• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    火星水冰分布特征和研究进展

    刘正豪 刘洋 刘佳 牛胜利 邹永廖

    刘正豪, 刘洋, 刘佳, 牛胜利, 邹永廖, 2024. 火星水冰分布特征和研究进展. 地球科学, 49(6): 2253-2276. doi: 10.3799/dqkx.2023.205
    引用本文: 刘正豪, 刘洋, 刘佳, 牛胜利, 邹永廖, 2024. 火星水冰分布特征和研究进展. 地球科学, 49(6): 2253-2276. doi: 10.3799/dqkx.2023.205
    Liu Zhenghao, Liu Yang, Liu Jia, Niu Shengli, Zou Yongliao, 2024. Distribution Characteristics and Research Progress of Water-Ice on Mars. Earth Science, 49(6): 2253-2276. doi: 10.3799/dqkx.2023.205
    Citation: Liu Zhenghao, Liu Yang, Liu Jia, Niu Shengli, Zou Yongliao, 2024. Distribution Characteristics and Research Progress of Water-Ice on Mars. Earth Science, 49(6): 2253-2276. doi: 10.3799/dqkx.2023.205

    火星水冰分布特征和研究进展

    doi: 10.3799/dqkx.2023.205
    基金项目: 

    国家重点研发计划 2019YFE0123300

    国家自然科学基金面上项目 42072337

    国家自然科学基金青年基金 42202263

    中国博士后科学基金 2022M720144

    详细信息
      作者简介:

      刘正豪(1995-),男,博士研究生,主要从事行星地质学与遥感研究. ORCID:0009-0006-3682-7597. E-mail:liuzhenghao17@mails.ucas.ac.cn

      通讯作者:

      刘洋,研究员,主要从事行星科学,行星宜居性与行星遥感等研究. E-mail:yangliu@nssc.ac.cn

    • 中图分类号: P691

    Distribution Characteristics and Research Progress of Water-Ice on Mars

    • 摘要: 火星作为太阳系中与地球相似的一颗行星,它曾经存在活跃的水活动历史,现今火星稀薄的大气和寒冷干旱的气候使得液态水很难存在于火星表面,火星上水大多以冰的形式在南北两极和中纬度区域分布并形成沉积地貌类型.随着国内外深空探测任务的逐年增多,火星上的水冰环境与宜居性越来越受到关注,以极区冰盖、中纬度冰川作用地貌和浅地表水冰升华地貌为重点,对它们的形貌特征、分布情况、成因机制以及与气候的耦合关系进行介绍和剖析.火星中纬度地区水冰地貌的分布与自转轴倾角有关,当火星处于高倾角时,极区水冰会向中纬度表面转移,此时火星转变为寒冷的冰期,中纬度水冰环境区域增加;反之,则极区冰盖区域增加.因此,火星自转轴倾角的周期性改变引起气候的改变,从而导致形成了水冰在火星表面不断重新分布的过程,主要表现为从极区到中高纬度区域水冰阶段性的富集.通过对火星水冰分布特征的总结,加深了对火星水冰环境的认识,同时结合火星水冰的研究现状提出了展望.火星水冰地貌与火星宜居环境以及生命赋存形式息息相关,对火星水冰的研究可以帮助我们深入了解火星的气候演化历史、宜居环境情况等以及为未来的火星探测任务提供支撑.

       

    • 图  1  随季节改变的火星极地冰盖.由E.S.Holden在Lick天文台拍摄的火星图像,并由Ted Stryk修复和增强(修改自Smith, 2022)

      Fig.  1.  Seasonally changing polar ice caps on Mars.Image of Mars taken by E.S.Holden at Lick Observatory, restored and enhanced by Ted Stryk (modified from Smith, 2022)

      图  2  早期发现的类水冰地貌

      a.中纬度区域Fretted terrain,中央经纬度:61.5°W,44.0°N(修改自Sharp,1973);b.中纬度沉积覆盖层,中央经纬度:30.0°E,64.0°S(修改自Soderblom et al.,1973);c.中纬度区域热岩溶地貌,中央经纬度:153.3°W,69.4°N;修改自Gatto and Anderson(1975

