Geochronology and Physical-Chemical Conditions of Skarns in Chengmenshan Cu Deposit, Northwestern of Jiangxi Province, Eastern China
-
摘要: 为了解赣西北城门山铜多金属矿床的时间格架及矽卡岩形成的物理化学条件和演化过程,利用石榴子石的U-Pb同位素定年、电子探针主量元素分析、LA-ICPMS原位微区微量元素测定等方法,结合矽卡岩整体的TIMA综合矿物分析,获得了146.2±1.1 Ma的年龄,同时发现该矿床的矽卡岩矿物以石榴子石为主,主要为钙铁榴石(And值平均95%),稀土元素具有明显的轻稀土富集,重稀土亏损,Eu正异常的特点. 该矿床具有与花岗闪长斑岩和石英斑岩两期岩浆作用对应的两次矽卡岩化热液蚀变及成矿事件,间隔约6~7百万年. 强氧化、偏酸性、高盐度、渗滤交代条件下形成了矽卡岩,流体的主要来源为岩浆热液,氧逸度、pH、Cl-浓度存在随体系封闭开放程度及流体通量变化而协同演化的规律.Abstract: In the purpose of understanding formation time and physical-chemical conditions of skarn in Chengmenshan Cu deposit of northwestern Jiangxi Province, we use garnet to do U-Pb isotopic dating, EPMA major elements analyze and LA-ICPMS trace elements analyze, combined with TIMA automated mineral analyze, the skarn forming age of 146.2±1.1 Ma is acquired, and the mineral composition is mainly garnet (Andradite with And value average 95%), LREE elements are enriched and HREE elements are depleted, and Eu show obviously positive anomalies. Therefore we conclude that Chengmenshan Cu deposit own two times of skarn forming respectively corresponding to the formation of granodiorite porphyry and quartz porphyry. Strong oxidized, acidic, high salinity and advective metasomatism conditions are the environment of skarn forming, and magmatic fluids is the major source of these skarns. The physical-chemical conditions like fO2, pH, Cl- concentration varied systematically with the change of W/R ratio during the formation process of Chengmenshan skarns.
-
图 1 长江中下游成矿带及其矿集区分布
Fig. 1. Geologic map of Middle-Lower Yangtze River Metallogenic Belt and its ore districts
图 7 九瑞矿集区矽卡岩石榴子石分类图解
武山、东雷湾、邓家山等据Xu et al.(2015)
Fig. 7. Classification chart of garnet composition in Jiurui ore district
-
Bau, M., 1991. Rare-Earth Element Mobility during Hydrothermal and Metamorphic Fluid-Rock Interaction and the Significance of the Oxidation State of Europium. Chemical Geology, 93(3/4): 219-230. https://doi.org/10.1016/0009-2541(91)90115-8 Chang, Y. F., Liu, X. P., Wu, Y. C., 1991. The Copper-Iron Belt of the Lower and Middle Reaches of the Yangtze River. Geological Publishing House, Beijing, 1-379 (in Chinese with English abstract). Chao, W. W., Wang, H., Xu, L., et al., 2023. LA-ICP-MS U-Pb Dating, Chemical Composition and Evolution of Oscillatory Zoned Andradite from the Chengmenshan Cu-Au Deposit, Jiangxi Province. Ore Geology Reviews, 159: 105542. https://doi.org/10.1016/j.oregeorev.2023.105542 Deng, X. R., Deng, X. D., Zhang, L. Z., et al., 2023. U-Pb Geochronology andTrace Element Analysis of Titanite from the Diaoquan Porphyry-Skarn Polymetallic Deposit, North China: Implication for Cu-Ag-Mo Mineralization. Earth Science, 