      时代 地区 底水氧化还原状态 Corg/Porg Corg/Preact 资料来源
      现代 Black Sea 缺氧(硫化) 1 370/1 288/1 Kraal et al. (2017)
      现代 Black Sea(shelf) 氧化 85/1~170/1 50/1~100/1 Kraal et al. (2017)
      现代 Peru Margin(OMZ) 缺氧 150/1~200/1 Böning et al. (2004);Lomnitz et al. (2016)
      现代 Northern Arabian Sea(OMZ) 缺氧 600/1 140/1 Kraal et al. (2012)
      现代 Baltic Sea 缺氧(硫化) 150/1~350/1 95/1~260/1 Mort et al. (2010)
      缺氧(铁化) 185/1~340/1 150/1~255/1
      氧化 100/1~180/1 70/1~120/1
      现代 大陆边缘沉积环境 氧化 - 均值42/1~80/1 Baturin (2007)
      现代 Saanich Inlet 缺氧(硫化) - 152/1 Calvert et al. (2001)
      现代 Cariaco Basin 缺氧(硫化) - 195/1 Canfield et al. (2020)
      氧化 - 108/1
      白垩纪(OAE2) Morocco(Tarfaya shelf) 缺氧(硫化) - 最高达1 500/1 Poulton et al. (2015)
      缺氧(铁化) - 最高达800/1
      白垩纪(OAE3) French Guiana 缺氧(铁化) > 1 000/1 < 50/1 März et al. (2008)
      二叠纪‒三叠纪之交 华南 缺氧 20/1~5 780/1 最高达318/1 Müller et al. (2022)
      二叠纪‒三叠纪之交 Svalbard 缺氧(硫化) 1 600/1~3 060/1 85/1~233/1 Schobben et al. (2020)
      缺氧(铁化) 2 380/1~3 930/1 60/1~235/1
      氧化 210/1~3 190/1 ≤50/1
      泥盆纪 America(Illinois basin) 缺氧 - 3 900/1 Ingall et al. (1993)
      氧化 - 150/1
      奥陶纪‒志留纪之交 华南 缺氧 - 均值> 535 Wang et al. (2022)
      氧化 - 均值> 43
      奥陶纪‒志留纪之交 华南 缺氧(硫化) 最高达36 500/1 最高达4 860/1 Qiu et al. (2022)
      缺氧(铁化) 最高达25500/1 最高达2 520/1
      氧化 最高达8 500/1 最高达1 600/1
      寒武纪 Australia(Georgina Basin) 缺氧(铁化) 79/1~17 000/1 < 20/1 Creveling et al. (2014)
      新元古代(1.0~0.9 Ga) 华北(淮南盆地) 缺氧(铁化) 135/1 24/1 Guilbaud et al. (2020)
      新元古代(~0.66~0.65 Ga) 华南 缺氧(硫化) 最高达11 293 最高达771 Bowyer et al. (2023)
      氧化 - < 106/1
      Australia 缺氧(硫化) 最高达1 397 > 106/1(最高达315)
      中元古代(下马岭组) 华北 缺氧(硫化) - 80/1 Wang et al. (2017)Canfield et al. (2018, 2020)
      缺氧(铁化) - 均值61/1
      氧化 - 均值85/1
      ~2.65~2.43 Ga South Africa 缺氧 最高达~8 000/1 - Alcott et al. (2022)
      注:Ga表示109 a.
      下载: 导出CSV
    • Alcott, L. J., Mills, B. J. W., Bekker, A., et al., 2022. Earth's Great Oxidation Event Facilitated by the Rise of Sedimentary Phosphorus Recycling. Nature Geoscience, 15(3): 210-215. https://doi.org/10.1038/s41561-022-00906-5
      Algeo, T. J., Ingall, E., 2007. Sedimentary Corg: P Ratios, Paleocean Ventilation, and Phanerozoic Atmospheric PO2. Palaeogeography, Palaeoclimatology, Palaeoecology, 256(3-4): 130-155. https://doi.org/10.1016/j.palaeo.2007.02.029
      Allen, A. P., Gillooly, J. F., 2009. Towards an Integration of Ecological Stoichiometry and the Metabolic Theory of Ecology to Better Understand Nutrient Cycling. Ecology Letters, 12(5): 369-384. 10.1111/j. 1461-0248.2009. 01302. x doi: 10.1111/j.1461-0248.2009.01302.x
      Allison, P. A., 1988. Phosphatized Soft-Bodied Squids from the Jurassic Oxford Clay. Lethaia, 21(4): 403-410. https://doi.org/10.1111/j.1502-3931.1988.tb01769.x
      Amundson, R., Berhe, A. A., Hopmans, J. W., et al., 2015. Soil and Human Security in the 21st Century. Science, 348(6235): e1261071. https://doi.org/10.1126/science.1261071
      Anbar, A. D., Duan, Y., Lyons, T. W., et al., 2007. A Whiff of Oxygen before the Great Oxidation Event? Science, 317(5846): 1903-1906. https://doi.org/10.1126/science.1140325
      Anbar, A. D., Knoll, A. H., 2002. Proterozoic Ocean Chemistry and Evolution: A Bioinorganic Bridge? Science, 297(5584): 1137-1142. https://doi.org/10.1126/science.1069651
      Anderson, L. D., Delaney, M. L., Faul, K. L., 2001. Carbon to Phosphorus Ratios in Sediments: Implications for Nutrient Cycling. Global Biogeochemical Cycles, 15(1): 65-79. https://doi.org/10.1029/2000GB001270
      Arthur, M. A., Dean, W. E., Pratt, L. M., 1988. Geochemical and Climatic Effects of Increased Marine Organic Carbon Burial at the Cenomanian/Turonian Boundary. Nature, 335: 714-717. https://doi.org/10.1038/335714a0
      Barclay, R. S., McElwain, J. C., Sageman, B. B., 2010. Carbon Sequestration Activated by a Volcanic CO2 Pulse during Ocean Anoxic Event 2. Nature Geoscience, 3: 205-208. https://doi.org/10.1038/ngeo757
      Barley, M. E., Bekker, A., Krapež, B., 2005. Late Archean to Early Paleoproterozoic Global Tectonics, Environmental Change and the Rise of Atmospheric Oxygen. Earth and Planetary Science Letters, 238(1-2): 156-171. https://doi.org/10.1016/j.epsl.2005.06.062
      Bartley, J. K., Kah, L. C., 2004. Marine Carbon Reservoir, Corg-Ccarb Coupling, and the Evolution of the Proterozoic Carbon Cycle. Geology, 32(2): 129-132. https://doi.org/10.1130/g19939.1
      Baturin, G. N., 2007. Issue of the Relationship between Primary Productivity of Organic Carbon in Ocean and Phosphate Accumulation (Holocene-Late Jurassic). Lithology and Mineral Resources, 42(4): 318-348. https://doi.org/10.1134/S0024490207040025
      Bekker, A., Holland, H. D., Wang, P. L., et al., 2004. Dating the Rise of Atmospheric Oxygen. Nature, 427: 117-120. https://doi.org/10.1038/nature02260
      Bergman, N. M., Lenton, T. M., Watson, A. J., 2004. COPSE: A New Model of Biogeochemical Cycling over Phanerozoic Time. American Journal of Science, 304(5): 397-437. https://doi.org/10.2475/ajs.304.5.397
      Berner, R. A., Beerling, D. J., Dudley, R., et al., 2003. Phanerozoic Atmospheric Oxygen. Annual Review of Earth and Planetary Sciences, 31: 105-134. https://doi.org/10.1146/annurev.earth.31.100901.141329
      Berner, R. A., Canfield, D. E., 1989. A New Model for Atmospheric Oxygen over Phanerozoic Time. American Journal of Science, 289(4): 333-361. https://doi.org/10.2475/ajs.289.4.333
      Bjerrum, C. J., Bendtsen, J., Legarth, J. J. F., 2006. Modeling Organic Carbon Burial during Sea Level Rise with Reference to the Cretaceous. Geochemistry, Geophysics, Geosystems, 7(5): 1-24. https://doi.org/10.1029/2005gc001032
      Bjerrum, C. J., Canfield, D. E., 2002. Ocean Productivity before about 1.9 Gyr Ago Limited by Phosphorus Adsorption onto Iron Oxides. Nature, 417(6885): 159-162. https://doi.org/10.1038/417159a
      Bosak, T., Knoll, A. H., Petroff, A., 2013. The Meanings of Stromatolites. Annual Review of Earth and Planetary Sciences, 41(1): 21-44. https://doi.org/10.1146/annurev-earth-042711-105327
      Bowyer, F. T., Krause, A. J., Song, Y. F., et al., 2023. Biological Diversification Linked to Environmental Stabilization Following the Sturtian Snowball Glaciation. Science Advances, 9(34): eadf9999. https://doi.org/10.1126/sciadv.adf9999