      Fig.  2.  Earlier water-ice like landforms

      图  3  火星60°纬度以下SWIM水冰综合分布结果,Ci值为水冰综合出现可能性,其大于0.2时置信度较高,Ci值为1时水冰最可能出现(修改自Butcher, 2022)

      Fig.  3.  The comprehensive distribution results(SWIM) of water-ice below 60° latitude on Mars, Ci value is the possibility of comprehensive occurrence of water-ice.The confidence is high when Ci value is greater than 0.2, and water-ice is most likely to occur when Ci value is 1 (modified from Butcher, 2022)

      图  4  火星南北极冰盖区域地形地貌特征与剖面图,经度间隔30°,纬度间隔5°

      a图中Planum Boreum为NPLD分布范围;b图中Planum Australe为SPLD分布范围,图区左上角为DAF沉积;修改自Byrne(2009

      Fig.  4.  Topography and profile of the North and South Polar ice cap regions of Mars, 30° longitude interval, 5° latitude interval

      图  5  中纬度典型LVF、LDA、CCF类型的冰缘沉积地貌分布,底图为MOLA高程图(引自Levy et al., 2014)

      Fig.  5.  Typical distribution of periglacial sedimentary landforms of LVF, LDA and CCF types in mid-latitude, the basemap is MOLA elevation (cited from Levy et al., 2014)

      图  6  中纬度典型LVF地貌分布,中央经纬度:23.2°E, 38.1°N(a);山谷中的LVF平行纹理(b,c)

      Fig.  6.  Typical LVF landform distribution in mid-latitude, central coordinates: 23.2°E, 38.1°N (a); LVF parallel texture in the valley (b, c)

      图  7  中纬度典型LDA地貌分布,中央经纬度:26.3°E, 45.5°N

      Fig.  7.  Typical LDA landform distribution in mid-latitude, central coordinates: 26.3°E, 45.5°N

      图  8  中纬度典型CCF地貌,中央经纬度:87.9°E, 36.1°N

      Fig.  8.  Typical CCF landform in mid-latitude, central coordinates: 87.9°E, 36.1°N

      图  9  中纬度LDM沉积,中央经纬度:173.9°W, 35.1°S

      Fig.  9.  Mid-latitude LDM deposit, central coordinates: 173.9°W, 35.1°S

      图  10  Utopia平原扇形凹陷,中央经纬度:90.7°E, 45.9°N

      a.独立和合并分布的扇形凹陷;b.扇形凹陷内部结构

      Fig.  10.  Utopia planitia scallop depression, central coordinates: 90.7°E, 45.9°N

      图  11  扇形凹陷外的多边形地貌,中央经纬度:93.7°E, 45.6°N

      Fig.  11.  Polygon outside scallop depression, central coordinates: 93.7°E, 45.6°N

      图  12  火星小尺度多边形地貌类型(修改自Levy et al., 2009a)

      Fig.  12.  Small-scale polygons on Mars (modified from Levy et al., 2009a)

      图  13  火星典型冲沟地貌,中央经纬度:1.5°E, 68.4°S

      Fig.  13.  Typical gullies on Mars, central coordinates: 1.5°E, 68.4°S

      图  14  火星典型暴露水冰区域

      a.凤凰号着陆点挖掘冰,中央经纬度:125.8°W,68.2°S(修改自Mellon et al.,2009);b.撞击坑暴露冰,中央经纬度:94.8°W,50.5°N;c.陡坎暴露冰,中央经纬度:96.3°E,56.8°S

      Fig.  14.  Typical exposed water-ice areas on Mars

      图  15  20~10 Ma自转轴倾角变化(a); 20~10 Ma轨道偏心率变化(b); 20~10 Ma北极夏至太阳辐照度变化(c)

      a图单位为度; c图单位为W/m2; 修改自Laskar et al.(2004)