48(9): 3327-3341 (in Chinese with English abstract). Du, H. F., Zheng, J. P., Tian, L. R., et al., 2020. Microfabrics, In-Situ Trace Element and Sulfur Isotope Compositions of Pyrite from the Jinjiwo Copper Deposit in Chengmenshan Orefield, Northern Yangtze Block: Syngenetic Stratabound Mineralization and Hydrothermal Remobilization. Ore Geology Reviews, 127: 103830. https://doi.org/10.1016/j.oregeorev.2020.103830 Fang, F. K., 2012. Studies on the Fluid Inclusions of the Chengmenshan Porphyry Cu-Mo Deposit, Jiangxi Province. China University of Geosciences, Beijing, 1-70 (in Chinese with English abstract). Gaspar, M., Knaack, C., Meinert, L. D., et al., 2008. REE in Skarn Systems: a LA-ICP-MS Study of Garnets from the Crown Jewel Gold Deposit. Geochimica et Cosmochimica Acta, 72(1): 185-205. doi: 10.1016/j.gca.2007.09.033 Guo, X. Z., Zhou, T. F., Wang, F. Y., et al., 2023. Distribution of Co, Se, Cd, In, Re and Other Critical Metals in Sulfide Ores from a Porphyry-Skarn System: a Case Study of Chengmenshan Cu Deposit, Jiangxi, China. Ore Geology Reviews, 158: 105520. https://doi.org/10.1016/j.oregeorev.2023.105520 Han, Y. X., 2021. Geology and Mineralization of the Cu-Au Skarn System in Southeast Hubei Province and Northwest Jiangxi Province, Eastern China: Examples from the Fengshan and Chengmenshan Areas in Jiurui Ore District. China University of Geosciences, Beijing, 1-209 (in Chinese with English abstract). Hu, R. G., Bai, X. J., Liu, X. J., et al., 2023. Indosinian Hydrothermal Activities in Xitieshan Area, North Qaidam: Insight from 40Ar/39Ar Dating by In Vacuo Crushing of Eclogitic Garnet and Quartz Vein. Earth Science, 48(12): 4527-4539 (in Chinese with English abstract). Huang, E. B., Zhang, N. T., Luo, Z. S., 1990. The Genesis of the Chengmenshan and Wushan Copper Deposits. Mineral Deposits, 9(4): 291-300, 308 (in Chinese with English abstract). Jamtveit, B., Wogelius, R. A., Fraser, D. G., 1993. Zonation Patterns of Skarn Garnets: Records of Hydrothermal System Evolution. Geology, 21(2): 113. https://doi.org/10.1130/0091-7613(1993)021<0113:ZPOSGR>2.3.CO;2 doi: 10.1130/0091-7613(1993)021<0113:ZPOSGR>2.3.CO;2 Jiang, S. Y., Li, L., Zhu, B., et al., 2008. Geochemical and Sr-Nd-Hf Isotopic Compositions of Granodiorite from the Wushan Copper Deposit, Jiangxi Province and Their Implications for Petrogenesis. Acta Petrologica Sinica, 24: 1679-1690 (in Chinese with English abstract). Jiang, S. Y., Duan, D. F., Xu, Y. M., et al., 2019. Geological Characteristic and Discrimination Criteria of the Ore-Related Granitoids from the Edong and Juirui Districts in the Middle-Lower Yangtze Metallogenic Belt. Acta Petrologica Sinica, 35(12): 3609-3628 