      Bowyer, F. T., Shore, A. J., Wood, R. A., et al., 2020. Regional Nutrient Decrease Drove Redox Stabilisation and Metazoan Diversification in the Late Ediacaran Nama Group, Namibia. Scientific Reports, 10: 1-11. https://doi.org/10.1038/s41598-020-59335-2
      Boyle, R. A., Dahl, T. W., Dale, A. W., et al., 2014. Stabilization of the Coupled Oxygen and Phosphorus Cycles by the Evolution of Bioturbation. Nature Geoscience, 7: 671-676. https://doi.org/10.1038/ngeo2213
      Böning, P., Brumsack, H. J., Böttcher, M. E., et al., 2004. Geochemistry of Peruvian Near-Surface Sediments. Geochimica et Cosmochimica Acta, 68(21): 4429-4451. https://doi.org/10.1016/j.gca.2004.04.027
      Brasier, M. D., Lindsay, J. F., 1998. A Billion Years of Environmental Stability and the Emergence of Eukaryotes: New Data from Northern Australia. Geology, 26(6): 555-558. https://doi.org/10.1130/0091-7613(1998)026<0555: abyoes>2.3.co;2 doi: 10.1130/0091-7613(1998)026<0555:abyoes>2.3.co;2
      Buick, R., Des Marais, D. J., Knoll, A. H., 1995. Stable Isotopic Compositions of Carbonates from the Mesoproterozoic Bangemall Group, Northwestern Australia. Chemical Geology, 123(1-4): 153-171. https://doi.org/10.1016/0009-2541(95)00049-r
      Butterfield, N. J., 2003. Exceptional Fossil Preservation and the Cambrian Explosion. Integrative and Comparative Biology, 43(1): 166-177. https://doi.org/10.1093/icb/43.1.166
      Calvert, S. E., Pedersen, T. F., Karlin, R. E., 2001. Geochemical and Isotopic Evidence for Post-Glacial Palaeoceanographic Changes in Saanich Inlet, British Columbia. Marine Geology, 174(1-4): 287-305. https://doi.org/10.1016/S0025-3227(00)00156-0
      Canfield, D. E., 1998. A New Model for Proterozoic Ocean Chemistry. Nature, 396(6710): 450-453. https://doi.org/10.1038/24839
      Canfield, D. E., Bjerrum, C. J., Zhang, S. C., et al., 2020. The Modern Phosphorus Cycle Informs Interpretations of Mesoproterozoic Era Phosphorus Dynamics. Earth-Science Reviews, 208: 103267. https://doi.org/10.1016/j.earscirev.2020.103267
      Canfield, D. E., Raiswell, R., Bottrell, S. H., 1992. The Reactivity of Sedimentary Iron Minerals toward Sulfide. American Journal of Science, 292(9): 659-683. https://doi.org/10.2475/ajs.292.9.659
      Canfield, D. E., Zhang, S. C., Wang, H. J., et al., 2018. A Mesoproterozoic Iron Formation. Proceedings of the National Academy of Sciences of the United States of America, 115(17): E3895-E3904. https://doi.org/10.1073/pnas.1720529115
      Carstensen, J., Andersen, J. H., Gustafsson, B. G., et al., 2014. Deoxygenation of the Baltic Sea during the Last Century. Proceedings of the National Academy of Sciences of the United States of America, 111(15): 5628-5633. https://doi.org/10.1073/pnas.1323156111
      Chen, M. E., Li, J. Y., Chen, Q. Y., 1999. The Late Sinian Microbiolite and Its Phosphorus Enrichment in Central Guizhou Province. Acta Petrologica Sinica, 15(3): 446-451 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB199903012.htm
      Cole, D. B., Reinhard, C. T., Wang, X. L., et al., 2016. A Shale-Hosted Cr Isotope Record of Low Atmospheric Oxygen during the Proterozoic. Geology, 44(7): 555-558. https://doi.org/10.1130/g37787.1
      Colman, A. S., Mackenzie, F. T., Holland, H. D., et al., 1997. Redox Stabilization of the Atmosphere and Oceans and Marine Productivity. Science, 275(5298): 406-408. https://doi.org/10.1126/science.275.5298.406
      Condie, K. C., Des Marais, D. J., Abbott, D., 2001. Precambrian Superplumes and Supercontinents: A Record in Black Shales, Carbon Isotopes, and Paleoclimates? Precambrian Research, 106(3-4): 239-260. https://doi.org/10.1016/S0301-9268(00)00097-8
      Cook, P. J., 1992. Phosphogenesis around the Proterozoic-Phanerozoic Transition. Journal of the Geological Society, 149(4): 615-620. https://doi.org/10.1144/gsjgs.149.4.0615
      Cook, P. J., Shergold, J. H., 1984. Phosphorus, Phosphorites and Skeletal Evolution at the Precambrian-Cambrian Boundary. Nature, 308: 231-236. https://doi.org/10.1038/308231a0
      Cordell, D., Drangert, J. O., White, S., 2009. The Story of Phosphorus: Global Food Security and Food for Thought. Global Environmental Change, 19(2): 292-305. https://doi.org/10.1016/j.gloenvcha.2008.10.009
      Cox, G. M., Lyons, T. W., Mitchell, R. N., et al., 2018. Linking the Rise of Atmospheric Oxygen to Growth in the Continental Phosphorus Inventory. Earth and Planetary Science Letters, 489: 28-36. https://doi.org/10.1016/j.epsl.2018.02.016
      Creveling, J. R., Johnston, D. T., Poulton, S. W., et al., 2014. Phosphorus Sources for Phosphatic Cambrian Carbonates. Geological Society of America Bulletin, 126(1-2): 145-163. https://doi.org/10.1130/b30819.1
      Dale, A. W., Boyle, R. A., Lenton, T. M., et al., 2016. A Model for Microbial Phosphorus Cycling in Bioturbated Marine Sediments: Significance for Phosphorus Burial in the Early Paleozoic. Geochimica et Cosmochimica Acta, 189: 251-268. https://doi.org/10.1016/j.gca.2016.05.046
      Derry, L. A., 2015. Causes and Consequences of Mid-Proterozoic Anoxia. Geophysical Research Letters, 42(20): 8538-8546. https://doi.org/10.1002/2015gl065333
      Derry, L. A., Kaufman, A. J., Jacobsen, S. B., 1992. Sedimentary Cycling and Environmental Change in the Late Proterozoic: Evidence from Stable and Radiogenic Isotopes. Geochimica et Cosmochimica Acta, 56(3): 1317-1329. https://doi.org/10.1016/0016-7037(92)90064-P
      Des Marais, D. J., Strauss, H., Summons, R. E., et al., 1992. Carbon Isotope Evidence for the Stepwise Oxidation of the Proterozoic Environment. Nature, 359(6396): 605-609. https://doi.org/10.1038/359605a0
      Diaz, J., Ingall, E., Benitez-Nelson, C., et al., 2008. Marine Polyphosphate: A Key Player in Geologic Phosphorus Sequestration. Science, 320(5876): 652-655. https://doi.org/10.1126/science.1151751
      Dijkstra, N., Kraal, P., Séguret, M. J. M., et al., 2018. Phosphorus Dynamics in and below the Redoxcline in the Black Sea and Implications for Phosphorus Burial. Geochimica et Cosmochimica Acta, 222: 685-703. https://doi.org/10.1016/j.gca.2017.11.016