      Fig.  15.  20-10 Ma Martian obliquity change (a); 20-10 Ma eccentricity change (b); 20-10 Ma insolation change of north pole surface at summer solstice (c)

      表  1  火星水冰地貌分类

      Table  1.   Classification of Martian water-ice landforms

      地貌类型 分布区域 形成机制
      极地冰盖 极区-高纬度 冰层沉积覆盖
      冰川沉积地貌 中纬度-高纬度 冰川流动沉积
      浅地表水冰地貌 中纬度-高纬度 浅地表水冰升华
      冰下湖泊 南极区域 冰盖基底融化
      下载: 导出CSV
    • Appéré, T., Schmitt, B., Langevin, Y., et al., 2011. Winter and Spring Evolution of Northern Seasonal Deposits on Mars from OMEGA on Mars Express. Journal of Geophysical Research: Planets, 116(E5): E05001. https://doi.org/10.1029/2010je003762
      Arfstrom, J., Hartmann, W. K., 2005. Martian Flow Features, Moraine-Like Ridges, and Gullies: Terrestrial Analogs and Interrelationships. Icarus, 174(2): 321-335. https://doi.org/10.1016/j.icarus.2004.05.026
      Arnold, N. S., Conway, S. J., Butcher, F. E. G., et al., 2019. Modeled Subglacial Water Flow Routing Supports Localized Intrusive Heating as a Possible Cause of Basal Melting of Mars' South Polar Ice Cap. Journal of Geophysical Research: Planets, 124(8): 2101-2116. https://doi.org/10.1029/2019JE006061
      Arvidson, R., Adams, D., Bonfiglio, G., et al., 2008. Mars Exploration Program 2007 Phoenix Landing Site Selection and Characteristics. Journal of Geophysical Research: Planets, 113(E3): E00A03. https://doi.org/10.1029/2007JE003021
      Baker, D. M. H., Head, J. W., Marchant, D. R., 2010. Flow Patterns of Lobate Debris Aprons and Lineated Valley Fill North of ISMEniae Fossae, Mars: Evidence for Extensive Mid-Latitude Glaciation in the Late Amazonian. Icarus, 207(1): 186-209. https://doi.org/10.1016/j.icarus.2009.11.017
      Bierson, C. J., Tulaczyk, S., Courville, S. W., et al., 2021. Strong MARSIS Radar Reflections from the Base of Martian South Polar Cap may be Due to Conductive Ice or Minerals. Geophysical Research Letters, 48(13): e2021GL093880. https://doi.org/10.1029/2021GL093880
      Brown, A. J., Calvin, W. M., Murchie, S. L., 2012. Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) North Polar Springtime Recession Mapping: First 3 Mars Years of Observations. Journal of Geophysical Research: Planets, 117(E12): E00J20. https://doi.org/10.1029/2012JE004113
      Butcher, F. E. G., 2022. Water Ice at Mid-Latitudes on Mars. Oxford Research Encyclopedia of Planetary Science. Oxford University Press, Oxford. https://doi.org/10.1093/acrefore/9780190647926.013.239
      Butcher, F. E. G., Conway, S. J., Arnold, N. S., 2016. Are the Dorsa Argentea on Mars Eskers? Icarus, 275: 65-84. https://doi.org/10.1016/j.icarus.2016.03.028
      Byrne, S., 2009. The Polar Deposits of Mars. Annual Review of Earth and Planetary Sciences, 37: 535-560. https://doi.org/10.1146/annurev.earth.031208.100101
      Byrne, S., Dundas, C. M., Kennedy, M. R., et al., 2009. Distribution of Mid-Latitude Ground Ice on Mars from New Impact Craters. Science, 325(5948): 1674-1676. https://doi.org/10.1126/science.1175307
      Campbell, B. A., Putzig, N. E., Carter, L. M., et al., 2013. Roughness and Near-Surface Density of Mars from SHARAD Radar Echoes. Journal of Geophysical Research: Planets, 118(3): 436-450. https://doi.org/10.1002/jgre.20050