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.12.03 Jiang, S. Y., Xu, Y. M., Zhu, Z. Y., et al., 2013. Study on Mesozoic Tectonics and Granitic Magmatism and Their Relationship with Cu-Au Mineralization in the Jiurui Ore District, Jiangxi Province. Acta Petrologica Sinica, 29(12): 4051-4068 (in Chinese with English abstract). Luo, J. G., Yang, G. C., 2007. Geological Characteristics of Chengmenshan Copper Deposit, Jiangxi and Its Ore Genesis. Mineral Resources and Geology, 21(3): 284-288 (in Chinese with English abstract). Mao, J. W., Stein, H., Du, A. D., et al., 2004. Molybdenite Re-Os Precise Dating for Molybdenite from Cu-Au-Mo Deposits in the Middle-Lower Reaches of Yangtze River Belt and Its Implications for Mineralization. Acta Geologica Sinica, 78(1): 121-131 (in Chinese with English abstract). doi: 10.1111/j.1755-6724.2004.tb00682.x Mao, J. W., Zhou, T. F., Xie, G. Q., et al., 2020. Metallogeny in Middle-Lower Yangtze River Ore Belt: Advances and Problems Remained. Mineral Deposits, 39(4): 547-558 (in Chinese with English abstract). Meinert, L. D., Dipple, G. M., Nicolescu, S., 2005. World Skarn Deposits. Economic Geology 100th Anniversary Volume, 299-336. Meng, L. Y., 1996. Sulfur Isotopic Composition of Chengmenshan Copper Deposit, Jiangxi Province. Chinese Science Bulletin, 41(3): 233-234 (in Chinese with English abstract). doi: 10.1360/csb1996-41-3-233 Menzer, G., 1926. Die Kristall Structure Von Granat. Zeitschift fur Kristallographie, 63: 157-158. Ouyang, Y. P., Zhou, X. R., Yao, Z. Y., et al., 2020. Study on the Two-Stage Garnets and Their Indication of Mineralization in the Zhuxi W(Cu) Deposit, Northeastern Jiangxi Province. Earth Science Frontiers, 27(4): 219-231 (in Chinese with English abstract). Pan, Y. M., Dong, P., 1999. The Lower Changjiang (Yangzi/Yangtze River) Metallogenic Belt, East Central China: Intrusion- and Wall Rock-Hosted Cu-Fe-Au, Mo, Zn, Pb, Ag Deposits. Ore Geology Reviews, 15(4): 177-242. https://doi.org/10.1016/S0169-1368(99)00022-0 Park, C., Song, Y., Kang, I. M., et al., 2017. Metasomatic Changes during Periodic Fluid Flux Recorded in Grandite Garnet from the Weondong W-Skarn Deposit, South Korea. Chemical Geology, 451: 135-153. https://doi.org/10.1016/j.chemgeo.2017.01.011 Smith, M. P., Henderson, P., Jeffries, T. E. R., et al., 2004. The Rare Earth Elements and Uranium in Garnets from the Beinn an Dubhaich Aureole, Skye, Scotland, UK: Constraints on Processes in a Dynamic Hydrothermal System. Journal of Petrology, 45(3): 457-484. https://doi.org/10.1093/petrology/egg087 Wen, C. H., Shao, Y. J., Li, B., et al., 2019. Fluid Evolution of the Wushan Skarn-Dominant Copper Deposit in the Middle-Lower Yangtze River Metallogenic Belt, Eastern China. Ore