      Dijkstra, N., Slomp, C. P., Behrends, T., 2016. Vivianite is a Key Sink for Phosphorus in Sediments of the Landsort Deep, an Intermittently Anoxic Deep Basin in the Baltic Sea. Chemical Geology, 438: 58-72. https://doi.org/10.1016/j.chemgeo.2016.05.025
      Drever, J. I., 1994. The Effect of Land Plants on Weathering Rates of Silicate Minerals. Geochimica et Cosmochimica Acta, 58(10): 2325-2332. https://doi.org/10.1016/0016-7037(94)90013-2
      Egger, M., Jilbert, T., Behrends, T., et al., 2015. Vivianite is a Major Sink for Phosphorus in Methanogenic Coastal Surface Sediments. Geochimica et Cosmochimica Acta, 169: 217-235. https://doi.org/10.1016/j.gca.2015.09.012
      Eijsink, L. M., Krom, M. D., Herut, B., 2000. Speciation and Burial Flux of Phosphorus in the Surface Sediments of the Eastern Mediterranean. American Journal of Science, 300(6): 483-503. https://doi.org/10.2475/ajs.300.6.483
      Elser, J. J., Bracken, M. E. S., Cleland, E. E., et al., 2007. Global Analysis of Nitrogen and Phosphorus Limitation of Primary Producers in Freshwater, Marine and Terrestrial Ecosystems. Ecology Letters, 10(12): 1135-1142. https://doi.org/10.1111/j.1461-0248.2007.01113.x
      Elser, J. J., Dobberfuhl, D. R., MacKay, N. A., et al., 1996. Organism Size, Life History, and N: P Stoichiometry: Toward a Unified View of Cellular and Ecosystem Processes. BioScience, 46(9): 674-684. https://doi.org/10.2307/1312897
      Erwin, D. H., Laflamme, M., Tweedt, S. M., et al., 2011. The Cambrian Conundrum: Early Divergence and Later Ecological Success in the Early History of Animals. Science, 334(6059): 1091-1097. https://doi.org/10.1126/science.1206375
      Fan, H. F., Wen, H. J., Zhu, X. K., 2016. Marine Redox Conditions in the Early Cambrian Ocean: Insights from the Lower Cambrian Phosphorite Deposits, South China. Journal of Earth Science, 27(2): 282-296. https://doi.org/10.1007/s12583-016-0687-3
      Feely, R. A., Trefry, J. H., Lebon, G. T., et al., 1998. The Relationship between P/Fe and V/Fe Ratios in Hydrothermal Precipitates and Dissolved Phosphate in Seawater. Geophysical Research Letters, 25(13): 2253-2256. https://doi.org/10.1029/98gl01546
      Fennel, K., Follows, M., Falkowski, P. G., 2005. The Co-Evolution of the Nitrogen, Carbon and Oxygen Cycles in the Proterozoic Ocean. American Journal of Science, 305(6-8): 526-545. https://doi.org/10.2475/ajs.305.6-8.526
      Filippelli, G. M., 2011. Phosphate Rock Formation and Marine Phosphorus Geochemistry: The Deep Time Perspective. Chemosphere, 84(6): 759-766. https://doi.org/10.1016/j.chemosphere.2011.02.019
      Filippelli, G. M., Delaney, M. L., 1992. Similar Phosphorus Fluxes in Ancient Phosphorite Deposits and a Modern Phosphogenic Environment. Geology, 20(8): 709-712. https://doi.org/10.1130/0091-7613(1992)020<0709: spfiap>2.3.co;2 doi: 10.1130/0091-7613(1992)020<0709:spfiap>2.3.co;2
      Flament, N., Coltice, N., Rey, P. F., 2008. A Case for Late-Archaean Continental Emergence from Thermal Evolution Models and Hypsometry. Earth and Planetary Science Letters, 275(3-4): 326-336. https://doi.org/10.1016/j.epsl.2008.08.029
      Flament, N., Coltice, N., Rey, P. F., 2013. The Evolution of the 87Sr/86Sr of Marine Carbonates does not Constrain Continental Growth. Precambrian Research, 229: 177-188. https://doi.org/10.1016/j.precamres.2011.10.009
      Föllmi, K. B., 1996. The Phosphorus Cycle, Phosphogenesis and Marine Phosphate-Rich Deposits. Earth-Science Reviews, 40(1-2): 55-124. https://doi.org/10.1016/0012-8252(95)00049-6
      Fournier, G. P., Moore, K. R., Rangel, L. T., et al., 2021. The Archean Origin of Oxygenic Photosynthesis and Extant Cyanobacterial Lineages. Proceedings of the Royal Society B: Biological Sciences, 288(1959): 1-10. https://doi.org/10.1098/rspb.2021.0675
      Froelich, P. N., 1988. Kinetic Control of Dissolved Phosphate in Natural Rivers and Estuaries: A Primer on the Phosphate Buffer Mechanism. Limnology and Oceanography, 33: 649-668. https://doi.org/10.4319/lo.1988.33.4_part_2.0649
      Froelich, P. N., Bender, M. L., Luedtke, N. A., et al., 1982. The Marine Phosphorus Cycle. American Journal of Science, 282(4): 474-511. https://doi.org/10.2475/ajs.282.4.474
      Ge, Y. Z., Algeo, T. J., Wen, H. G., et al., 2023. Dynamics of Tethyan Marine De-Oxygenation and Relationship to S-N-P Cycles during the Permian-Triassic Boundary Crisis. Earth-Science Reviews, 246: 104576. https://doi.org/10.1016/j.earscirev.2023.104576
      Gilleaudeau, G. J., Romaniello, S. J., Luo, G. M., et al., 2019. Uranium Isotope Evidence for Limited Euxinia in Mid-Proterozoic Oceans. Earth and Planetary Science Letters, 521: 150-157. https://doi.org/10.1016/j.epsl.2019.06.012
      Glenn, C. R., Föllmi, K. B., Riggs, S. R., et al., 1994. Phosphorus and Phosphorites: Sedimentology and Environments of Formation. Eclogae Geologicae Helvetiae, 87: 747-788. https://doi.org/10.1111/j.1365-3091.1994.tb01397.x
      Goddéris, Y., Joachimski, M. M., 2004. Global Change in the Late Devonian: Modelling the Frasnian-Famennian Short-Term Carbon Isotope Excursions. Palaeogeography, Palaeoclimatology, Palaeoecology, 202(3-4): 309-329. https://doi.org/10.1016/S0031-0182(03)00641-2
      Guilbaud, R., Poulton, S. W., Thompson, J., et al., 2020. Phosphorus-Limited Conditions in the Early Neoproterozoic Ocean Maintained Low Levels of Atmospheric Oxygen. Nature Geoscience, 13: 296-301. https://doi.org/10.1038/s41561-020-0548-7
      Halverson, G. P., Hoffman, P. F., Schrag, D. P., et al., 2005. Toward a Neoproterozoic Composite Carbon-Isotope Record. Geological Society of America Bulletin, 117(9): 1181-1207. https://doi.org/10.1130/b25630.1
      Handoh, I. C., Lenton, T. M., 2003. Periodic Mid-Cretaceous Oceanic Anoxic Events Linked by Oscillations of the Phosphorus and Oxygen Biogeochemical Cycles. Global Biogeochemical Cycles, 17(4): 1-11. https://doi.org/10.1029/2003gb002039
      Hao, J. H., Knoll, A. H., Huang, F., et al., 2020. Cycling Phosphorus on the Archean Earth: Part Ⅰ. Continental Weathering and Riverine Transport of Phosphorus. Geochimica et Cosmochimica Acta, 273: 70-84. https://doi.org/10.1016/j.gca.2020.01.027
      Hardisty, D. S., Lu, Z. L., Bekker, A., et al., 2017. Perspectives on Proterozoic Surface Ocean Redox from Iodine Contents in Ancient and Recent Carbonate. Earth and Planetary Science Letters, 463: 159-170. https://doi.org/10.1016/j.epsl.2017.01.032