      Cantor, B. A., Wolff, M. J., James, P. B., et al., 1998. Regression of Martian North Polar Cap: 1990—1997 Hubble Space Telescope Observations. Icarus, 136(2): 175-191. https://doi.org/10.1006/icar.1998.6020
      Carr, M. H., 2007. The Surface of Mars. Cambridge University Press, Cambridge.
      Carr, M. H., Schaber, G. G., 1977. Martian Permafrost Features. Journal of Geophysical Research, 82(28): 4039-4054. https://doi.org/10.1029/JS082i028p04039
      Christensen, P. R., 2003. Formation of Recent Martian Gullies through Melting of Extensive Water-Rich Snow Deposits. Nature, 422: 45-48. https://doi.org/10.1038/nature01436
      Chuang, F., Crown, D., 2005. Surface Characteristics and Degradational History of Debris Aprons in the Tempe Terra/Mareotis Fossae Region of Mars. Icarus, 179(1): 24-42. https://doi.org/10.1016/j.icarus.2005.05.014
      Clark, B. R., Mullin, R. P., 1976. Martian Glaciation and the Flow of Solid CO2. Icarus, 27(2): 215-228. https://doi.org/10.1016/0019-1035(76)90005-1
      Clifford, S. M., Crisp, D., Fisher, D. A., et al., 2000. The State and Future of Mars Polar Science and Exploration. Icarus, 144(2): 210-242. https://doi.org/10.1006/icar.1999.6290
      Conway, S. J., Balme, M. R., 2014. Decameter Thick Remnant Glacial Ice Deposits on Mars. Geophysical Research Letters, 41(15): 5402-5409. https://doi.org/10.1002/2014GL060314
      Conway, S. J., Butcher, F. E. G., de Haas, T., et al., 2018. Glacial and Gully Erosion on Mars: A Terrestrial Perspective. Geomorphology, 318: 26-57. https://doi.org/10.1016/j.geomorph.2018.05.019
      Conway, S. J., de Haas, T., Harrison, T. N., 2019. Martian Gullies: A Comprehensive Review of Observations, Mechanisms and Insights from Earth Analogues. Geological Society, London, Special Publications, 467(1): 7-66. https://doi.org/10.1144/sp467.14
      Costard, F. M., Kargel, J. S., 1995. Outwash Plains and Thermokarst on Mars. Icarus, 114(1): 93-112. https://doi.org/10.1006/icar.1995.1046
      Dickson, J. L., Head, J. W., Fassett, C. I., 2012. Patterns of Accumulation and Flow of Ice in the Mid-Latitudes of Mars during the Amazonian. Icarus, 219(2): 723-732. https://doi.org/10.1016/j.icarus.2012.03.010
      Dickson, J. L., Head, J. W., Marchant, D. R., 2010. Kilometer-Thick Ice Accumulation and Glaciation in the Northern Mid-Latitudes of Mars: Evidence for Crater-Filling Events in the Late Amazonian at the Phlegra Montes. Earth and Planetary Science Letters, 294(3-4): 332-342. https://doi.org/10.1016/j.epsl.2009.08.031
      Dundas, C. M., Bramson, A. M., Ojha, L., et al., 2018. Exposed Subsurface Ice Sheets in the Martian Mid-Latitudes. Science, 359(6372): 199-201. https://doi.org/10.1126/science.aao1619
      Dundas, C. M., Byrne, S., McEwen, A. S., et al., 2014. HiRISE Observations of New Impact Craters Exposing Martian Ground Ice. Journal of Geophysical Research: Planets, 119(1): 109-127. https://doi.org/10.1002/2013JE004482
      Dundas, C. M., McEwen, A. S., Chojnacki, M., et al., 2017. Granular Flows at Recurring Slope Lineae on Mars Indicate a Limited Role for Liquid Water. Nature Geoscience, 10: 903-907. https://doi.org/10.1038/s41561-017-0012-5
      Dundas, C. M., Mellon, M. T., Conway, S. J., et al., 2021. Widespread Exposures of Extensive Clean Shallow Ice in the Midlatitudes of Mars. Journal of Geophysical Research: Planets, 126(3): e2020JE006617. https://doi.org/10.1029/2020je006617