Geology Reviews, 112: 103035. https://doi.org/10.1016/j.oregeorev.2019.103035 Wu, L. S., Zou, X. Q., 1997. Re-Os Isotopic Age Study of the Chengmenshan Copper Deposit, Jiangxi Province. Mineral Deposits, 16(4): 376-381(in Chinese with English abstract). Xie, G. Q., Han, Y. X., Li, X. H., 2019. A Preliminary Study of Characteristics of Dispersed Metal-Bearing Deposits in Middle-Lower Yangtze River Metallogenic Belt. Mineral Deposits, 38(4): 729-738 (in Chinese with English abstract). Xu, Y. M., 2014. Geochemistry of Late Mesozoic Magmatic Rocks and Related Mineralization and Mineral Prospecting in the Jiurui District of Jiangxi Province(Dissertation). Nanjing University, Nanjing, 1-208 (in Chinese with English abstract). Xu, Y. M., Jiang, S. Y., Zhu, J. X., 2021. Factors Controlling the Formation of Large Porphyry Cu Deposits: a Case Study from the Jiurui Ore District of Middle-Lower Yangtze River Metallogenic Belt Using in Situ Zircon and Apatite Chemistry from Syn-Mineralization Intrusions. Ore Geology Reviews, 133: 104082. https://doi.org/10.1016/j.oregeorev.2021.104082 Xu, Y. M., Jiang, S. Y., Zhu, Z. Y., et al., 2014. Petrogenesis of Late Mesozoic Granitoids and Coeval Mafic Rocks from the Jiurui District in the Middle-Lower Yangtze Metallogenic Belt of Eastern China: Geochemical and Sr-Nd-Pb-Hf Isotopic Evidence. Lithos, 190: 467-484. https://doi.org/10.1016/j.lithos.2013.12.022 Xu, Y. M., Jiang, S. Y., Zhu, Z. Y., et al., 2015. Mineral Chemistry and H-O-S-Pb Isotopic Compositions of Skarn Type Copper Deposits in the Jiurui District of the Middle-Lower Yangtze River Metallogenic Belt, Eastern China. Ore Geology Reviews, 69: 88-103. https://doi.org/10.1016/j.oregeorev.2015.01.017 Xu, Y. M., Jiang, S. Y., Zhu, Z. Y., et al., 2013. Geochronology, Geochemistry and Mineralogy of Ore-Bearing and Ore-Barren Intermediate-Acid Intrusive Rocks from the Jiurui Ore District, Jiangxi Province and Their Geological Implications. Acta Petrologica Sinica, 29(12): 4291-4310(in Chinese with English abstract) Yang, S. Y., Jiang, S. Y., Li, L., et al., 2011. Late Mesozoic Magmatism of the Jiurui Mineralization District in the Middle-Lower Yangtze River Metallogenic Belt, Eastern China: Precise U-Pb Ages and Geodynamic Implications. Gondwana Research, 20(4): 831-843. https://doi.org/10.1016/j.gr.2011.03.012 Yardley, B. W. D., Rochelle, C. A., Barnicoat, A. C., et al., 1991. Oscillatory Zoning in Metamorphic Minerals: an Indicator of Infiltration Metasomatism. Mineralogical Magazine, 55(380): 357-365. doi: 10.1180/minmag.1991.055.380.06 Ye, S. Z., Gao, R., Wu, H. X., et al., 2019. New Progress and Next Prospecting Direction of Chengmenshan Copper Deposit in Jiangxi. Mineral