      Hermans, M., Lenstra, W. K., van Helmond, N. A. G. M., et al., 2019. Impact of Natural Re-Oxygenation on the Sediment Dynamics of Manganese, Iron and Phosphorus in a Euxinic Baltic Sea Basin. Geochimica et Cosmochimica Acta, 246: 174-196. https://doi.org/10.1016/j.gca.2018.11.033
      Holland, H. D., 2005. Sedimentary Mineral Deposits and the Evolution of Earth's near-Surface Environments. Economic Geology, 100(8): 1489-1509. https://doi.org/10.2113/gsecongeo.100.8.1489
      Holland, H. D., 2006. The Oxygenation of the Atmosphere and Oceans. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 361(1470): 903-915. https://doi.org/10.1098/rstb.2006.1838
      Hodgskiss, M. S. W., Crockford, P. W., Peng, Y., et al., 2019. A Productivity Collapse to End Earth's Great Oxidation. Proceedings of the National Academy of Sciences of the United States of America, 116(35): 17207-17212. https://doi.org/10.1073/pnas.1900325116
      Hoffman, P. F., Schrag, D. P., 2002. The Snowball Earth Hypothesis: Testing the Limits of Global Change. Terra Nova, 14(3): 129-155. https://doi.org/10.1046/j.1365-3121.2002.00408.x
      Horton, F., 2015. Did Phosphorus Derived from the Weathering of Large Igneous Provinces Fertilize the Neoproterozoic Ocean? Geochemistry, Geophysics, Geosystems, 16(6): 1723-1738. https://doi.org/10.1002/2015gc005792
      Hotinski, R. M., Bice, K. L., Kump, L. R., et al., 2001. Ocean Stagnation and End-Permian Anoxia. Geology, 29(1): 7-10. https://doi.org/10.1130/0091-7613(2001)029<0007: osaepa>2.0.co;2 doi: 10.1130/0091-7613(2001)029<0007:osaepa>2.0.co;2
      Hsu, T. W., Jiang, W. T., Wang, Y., 2014. Authigenesis of Vivianite as Influenced by Methane-Induced Sulfidization in Cold-Seep Sediments off Southwestern Taiwan. Journal of Asian Earth Sciences, 89: 88-97. https://doi.org/10.1016/j.jseaes.2014.03.027
      Huang, J. Y., Gu, X. W., Lu, L. Y., et al., 2007. Comparison of Phosphorite Resources between Xingiang, Kazakhstan and Mongolia. Xinjiang Geology, 25(1): 75-76 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-8845.2007.01.014
      Huang, S. Y., Xie, H. W., Hou, G. T., et al., 2023. Key Transition of Chinese Plate Configuration at the End of Early Paleozoic. Earth Science, 48(4): 1321-1329 (in Chinese with English abstract).
      Huang, T. Z., Wang, R. M., Shen, B., 2022. The Phosphorus Cycle and Biological Pump in Earth's Middle Age: Reappraisal of the "Boring Billion". Chinese Science Bulletin, 67(15): 1614-1623 (in Chinese). doi: 10.1360/TB-2021-1168
      Hülse, D., Lau, K. V., van de Velde, S. J., et al., 2021. End-Permian Marine Extinction Due to Temperature-Driven Nutrient Recycling and Euxinia. Nature Geoscience, 14: 862-867. https://doi.org/10.1038/s41561-021-00829-7
      Ingall, E. D., Bustin, R. M., Van Cappellen, P., 1993. Influence of Water Column Anoxia on the Burial and Preservation of Carbon and Phosphorus in Marine Shales. Geochimica et Cosmochimica Acta, 57(2): 303-316. https://doi.org/10.1016/0016-7037(93)90433-W
      Ingall, E., Jahnke, R., 1994. Evidence for Enhanced Phosphorus Regeneration from Marine Sediments Overlain by Oxygen Depleted Waters. Geochimica et Cosmochimica Acta, 58(11): 2571-2575. https://doi.org/10.1016/0016-7037(94)90033-7
      Ingall, E., Jahnke, R., 1997. Influence of Water-Column Anoxia on the Elemental Fractionation of Carbon and Phosphorus during Sediment Diagenesis. Marine Geology, 139(1-4): 219-229. https://doi.org/10.1016/S0025-3227(96)00112-0
      Ingall, E. D., Van Cappellen, P., 1990. Relation between Sedimentation Rate and Burial of Organic Phosphorus and Organic Carbon in Marine Sediments. Geochimica et Cosmochimica Acta, 54(2): 373-386. https://doi.org/10.1016/0016-7037(90)90326-G
      Jones, C., Nomosatryo, S., Crowe, S. A., et al., 2015. Iron Oxides, Divalent Cations, Silica, and the Early Earth Phosphorus Crisis. Geology, 43(2): 135-138. https://doi.org/10.1130/g36044.1
      Kamaye, T., Romanovitch, P., 2005. Origin of Phosphorite Nodules of Lebedinsky Iron Deposit in Kursk Magnetic Anomaly (KMA) of the Russian Platform. Journal of Earth Science, 16(2): 170-177, 182. http://www.cnki.com.cn/Article/CJFDTotal-ZDDY200502008.htm
      Karl, D. M., 2000. Aquatic Ecology: Phosphorus, the Staff of Life. Nature, 406(6791): 31-33. https://doi.org/10.1038/35017683
      Kasting, J. F., Ono, S., 2006. Palaeoclimates: The First Two Billion Years. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 361(1470): 917-929. https://doi.org/10.1098/rstb.2006.1839
      Kaufman, A. J., Knoll, A. H., 1995. Neoproterozoic Variations in the C-Isotopic Composition of Seawater: Stratigraphic and Biogeochemical Implications. Precambrian Research, 73(1-4): 27-49. https://doi.org/10.1016/0301-9268(94)00070-8
      Kendall, B., Gordon, G. W., Poulton, S. W., et al., 2011. Molybdenum Isotope Constraints on the Extent of Late Paleoproterozoic Ocean Euxinia. Earth and Planetary Science Letters, 307(3-4): 450-460. https://doi.org/10.1016/j.epsl.2011.05.019
      Kipp, M. A., 2022. A Double-Edged Sword: The Role of Sulfate in Anoxic Marine Phosphorus Cycling through Earth History. Geophysical Research Letters, 49(20): 1-11. https://doi.org/10.1029/2022gl099817
      Kipp, M. A., Stüeken, E. E., 2017. Biomass Recycling and Earth's Early Phosphorus Cycle. Science Advances, 3(11): eaao4795. https://doi.org/10.1126/sciadv.aao4795
      Kirschvink, J. L., Gaidos, E. J., Bertani, L. E., et al., 2000. Paleoproterozoic Snowball Earth: Extreme Climatic and Geochemical Global Change and Its Biological Consequences. Proceedings of the National Academy of Sciences of the United States of America, 97(4): 1400-1405. https://doi.org/10.1073/pnas.97.4.1400
      Koehler, M. C., Buick, R., Kipp, M. A., et al., 2018. Transient Surface Ocean Oxygenation Recorded in the ∼2.66 Ga Jeerinah Formation, Australia. Proceedings of the National Academy of Sciences of the United States of America, 115(30): 7711-7716. https://doi.org/10.1073/pnas.1720820115
      Konhauser, K. O., Lalonde, S. V., Amskold, L., et al., 2007. Was There Really an Archean Phosphate Crisis? Science, 315(5816): 1234. https://doi.org/10.1126/science.1136328