      Fassett, C. I., Levy, J. S., Dickson, J. L., et al., 2014. An Extended Period of Episodic Northern Mid-Latitude Glaciation on Mars during the Middle to Late Amazonian: Implications for Long-Term Obliquity History. Geology, 42(9): 763-766. https://doi.org/10.1130/g35798.1
      Fastook, J. L., Head, J. W., 2014. Amazonian Mid- to High-Latitude Glaciation on Mars: Supply-Limited Ice Sources, Ice Accumulation Patterns, and Concentric Crater Fill Glacial Flow and Ice Sequestration. Planetary and Space Science, 91: 60-76. https://doi.org/10.1016/j.pss.2013.12.002
      Fastook, J. L., Head, J. W., Marchant, D. R., 2014. Formation of Lobate Debris Aprons on Mars: Assessment of Regional Ice Sheet Collapse and Debris-Cover Armoring. Icarus, 228: 54-63. https://doi.org/10.1016/j.icarus.2013.09.025
      Feldman, W. C., Prettyman, T. H., Maurice, S., et al., 2004. Global Distribution of Near-Surface Hydrogen on Mars. Journal of Geophysical Research: Planets, 109(E9): E09006. https://doi.org/10.1029/2003JE002160
      Fenton, L. K., Herkenhoff, K. E., 2000. Topography and Stratigraphy of the Northern Martian Polar Layered Deposits Using Photoclinometry, Stereogrammetry, and MOLA Altimetry. Icarus, 147(2): 433-443. https://doi.org/10.1006/icar.2000.6459
      Fisher, D., 2005. A Process to Make Massive Ice in the Martian Regolith Using Long-Term Diffusion and Thermal Cracking. Icarus, 179(2): 387-397. https://doi.org/10.1016/j.icarus.2005.07.024
      Forget, F., Haberle, R. M., Montmessin, F., et al., 2006. Formation of Glaciers on Mars by Atmospheric Precipitation at High Obliquity. Science, 311(5759): 368-371. https://doi.org/10.1126/science.1120335
      Gatto, L. W., Anderson, D. M., 1975. Alaskan Thermokarst Terrain and Possible Martian Analog. Science, 188(4185): 255-7. https://doi.org/10.1126/science.188.4185.255
      Grima, C., Mouginot, J., Kofman, W., et al., 2022. The Basal Detectability of an Ice-Covered Mars by MARSIS. Geophysical Research Letters, 49(2): e2021GL096518. https://doi.org/10.1029/2021gl096518
      Guallini, L., Rossi, A. P., Lauro, S. E., et al., 2014. "Unconformity-Bounded" Stratigraphic Units in the South Polar Layered Deposits (Promethei Lingula, Mars). In: Rocha, R., Pais, J., Kullberg, J., et al., eds. . STRATI 2013. Springer Geology. Springer, Cham. https://doi.org/10.1007/978-3-319-04364-7_65
      Hamilton, C. W., Fagents, S. A., Wilson, L., 2010. Explosive Lava-Water Interactions in Elysium Planitia, Mars: Geologic and Thermodynamic Constraints on the Formation of the Tartarus Colles Cone Groups. Journal of Geophysical Research: Planets, 115(E9): E09006. https://doi.org/10.1029/2009JE003546
      Harish, Vijayan, S., Mangold, N., et al., 2020. Water-Ice Exposing Scarps within the Northern Midlatitude Craters on Mars. Geophysical Research Letters, 47(14): e2020GL089057. https://doi.org/10.1029/2020GL089057
      Hauber, E., van Gasselt, S., Chapman, M. G., et al., 2008. Geomorphic Evidence for Former Lobate Debris Aprons at Low Latitudes on Mars: Indicators of the Martian Paleoclimate. Journal of Geophysical Research: Planets, 113(E2): E02007. https://doi.org/10.1029/2007JE002897