Exploration, 10(1): 94-101 (in Chinese with English abstract). Zhai, Y. S., Yao, S. Z., Lin, X. D., et al., 1992. Fe-Cu-(Au) Metallogeny of the Middle-Lower Changjiang Region. Geological Publishing House, Beijing, 1-235 (in Chinese with English abstract). Zhou, T. F., Fan, Y., Chen, J., et al., 2020. Critical metal resources in the Middle-Lower Yangtze River Valley metallogenic belt. Chinese Science Bulletin, 65: 3665-3677 (in Chinese with English abstract). doi: 10.1360/TB-2020-0347 Zhou, T. F., Fan, Y., Wang, S. W., et al., 2017. Metallogenic Regularity and Metallogenic Model of the Middle-Lower Yangtze River Valley Metallogenic Belt. Acta Petrologica Sinica, 33(11): 3353-3372(in Chinese with English abstract). Zhu, Q. Q., Xie, G. Q., Ji, Y. H., et al., 2023. Relationship between Garnet Skarn and W Mineralization: a Case Study from the Tongshankou Cu-Mo-W Deposit, Daye, Hubei. Acta Petrologica Sinica, 39(6): 1600-1618(in Chinese with English abstract). doi: 10.18654/1000-0569/2023.06.03 常印佛, 刘湘培, 吴言昌, 1991. 长江中下游铁铜成矿带. 北京: 地质出版社, 1-379. 邓晓睿, 邓晓东, 张立中, 等, 2023. 榍石U-Pb年代学与微量元素对山西刁泉斑岩-矽卡岩多金属矿床成矿的指示. 地球科学, 48(9): 3327-3341. doi: 10.3799/dqkx.2022.347 方福康, 2012. 江西省城门山斑岩铜钼矿成矿流体研究(硕士学位论文). 北京: 中国地质大学(北京): 1-70. 韩颖霄, 2021. 鄂东南-赣西北矽卡岩铜金成矿作用研究——以九瑞丰山矿田和城门山矿区为例(博士学位论文). 北京: 中国地质大学, 1-209. 胡荣国, 白秀娟, 刘希军, 等, 2022. 柴北缘锡铁山印支期热液活动: 来自榴闪岩石榴子石和石英脉真空击碎40Ar/39Ar年代学证据. 地球科学, 48(12): 4527-4539. doi: 10.3799/dqkx.2022.026 黄恩邦, 张迺堂, 罗钊生, 1990. 城门山、武山铜矿床成因. 矿床地质, 9(4): 291-300+308. 蒋少涌, 段登飞, 徐耀明, 等, 2019. 长江中下游地区鄂东南和九瑞矿集区成矿岩体特征及其识别标志. 岩石学报, 35(12): 3609-3628. 蒋少涌, 李亮, 朱碧, 等, 2008. 江西武山铜矿区花岗闪长斑岩的地球化学和Sr-Nd-Hf同位素组成及成因探讨. 岩石学报, 24: 1679-1690. 蒋少涌, 徐耀明, 朱志勇, 等, 2013. 九瑞矿集区燕山期构造-岩浆作用及其与铜金多金属成矿关系研究. 岩石学报, 29(12): 4051-4068. 罗建安, 杨国才, 2007. 江西城门山铜矿地质特征及矿床成因. 矿产与地质, 21(3): 284-288. 毛景文, Holly STEIN, 杜安道, 等, 2004. 长江中下游地区铜金(钼)矿Re-Os年龄测定及其对成矿作用的指示. 地质学报, 78(1): 121-131. 毛景文, 周涛发, 谢桂青, 等, 2020. 长江中下游地区成矿作用研究新进展和存在问题的思考. 矿床地质, 39(4), 547-558. 孟良义, 1996. 江西城门山铜矿床的硫同位素组成. 科学通报, 41(3): 233-234. 欧阳永鹏, 周显荣, 尧在雨, 等, 2020. 赣东北朱溪钨(铜)矿床两期石榴石研究及其对成矿作用的指示. 地学前缘, 27(4): 219-231. 吴良士, 邹晓秋, 1997. 江西城门山铜矿铼-锇同位素年龄研究. 矿床地质, 16(4): 376-381. 谢桂青, 韩颖霄, 李新昊, 2019. 长江中下游成矿带含稀散金属矿床特征初探. 矿床地质, 38(4): 729-738. 徐耀明, 2014. 江西九瑞矿集区燕山期岩浆岩成岩成矿作用地球化学及矿床预测研究(博士学位论文). 南京: 南京大学, 1-208. 徐耀明, 蒋少涌, 朱志勇, 等, 2013. 江西九瑞矿集区成矿与未成矿中酸性侵入岩年代学、岩石化学、矿物化学特征的异同及地质意义. 岩石学报, 29(12): 4291-4310. 叶少贞, 高任, 吴火星, 等, 2019. 江西城门山铜矿找矿新成果及下步找矿方向. 矿产勘查, 10(1): 94-101. 翟裕生, 姚书振, 林新多, 1992. 长江中下游地区铁铜(金)成矿规律. 北京: 地质出版社, 1-235. 周涛发, 范裕, 陈静, 等, 2020. 长江中下游成矿带关键金属矿产研究现状与进展. 科学通报, 65(33): 3665-3677. 周涛发, 范裕, 王世伟, 等, 2017. 长江中下游成矿带成矿规律和成矿模式. 岩石学报, 33(11): 3353-3372. 朱乔乔, 谢桂青, 纪云昊, 等, 2023. 石榴子石矽卡岩与钨矿化关系研究: 以湖北大冶铜山口铜钼钨矿床为例. 岩石学报, 39(6): 1600-1618. -
dqkxzx-50-2-596-附表.docx
-