      Kraal, P., Bostick, B. C., Behrends, T., et al., 2015. Characterization of Phosphorus Species in Sediments from the Arabian Sea Oxygen Minimum Zone: Combining Sequential Extractions and X-Ray Spectroscopy. Marine Chemistry, 168: 1-8. https://doi.org/10.1016/j.marchem.2014.10.009
      Kraal, P., Dijkstra, N., Behrends, T., et al., 2017. Phosphorus Burial in Sediments of the Sulfidic Deep Black Sea: Key Roles for Adsorption by Calcium Carbonate and Apatite Authigenesis. Geochimica et Cosmochimica Acta, 204: 140-158. https://doi.org/10.1016/j.gca.2017.01.042
      Kraal, P., Slomp, C. P., Forster, A., et al., 2010. Phosphorus Cycling from the Margin to Abyssal Depths in the Proto-Atlantic during Oceanic Anoxic Event 2. Palaeogeography, Palaeoclimatology, Palaeoecology, 295(1-2): 42-54. https://doi.org/10.1016/j.palaeo.2010.05.014
      Kraal, P., Slomp, C. P., Reed, D. C., et al., 2012. Sedimentary Phosphorus and Iron Cycling in and below the Oxygen Minimum Zone of the Northern Arabian Sea. Biogeosciences, 9(7): 2603-2624. https://doi.org/10.5194/bg-9-2603-2012
      Krom, M. D., Berner, R. A., 1981. The Diagenesis of Phosphorus in a Nearshore Marine Sediment. Geochimica et Cosmochimica Acta, 45(2): 207-216. https://doi.org/10.1016/0016-7037(81)90164-2
      Krom, M. D., Kress, N., Brenner, S., et al., 1991. Phosphorus Limitation of Primary Productivity in the Eastern Mediterranean Sea. Limnology and Oceanography, 36(3): 424-432. https://doi.org/10.4319/lo.1991.36.3.0424
      Kump, L. R., Pavlov, A., Arthur, M. A., 2005. Massive Release of Hydrogen Sulfide to the Surface Ocean and Atmosphere during Intervals of Oceanic Anoxia. Geology, 33(5): 397-400. https://doi.org/10.1130/g21295.1
      Kuypers, M. M. M., Pancost, R. D., Damsté, J. S. S., 1999. A Large and Abrupt Fall in Atmospheric CO2 Concentration during Cretaceous Times. Nature, 399: 342-345. https://doi.org/10.1038/20659
      Laakso, T. A., Schrag, D. P., 2018. Limitations on Limitation. Global Biogeochemical Cycles, 32: 486-496. https://doi.org/ 10.1002/2017GB005832
      Lamboy, M., 1993. Phosphatization of Calcium Carbonate in Phosphorites: Microstructure and Importance. Sedimentology, 40(1): 53-62. https://doi.org/10.1111/j.1365-3091.1993.tb01090.x
      Lenton, T. M., Watson, A. J., 2000. Redfield Revisited: 2. What Regulates the Oxygen Content of the Atmosphere? Global Biogeochemical Cycles, 14: 249-268. https://doi.org/10.1029/1999GB900076
      Li, K. Y., She, Z. B., 2017. Discovery and Possible Genesis of Micron-Sized Euhedral Albites in the Ediacaran Doushantuo Phosphorites, South China. Earth Science Frontiers, 24(1): 308-320 (in Chinese with English abstract).
      Li, Y. F., Li, F., 2022. How did Reefs Evolve during the Precambrian-Cambrian Transition? Earth Science, 47(10): 3853-3855 (in Chinese with English abstract).
      Li, Z. H., Chen, Z. Q., Zhang, F. F., et al., 2020. Global Carbon Cycle Perturbations Triggered by Volatile Volcanism and Ecosystem Responses during the Carnian Pluvial Episode (Late Triassic). Earth-Science Reviews, 211: 103404. https://doi.org/10.1016/j.earscirev.2020.103404
      Lomnitz, U., Sommer, S., Dale, A. W., et al., 2016. Benthic Phosphorus Cycling in the Peruvian Oxygen Minimum Zone. Biogeosciences, 13(5): 1367-1386. https://doi.org/10.5194/bg-13-1367-2016
      Longman, J., Mills, B. J. W., Manners, H. R., et al., 2021. Late Ordovician Climate Change and Extinctions Driven by Elevated Volcanic Nutrient Supply. Nature Geoscience, 14(12): 924-929. https://doi.org/10.1038/s41561-021-00855-5
      Love, G. D., Grosjean, E., Stalvies, C., et al., 2009. Fossil Steroids Record the Appearance of Demospongiae during the Cryogenian Period. Nature, 457: 718-721. https://doi.org/10.1038/nature07673
      Lovley, D. R., Phillips, E. J., 1988. Novel Mode of Microbial Energy Metabolism: Organic Carbon Oxidation Coupled to Dissimilatory Reduction of Iron or Manganese. Applied and Environmental Microbiology, 54(6): 1472-1480. https://doi.org/10.1128/aem.54.6.1472-1480.1988
      Lucotte, M., Mucci, A., Hillaire-Marcel, C., et al., 1994. Early Diagenetic Processes in Deep Labrador Sea Sediments: Reactive and Nonreactive Iron and Phosphorus. Canadian Journal of Earth Sciences, 31(1): 14-27. https://doi.org/10.1139/e94-003
      Lyons, T. W., Reinhard, C. T., Planavsky, N. J., 2014. The Rise of Oxygen in Earth's Early Ocean and Atmosphere. Nature, 506: 307-315. https://doi.org/10.1038/nature13068
      Macdonald, F. A., Schmitz, M. D., Crowley, J. L., et al., 2010. Calibrating the Cryogenian. Science, 327(5970): 1241-1243. https://doi.org/10.1126/science.1183325
      Mahowald, N., Jickells, T. D., Baker, A. R., et al., 2008. Global Distribution of Atmospheric Phosphorus Sources, Concentrations and Deposition Rates, and Anthropogenic Impacts. Global Biogeochemical Cycles, 22(4): 1-19. https://doi.org/10.1029/2008gb003240
      Mather, R. L., Reynolds, S. E., Wolff, G. A., et al., 2008. Phosphorus Cycling in the North and South Atlantic Ocean Subtropical Gyres. Nature Geoscience, 1: 439-443. https://doi.org/10.1038/ngeo232
      März, C., Poulton, S. W., Beckmann, B., et al., 2008. Redox Sensitivity of P Cycling during Marine Black Shale Formation: Dynamics of Sulfidic and Anoxic, Non-Sulfidic Bottom Waters. Geochimica et Cosmochimica Acta, 72(15): 3703-3717. https://doi.org/10.1016/j.gca.2008.04.025
      Melezhik, V. A., Pokrovsky, B. G., Fallick, A. E., et al., 2009. Constraints on 87Sr/86Sr of Late Ediacaran Seawater: Insight from Siberian High-Sr Limestones. Journal of the Geological Society, 166(1): 183-191. https://doi.org/10.1144/0016-76492007-171
      Meybeck, M., 1982. Carbon, Nitrogen, and Phosphorus Transport by World Rivers. American Journal of Science, 282(4): 401-450. https://doi.org/10.2475/ajs.282.4.401
      Meyer, K. M., Kump, L. R., Ridgwell, A., 2008. Biogeochemical Controls on Photic-Zone Euxinia during the End-Permian Mass Extinction. Geology, 36(9): 747-750. https://doi.org/10.1130/G24618A.1
      Mills, B. J. W., Donnadieu, Y., Goddéris, Y., 2021. Spatial Continuous Integration of Phanerozoic Global Biogeochemistry and Climate. Gondwana Research, 100: 73-86. https://doi.org/10.1016/j.gr.2021.02.011