      Hauber, E., van Gasselt, S., Ivanov, B., et al., 2005. Discovery of a Flank Caldera and Very Young Glacial Activity at Hecates Tholus, Mars. Nature, 434: 356-361. https://doi.org/10.1038/nature03423
      Head, J. W., Marchant, D. R., Agnew, M. C., et al., 2006a. Extensive Valley Glacier Deposits in the Northern Mid-Latitudes of Mars: Evidence for Late Amazonian Obliquity-Driven Climate Change. Earth and Planetary Science Letters, 241(3/4): 663-671. https://doi.org/10.1016/j.epsl.2005.11.016
      Head, J. W., Nahm, A. L., Marchant, D. R., et al., 2006b. Modification of the Dichotomy Boundary on Mars by Amazonian Mid-Latitude Regional Glaciation. Geophysical Research Letters, 33(8): L08S03. https://doi.org/10.1029/2005GL024360
      Head, J. W., Marchant, D. R., Dickson, J. L., et al., 2010. Northern Mid-Latitude Glaciation in the Late Amazonian Period of Mars: Criteria for the Recognition of Debris-Covered Glacier and Valley Glacier Landsystem Deposits. Earth and Planetary Science Letters, 294(3-4): 306-320. https://doi.org/10.1016/j.epsl.2009.06.041
      Head, J. W., Mustard, J. F., Kreslavsky, M. A., et al., 2003. Recent Ice Ages on Mars. Nature, 426: 797-802. https://doi.org/10.1038/nature02114
      Head, J. W., Pratt, S., 2001. Extensive Hesperian-Aged South Polar Ice Sheet on Mars: Evidence for Massive Melting and Retreat, and Lateral Flow and Ponding of Meltwater. Journal of Geophysical Research: Planets, 106(E6): 12275-12299. https://doi.org/10.1029/2000je001359
      Herkenhoff, K. E., Byrne, S., Russell, P. S., et al., 2007. Meter-Scale Morphology of the North Polar Region of Mars. Science, 317(5845): 1711-1715. https://doi.org/10.1126/science.1143544
      Herkenhoff, K. . E., Plaut, J. J., 2000. Surface Ages and Resurfacing Rates of the Polar Layered Deposits on Mars. Icarus, 144(2): 243-253. https://doi.org/10.1006/icar.1999.6287
      Hoffman, N., 2002. Active Polar Gullies on Mars and the Role of Carbon Dioxide. Astrobiology, 2(3): 313-323. https://doi.org/10.1089/153110702762027899
      Holt, J. W., Safaeinili, A., Plaut, J. J., et al., 2008. Radar Sounding Evidence for Buried Glaciers in the Southern Mid-Latitudes of Mars. Science, 322(5905): 1235-1238. https://doi.org/10.1126/science.1164246
      Hubbard, B., Milliken, R. E., Kargel, J. S., et al., 2011. Geomorphological Characterisation and Interpretation of a Mid-Latitude Glacier-Like Form: Hellas Planitia, Mars. Icarus, 211(1): 330-346. https://doi.org/10.1016/j.icarus.2010.10.021
      Jaumann, R., Neukum, G., Behnke, T., et al., 2007. The High-Resolution Stereo Camera (HRSC) Experiment on Mars Express: Instrument Aspects and Experiment Conduct from Interplanetary Cruise through the Nominal Mission. Planetary and Space Science, 55(7-8): 928-952. https://doi.org/10.1016/j.pss.2006.12.003.
      Jing, H. M., Zhang, H., Li, H., et al., 2011. Parallel Numerical Analysis on the Rheology of the Martian Ice-Rock Mixture. Journal of Earth Science, 22(2): 176-181. https://doi.org/10.1007/s12583-011-0170-0
      Kadish, S. J., Head, J. W., 2011. Preservation of Layered Paleodeposits in High-Latitude Pedestal Craters on Mars. Icarus, 213(2): 443-450. https://doi.org/10.1016/j.icarus.2011.03.029
      Kadish, S., Head, J., Parsons, R., et al., 2008. The Ascraeus Mons Fan-Shaped Deposit: Volcano–Ice Interactions and the Climatic Implications of Cold-Based Tropical Mountain Glaciation. Icarus, 197(1): 84-109. https://doi.org/10.1016/j.icarus.2008.03.019
      Khuller, A. R., Christensen, P. R., 2021. Evidence of Exposed Dusty Water Ice within Martian Gullies. Journal of Geophysical Research: Planets, 126(2): e2020JE006539. https://doi.org/10.1029/2020je006539
      Kieffer, H. H., Chase, S. C., Martin, T. Z., et al., 1976. Martian North Pole Summer Temperatures: Dirty Water Ice. Science, 194(4271): 1341-1344. https://doi.org/10.1126/science.194.4271.1341
      Kieffer, H. H., Christensen, P. R., Titus, T. N., 2006. CO2 Jets Formed by Sublimation beneath Translucent Slab Ice in Mars' Seasonal South Polar Ice Cap. Nature, 442: 793-796. https://doi.org/10.1038/nature04945
      Kolb, E. J., Tanaka, K. L., 2001. Geologic History of the Polar Regions of Mars Based on Mars Global Surveyor Data Ⅱ. Amazonian Period. Icarus, 154(1): 22-39. https://doi.org/10.1006/icar.2001.6676
      Kostama, V. P., Kreslavsky, M. A., Head, J. W., 2006. Recent High-Latitude Icy Mantle in the Northern Plains of Mars: Characteristics and Ages of Emplacement. Geophysical Research Letters, 33(11): L11201. https://doi.org/10.1029/2006GL025946
      Krasilnikov, S. S., Kuzmin, R. O., Evdokimova, N. A., 2018. Remnant Massifs of Layered Deposits at High Northern Latitudes of Mars. Solar System Research, 52(1): 26-36. https://doi.org/10.1134/S0038094617060065
      Lalich, D. E., Hayes, A. G., Poggiali, V., 2022. Explaining Bright Radar Reflections below the South Pole of Mars without Liquid Water. Nature Astronomy, 6: 1142-1146. https://doi.org/10.1038/s41550-022-01775-z
      Langevin, Y., Poulet, F., Bibring, J. P., et al., 2005. Summer Evolution of the North Polar Cap of Mars as Observed by OMEGA/Mars Express. Science, 307(5715): 1581-1584. https://doi.org/10.1126/science.1109438
      Laskar, J., Correia, A. C. M., Gastineau, M., et al., 2004. Long Term Evolution and Chaotic Diffusion of the Insolation Quantities of Mars. Icarus, 170(2): 343-364. https://doi.org/10.1016/j.icarus.2004.04.005
      Lauro, S. E., Pettinelli, E., Caprarelli, G., et al., 2021. Multiple Subglacial Water Bodies below the South Pole of Mars Unveiled by New MARSIS Data. Nature Astronomy, 5: 63-70. https://doi.org/10.1038/s41550-020-1200-6
      Lefort, A., Russell, P. S., Thomas, N., et al., 2009. Observations of Periglacial Landforms in Utopia Planitia with the High Resolution Imaging Science Experiment (HiRISE). Journal of Geophysical Research: Planets, 114(E4): E04005. https://doi.org/10.1029/2008je003264
      Lefort, A., Russell, P. S., Thomas, N., 2010. Scalloped Terrains in the Peneus and Amphitrites Paterae Region of Mars as Observed by HiRISE. Icarus, 205(1): 259-268. https://doi.org/10.1016/j.icarus.2009.06.005
      Leighton, R. B., Murray, B. C., 1966. Behavior of Carbon Dioxide and Other Volatiles on Mars. Science, 153(3732): 136-144. https://doi.org/10.1126/science.153.3732.136
      Levrard, B., Forget, F., Montmessin, F., et al., 2004. Recent Ice-Rich Deposits Formed at High Latitudes on Mars by Sublimation of Unstable Equatorial Ice during Low Obliquity. Nature, 431: 1072-1075. https://doi.org/10.1038/nature03055