      Mort, H. P., Adatte, T., Föllmi, K. B., et al., 2007. Phosphorus and the Roles of Productivity and Nutrient Recycling during Oceanic Anoxic Event 2. Geology, 35(6): 483-486. https://doi.org/10.1130/g23475a.1
      Mort, H. P., Slomp, C. P., Gustafsson, B. G., et al., 2010. Phosphorus Recycling and Burial in Baltic Sea Sediments with Contrasting Redox Conditions. Geochimica et Cosmochimica Acta, 74(4): 1350-1362. https://doi.org/10.1016/j.gca.2009.11.016
      Muscente, A. D., Vinnes, O., Sinha, S., et al., 2023. What Role does Anoxia Play in Exceptional Fossil Preservation? Lessons from the Taphonomy of the Posidonia Shale (Germany). Earth-Science Reviews, 238: 104323. https://doi.org/10.1016/j.earscirev.2023.104323
      Müller, J., Sun, Y. D., Yang, F., et al., 2022. Phosphorus Cycle and Primary Productivity Changes in the Tethys Ocean during the Permian-Triassic Transition: Starving Marine Ecosystems. Frontiers in Earth Science, 10: 832308. https://doi.org/10.3389/feart.2022.832308
      Och, L. M., Shields-Zhou, G. A., 2012. The Neoproterozoic Oxygenation Event: Environmental Perturbations and Biogeochemical Cycling. Earth-Science Reviews, 110(1-4): 26-57. https://doi.org/10.1016/j.earscirev.2011.09.004
      Okin, G. S., Baker, A. R., Tegen, I., et al., 2011. Impacts of Atmospheric Nutrient Deposition on Marine Productivity: Roles of Nitrogen, Phosphorus, and Iron. Global Biogeochemical Cycles, 25(2): 1-10. https://doi.org/10.1029/2010gb003858
      Ostrander, C. M., Nielsen, S. G., Owens, J. D., et al., 2019. Fully Oxygenated Water Columns over Continental Shelves before the Great Oxidation Event. Nature Geoscience, 12(4): 186-191. https://doi.org/10.1038/s41561-019-0309-7
      Ozaki, K., Reinhard, C. T., Tajika, E., 2019. A Sluggish Mid-Proterozoic Biosphere and Its Effect on Earth's Redox Balance. Geobiology, 17(1): 3-11. https://doi.org/10.1111/gbi.12317
      Papadomanolaki, N. M., Lenstra, W. K., Wolthers, M., et al., 2022. Enhanced Phosphorus Recycling during Past Oceanic Anoxia Amplified by Low Rates of Apatite Authigenesis. Science Advances, 8(26): eabn2370. https://doi.org/10.1126/sciadv.abn2370
      Papineau, D., 2010. Global Biogeochemical Changes at Both Ends of the Proterozoic: Insights from Phosphorites. Astrobiology, 10(2): 165-181. https://doi.org/10.1089/ast.2009.0360
      Papineau, D., Purohit, R., Goldberg, T., et al., 2009. High Primary Productivity and Nitrogen Cycling after the Paleoproterozoic Phosphogenic Event in the Aravalli Supergroup, India. Precambrian Research, 171(1-4): 37-56. https://doi.org/10.1016/j.precamres.2009.03.005
      Partin, C. A., Bekker, A., Planavsky, N. J., et al., 2013. Large-Scale Fluctuations in Precambrian Atmospheric and Oceanic Oxygen Levels from the Record of U in Shales. Earth and Planetary Science Letters, 369-370: 284-293. https://doi.org/10.1016/j.epsl.2013.03.031
      Percival, L. M. E., Bond, D. P. G., Rakociński, B. M., et al., 2020. Phosphorus-Cycle Disturbances during the Late Devonian Anoxic Events. Global and Planetary Change, 184: 103070. https://doi.org/10.1016/j.gloplacha.2019.103070
      Planavsky, N. J., Asael, D., Hofmann, A., et al., 2014. Evidence for Oxygenic Photosynthesis Half a Billion Years before the Great Oxidation Event. Nature Geoscience, 7(4): 283-286. https://doi.org/10.1038/ngeo2122
      Planavsky, N. J., McGoldrick, P., Scott, C. T., et al., 2011. Widespread Iron-Rich Conditions in the Mid-Proterozoic Ocean. Nature, 477: 448-451. https://doi.org/10.1038/nature10327
      Planavsky, N. J., Rouxel, O. J., Bekker, A., et al., 2010. The Evolution of the Marine Phosphate Reservoir. Nature, 467: 1088-1090. https://doi.org/10.1038/nature09485
      Planavsky, N. J., Slack, J. F., Cannon, W. F., et al., 2018. Evidence for Episodic Oxygenation in a Weakly Redox-Buffered Deep Mid-Proterozoic Ocean. Chemical Geology, 483: 581-594. https://doi.org/10.1016/j.chemgeo.2018.03.028
      Porter, S. M., 2004. Closing the Phosphatization Window: Testing for the Influence of Taphonomic Megabias on the Pattern of Small Shelly Fossil Decline. Palaios, 19(2): 178-183. https://doi.org/10.1669/0883-1351(2004)019<0178: ctpwtf>2.0.co;2 doi: 10.1669/0883-1351(2004)019<0178:ctpwtf>2.0.co;2
      Poulton, S. W., 2017. Early Phosphorus Redigested. Nature Geoscience, 10(2): 75-76. https://doi.org/10.1038/ngeo2884
      Poulton, S. W., Canfield, D. E., 2011. Ferruginous Conditions: A Dominant Feature of the Ocean through Earth's History. Elements, 7(2): 107-112. https://doi.org/10.2113/gselements.7.2.107
      Poulton, S. W., Henkel, S., März, C., et al., 2015. A Continental-Weathering Control on Orbitally Driven Redox-Nutrient Cycling during Cretaceous Oceanic Anoxic Event 2. Geology, 43(11): 963-966. https://doi.org/10.1130/G36837.1
      Qiu, Z., Zou, C. N., Mills, B. J. W., et al., 2022. A Nutrient Control on Expanded Anoxia and Global Cooling during the Late Ordovician Mass Extinction. Communications Earth & Environment, 3: 1-9. https://doi.org/10.1038/s43247-022-00412-x
      Rasmussen, B., 1996. Early-Diagenetic REE-Phosphate Minerals (Florencite, Gorceixite, Crandallite, and Xenotime) in Marine Sandstones: A Major Sink for Oceanic Phosphorus. American Journal of Science, 296(6): 601-632. https://doi.org/10.2475/ajs.296.6.601
      Redfield, A. C., 1958. The Biological Control of Chemical Factors in the Environment. American Scientist, 46(3): 205-221. https://doi.org/10.2307/27827150
      Rego, E. S., Busigny, V., Lalonde, S. V., et al., 2023. Low-Phosphorus Concentrations and Important Ferric Hydroxide Scavenging in Archean Seawater. PNAS Nexus, 2(3): 1-17. https://doi.org/10.1093/pnasnexus/pgad025
      Reinhard, C. T., Planavsky, N. J., Gill, B. C., et al., 2017. Evolution of the Global Phosphorus Cycle. Nature, 541(7637): 386-389. https://doi.org/10.1038/nature20772
      Reinhard, C. T., Planavsky, N. J., Robbins, L. J., et al., 2013. Proterozoic Ocean Redox and Biogeochemical Stasis. Proceedings of the National Academy of Sciences of the United States of America, 110(14): 5357-5362. https://doi.org/10.1073/pnas.1208622110
      Reinhard, C. T., Raiswell, R., Scott, C., et al., 2009. A Late Archean Sulfidic Sea Stimulated by Early Oxidative Weathering of the Continents. Science, 326(5953): 713-716. 10.1126/science. 1176711 doi: 10.1126/science.1176711
      Rico, K. I., Sheldon, N. D., 2019. Nutrient and Iron Cycling in a Modern Analogue for the Redoxcline of a Proterozoic Ocean Shelf. Chemical Geology, 511: 42-50. https://doi.org/10.1016/j.chemgeo.2019.02.032
      Rimmer, S. M., Thompson, J. A., Goodnight, S. A., et al., 2004. Multiple Controls on the Preservation of Organic Matter in Devonian-Mississippian Marine Black Shales: Geochemical and Petrographic Evidence. Palaeogeography, Palaeoclimatology, Palaeoecology, 215(1-2): 125-154. https://doi.org/10.1016/j.palaeo.2004.09.001
      Ruttenberg, K. C., 1992. Development of a Sequential Extraction Method for Different Forms of Phosphorus in Marine Sediments. Limnology and Oceanography, 37(7): 1460-1482. https://doi.org/10.4319/lo.1992.37.7.1460
      Ruttenberg, K. C., Berner, R. A., 1993. Authigenic Apatite Formation and Burial in Sediments from Non-Upwelling, Continental Margin Environments. Geochimica et Cosmochimica Acta, 57(5): 991-1007. https://doi.org/10.1016/0016-7037(93)90035-U
      Ruvalcaba Baroni, I., Tsandev, I., Slomp, C. P., 2014. Enhanced N2-Fixation and NH4+ Recycling during Oceanic Anoxic Event 2 in the Proto-North Atlantic. Geochemistry, Geophysics, Geosystems, 15(10): 4064-4078. https://doi.org/10.1002/2014gc005453
      Sahoo, S. K., Planavsky, N. J., Kendall, B., et al., 2012. Ocean Oxygenation in the Wake of the Marinoan Glaciation. Nature, 489: 546-549. https://doi.org/10.1038/nature11445
      Schenau, S. J., De Lange, G. J., 2001. Phosphorus Regeneration vs. Burial in Sediments of the Arabian Sea. Marine Chemistry, 75(3): 201-217. https://doi.org/10.1016/S0304-4203(01)00037-8
      Schopf, J. W., Kudryavtsev, A. B., 2010. A Renaissance in Studies of Ancient Life. Geology Today, 26(4): 140-145. https://doi.org/10.1111/j.1365-2451.2010.00760.x
      Schobben, M., Foster, W. J., Sleveland, A. R. N., et al., 2020. A Nutrient Control on Marine Anoxia during the End-Permian Mass Extinction. Nature Geoscience, 13(9): 640-646. https://doi.org/10.1038/s41561-020-0622-1
      She, Z. B., Strother, P., McMahon, G., et al., 2013. Terminal Proterozoic Cyanobacterial Blooms and Phosphogenesis Documented by the Doushantuo Granular Phosphorites Ⅰ: In Situ Micro-Analysis of Textures and Composition. Precambrian Research, 235: 20-35. https://doi.org/10.1016/j.precamres.2013.05.011
      Shen, J., Schoepfer, S. D., Feng, Q. L., et al., 2015. Marine Productivity Changes during the End-Permian Crisis and Early Triassic Recovery. Earth-Science Reviews, 149: 136-162. https://doi.org/10.1016/j.earscirev.2014.11.002
      Shen, J. H., Pearson, A., Henkes, G. A., et al., 2018. Improved Efficiency of the Biological Pump as a Trigger for the Late Ordovician Glaciation. Nature Geoscience, 11(7): 510-514. https://doi.org/10.1038/s41561-018-0141-5
      Shi, Q., Shi, X. Y., Tang, D. J., et al., 2021. Heterogeneous Oxygenation Coupled with Low Phosphorus Bio-Availability Delayed Eukaryotic Diversification in Mesoproterozoic Oceans: Evidence from the ca 1.46 Ga Hongshuizhuang Formation of North China. Precambrian Research, 354: 106050. https://doi.org/10.1016/j.precamres.2020.106050
      Shields, G. A., Veizer, J., 2002. Precambrian Marine Carbonate Isotope Database: Version 1.1. Geochemistry, Geophysics, Geosystems, 3(6): 1-12. https://doi.org/10.1029/2001gc000266
      Shields-Zhou, G., Och, L., 2011. The Case for a Neoproterozoic Oxygenation Event: Geochemical Evidence and Biological Consequences. GSA Today, 21(3): 4-11. https://doi.org/10.1130/gsatg102a.1
      Shimura, T., Kon, Y., Sawaki, Y., et al., 2014. In-Situ Analyses of Phosphorus Contents of Carbonate Minerals: Reconstruction of Phosphorus Contents of Seawater from the Ediacaran to Early Cambrian. Gondwana Research, 25(3): 1090-1107. https://doi.org/10.1016/j.gr.2013.08.001
      Sisodia, M. S., 2009. Impact during the Proterozoic Era Possibly Inundated the Earth with Phosphorus. International Journal of Astrobiology, 8(3): 187-191. https://doi.org/10.1017/s1473550409004480
      Slomp, C. P., Thomson, J., De Lange, G. J., 2004. Controls on Phosphorus Regeneration and Burial during Formation of Eastern Mediterranean Sapropels. Marine Geology, 203(1-2): 141-159. https://doi.org/10.1016/S0025-3227(03)00335-9
      Slomp, C. P., Van der Gaast, S. J., Van Raaphorst, W., 1996. Phosphorus Binding by Poorly Crystalline Iron Oxides in North Sea Sediments. Marine Chemistry, 52(1): 55-73. https://doi.org/10.1016/0304-4203(95)00078-X
      Song, Y. F., Bowyer, F. T., Mills, B. J. W., et al., 2023. Dynamic Redox and Nutrient Cycling Response to Climate Forcing in the Mesoproterozoic Ocean. Nature Communications, 14(1): 1-10. https://doi.org/10.1038/s41467-023-41901-7
      Sperling, E. A., Wolock, C. J., Morgan, A. S., et al., 2015. Statistical Analysis of Iron Geochemical Data Suggests Limited Late Proterozoic Oxygenation. Nature, 523: 451-454. https://doi.org/10.1038/nature14589
      Stüeken, E. E., Catling, D. C., Buick, R., 2012. Contributions to Late Archaean Sulphur Cycling by Life on Land. Nature Geoscience, 5: 722-725. https://doi.org/10.1038/ngeo1585
      Tang, M., Chu, X., Hao, J. H., et al., 2021. Orogenic Quiescence in Earth's Middle Age. Science, 371(6530): 728-731. https://doi.org/10.1126/science.abf1876
      Thomas, R. D., Shearman, R. M., Stewart, G. W., 2000. Evolutionary Exploitation of Design Options by the First Animals with Hard Skeletons. Science, 288(5469): 1239-1242. https://doi.org/10.1126/science.288.5469.1239
      Thompson, J., Poulton, S. W., Guilbaud, R., et al., 2019. Development of a Modified SEDEX Phosphorus Speciation Method for Ancient Rocks and Modern Iron-Rich Sediments. Chemical Geology, 524: 383-393. https://doi.org/10.1016/j.chemgeo.2019.07.003
      Tsandev, I., Slomp, C. P., 2009. Modeling Phosphorus Cycling and Carbon Burial during Cretaceous Oceanic Anoxic Events. Earth and Planetary Science Letters, 286(1-2): 71-79. https://doi.org/10.1016/j.epsl.2009.06.016
      Tyrrell, T., 1999. The Relative Influences of Nitrogen and Phosphorus on Oceanic Primary Production. Nature, 400: 525-531. https://doi.org/10.1038/22941
      Turekian, K. K., Wedepohl, K. H., 1961. Distribution of the Elements in Some Major Units of the Earth's Crust. Geological Society of America Bulletin, 72(2): 175-192. https://doi.org/10.1130/0016-7606(1961)72[175: doteis]2.0.co;2 doi: 10.1130/0016-7606(1961)72[175:doteis]2.0.co;2
      Van Cappellen, P., Berner, R. A., 1988. A Mathematical Model for the Early Diagenesis of Phosphorus and Fluorine in Marine Sediments: Apatite Precipitation. American Journal of Science, 288(4): 289-333. https://doi.org/10.2475/ajs.288.4.289
      Van Cappellen, P., Ingall, E. D., 1994. Benthic Phosphorus Regeneration, Net Primary Production, and Ocean Anoxia: A Model of the Coupled Marine Biogeochemical Cycles of Carbon and Phosphorus. Paleoceanography, 9(5): 677-692. https://doi.org/10.1029/94pa01455
      Van Cappellen, P., Ingall, E. D., 1996. Redox Stabilization of the Atmosphere and Oceans by Phosphorus-Limited Marine Productivity. Science, 271(5248): 493-496. https://doi.org/10.1126/science.271.5248.493
      Wang, D. S., Liu, Y., Zhang, J. C., et al., 2022. Controls on Marine Primary Productivity Variation and Organic Matter Accumulation during the Late Ordovician-Early Silurian Transition. Marine and Petroleum Geology, 142: 105742. https://doi.org/10.1016/j.marpetgeo.2022.105742
      Wang, X. M., Zhang, S. C., Wang, H. J., et al., 2017. Oxygen, Climate and the Chemical Evolution of a 1 400 Million Year Old Tropical Marine Setting. American Journal of Science, 317(8): 861-900. https://doi.org/10.2475/08.2017.01
      Wallmann, K., 2003. Feedbacks between Oceanic Redox States and Marine Productivity: A Model Perspective Focused on Benthic Phosphorus Cycling. Global Biogeochemical Cycles, 17(3): 1-18. https://doi.org/10.1029/2002gb001968
      Wheat, C. G., Feely, R. A., Mottl, M. J., 1996. Phosphate Removal by Oceanic Hydrothermal Processes: An Update of the Phosphorus Budget in the Oceans. Geochimica et Cosmochimica Acta, 60(19): 3593-3608. https://doi.org/10.1016/0016-7037(96)00189-5
      Xiao, S. H., 2004. New Multicellular Algal Fossils and Acritarchs in Doushantuo Chert Nodules (Neoproterozoic; Yangtze Gorges, South China). Journal of Paleontology, 78(2): 393-401. https://doi.org/10.1666/0022-3360(2004)078<0393: nmafaa>2.0.co;2 doi: 10.1666/0022-3360(2004)078<0393:nmafaa>2.0.co;2
      Xiao, S. H., Knoll, A. H., 1999. Fossil Preservation in the Neoproterozoic Doushantuo Phosphorite Lagerstätte, South China. Lethaia, 32(3): 219-240. https://doi.org/10.1111/j.1502-3931.1999.tb00541.x
      Xiao, S. H., Knoll, A. H., 2000. Phosphatized Animal Embryos from the Neoproterozoic Doushantuo Formation at Weng'an, Guizhou, South China. Journal of Paleontology, 74(5): 767-788. https://doi.org/10.1017/s002233600003300x
      Xiao, S. H., Yuan, X. L., Knoll, A. H., 2000. Eumetazoan Fossils in Terminal Proterozoic Phosphorites? Proceedings of the National Academy of Sciences of the United States of America, 97(25): 13684-13689. https://doi.org/10.1073/pnas.250491697
      Xiong, Y. J., Guilbaud, R., Peacock, C. L., et al., 2019. Phosphorus Cycling in Lake Cadagno, Switzerland: A Low Sulfate Euxinic Ocean Analogue. Geochimica et Cosmochimica Acta, 251: 116-135. https://doi.org/10.1016/j.gca.2019.02.011
      Ye, Q., An, Z. H., Yu, Y., et al., 2023. Phosphatized Microfossils from the Miaohe Member of South China and Their Implications for the Terminal Ediacaran Biodiversity Decline. Precambrian Research, 388: 107001. https://doi.org/10.1016/j.precamres.2023.107001
      Yin, H. F., Yu, J. X., Luo, G. M., et al., 2018. Biotic Influence on the Formation of Icehouse Climates in Geologic History. Earth Science, 43(11): 3809-3822 (in Chinese with English abstract). http://www.researchgate.net/publication/330192275_Biotic_Influence_on_the_Formation_of_Icehouse_Climates_in_Geologic_History
      Zegeye, A., Bonneville, S., Benning, L. G., et al., 2012. Green Rust Formation Controls Nutrient Availability in a Ferruginous Water Column. Geology, 40: 599-602. https://doi.org/10.1130/G32959.1
      Zhang, F. F., Shen, S. Z., Cui, Y., et al., 2020. Two Distinct Episodes of Marine Anoxia during the Permian-Triassic Crisis Evidenced by Uranium Isotopes in Marine Dolostones. Geochimica et Cosmochimica Acta, 287: 165-179. https://doi.org/10.1016/j.gca.2020.01.032
      Zhang, H. Q., Xiao, S. H., Liu, Y. H., et al., 2015. Armored Kinorhynch-like Scalidophoran Animals from the Early Cambrian. Scientific Reports, 5: 16521. https://doi.org/10.1038/srep16521
      Zhang, S. C., Wang, H. J., Wang, X. M., et al., 2022. Mesoproterozoic Marine Biological Carbon Pump: Source, Degradation, and Enrichment of Organic Matter. Chinese Science Bulletin, 67(15): 1624-1643 (in Chinese). doi: 10.1360/TB-2022-0041
      Zhang, S. C., Wang, X. M., Wang, H. J., et al., 2016. Sufficient Oxygen for Animal Respiration 1 400 Million Years ago. Proceedings of the National Academy of Sciences of the United States of America, 113(7): 1731-1736. https://doi.org/10.1073/pnas.1523449113
      Zhao, X. K., Shi, X. Y., Wang, X. Q., et al., 2018. Stepwise Oxygenation of Early Cambrian Ocean Drove Early Metazoan Diversification. Earth Science, 43(11): 3873-3890 (in Chinese with English abstract).
      陈孟莪, 李菊英, 陈其英, 1999. 黔中晚震旦世微生物岩及其磷的富集. 岩石学报, 15(3): 446-451.
      黄剑云, 古学伟, 卢兰英, 等, 2007. 新疆与哈萨克斯坦和蒙古国磷块岩资源对比. 新疆地质, 25(1): 75-76. doi: 10.3969/j.issn.1000-8845.2007.01.014
      黄少英, 谢会文, 侯贵廷, 等, 2023. 中国板块构造格局在早古生代末的重大转变. 地球科学, 48(4): 1321-1329.
      黄天正, 王瑞敏, 沈冰, 2022. "中年地球" 的磷循环与生物泵: 再谈"沉寂的十亿年". 科学通报, 67(15): 1614-1623.
      李凯月, 佘振兵, 2017. 华南陡山沱组磷块岩中微米级自形钠长石的发现及其可能成因. 地学前缘, 24(1): 308-320.
      李杨凡, 李飞, 2022. 前寒武‒寒武纪重大转折期生物礁是如何演化的?地球科学, 47(10): 3853-3855. doi: 10.3799/dqkx.2022.838
      殷鸿福, 喻建新, 罗根明, 等, 2018. 地史时期生物对冰室气候形成的作用. 地球科学, 43(11): 3809-3822. doi: 10.3799/dqkx.2018.117
      张水昌, 王华建, 王晓梅, 等, 2022. 中元古代海洋生物碳泵: 有机质来源、降解与富集. 科学通报, 67(15): 1624-1643.
      赵相宽, 史晓颖, 王新强, 等, 2018. 寒武纪早期海洋阶段性氧化驱动早期后生动物多样化进程. 地球科学, 43(11): 3873-3890.
    • 加载中
    图(5) / 表(1)
    计量
    • 文章访问数:  309
    • HTML全文浏览量:  143
    • PDF下载量:  43
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-09-15
    • 网络出版日期:  2025-02-10
    • 刊出日期:  2025-01-25

    目录

      /

      返回文章
      返回