      Levrard, B., Forget, F., Montmessin, F., et al., 2007. Recent Formation and Evolution of Northern Martian Polar Layered Deposits as Inferred from a Global Climate Model. Journal of Geophysical Research: Planets, 112(E6): E06012. https://doi.org/10.1029/2006JE002772
      Levy, J., Head, J., Marchant, D., 2009a. Thermal Contraction Crack Polygons on Mars: Classification, Distribution, and Climate Implications from HiRISE Observations. Journal of Geophysical Research: Planets, 114(E1): E01007. https://doi.org/10.1029/2008je003273
      Levy, J. S., Head, J. W., Marchant, D. R., 2009b. Concentric Crater Fill in Utopia Planitia: History and Interaction between Glacial "Brain Terrain" and Periglacial Mantle Processes. Icarus, 202(2): 462-476. https://doi.org/10.1016/j.icarus.2009.02.018
      Levy, J., Head, J. W., Marchant, D. R., 2010. Concentric Crater Fill in the Northern Mid-Latitudes of Mars: Formation Processes and Relationships to Similar Landforms of Glacial Origin. Icarus, 209(2): 390-404. https://doi.org/10.1016/j.icarus.2010.03.036
      Levy, J. S., Fassett, C. I., Head, J. W., et al., 2014. Sequestered Glacial Ice Contribution to the Global Martian Water Budget: Geometric Constraints on the Volume of Remnant, Midlatitude Debris-Covered Glaciers. Journal of Geophysical Research: Planets, 119(10): 2188-2196. https://doi.org/10.1002/2014JE004685
      Li, C., Zheng, Y. K., Wang, X., et al., 2022. Layered Subsurface in Utopia Basin of Mars Revealed by Zhurong Rover Radar. Nature, 610: 308-312. https://doi.org/10.1038/s41586-022-05147-5
      Li, H., Robinson, M. S., Jurdy, D. M., 2005. Origin of Martian Northern Hemisphere Mid-Latitude Lobate Debris Aprons. Icarus, 176(2): 382-394. https://doi.org/10.1016/j.icarus.2005.02.011
      Liu, Y., Liu, Z. H., Wu, X., et al., 2021. Evolution of Water Environment on Mars. Acta Geologica Sinica, 95(9): 2725-2741 (in Chinese with English abstract).
      Lucchitta, B. K., 1981. Mars and Earth: Comparison of Cold-Climate Features. Icarus, 45(2): 264-303. https://doi.org/10.1016/0019-1035(81)90035-x
      Lucchitta, B. K., 1984. Ice and Debris in the Fretted Terrain, Mars. Journal of Geophysical Research: Solid Earth, 89(S02): B409-B418. https://doi.org/10.1029/JB089iS02p0B409
      Madeleine, J. B., Forget, F., Head, J. W., et al., 2009. Amazonian Northern Mid-Latitude Glaciation on Mars: A Proposed Climate Scenario. Icarus, 203(2): 390-405. https://doi.org/10.1016/j.icarus.2009.04.037
      Madeleine, J. B., Head, J. W., Forget, F., et al., 2014. Recent Ice Ages on Mars: The Role of Radiatively Active Clouds and Cloud Microphysics. Geophysical Research Letters, 41(14): 4873-4879. https://doi.org/10.1002/2014GL059861
      Malin, M. C., Edgett, K. S., 2001. Mars Global Surveyor Mars Orbiter Camera: Interplanetary Cruise through Primary Mission. Journal of Geophysical Research: Planets, 106(E10): 23429-23570. https://doi.org/10.1029/2000je001455
      Mangold, N., 2003. Geomorphic Analysis of Lobate Debris Aprons on Mars at Mars Orbiter Camera Scale: Evidence for Ice Sublimation Initiated by Fractures. Journal of Geophysical Research: Planets, 108(E4): 8021. https://doi.org/10.1029/2002JE001885
      Mangold, N., Maurice, S., Feldman, W. C., et al., 2004. Spatial Relationships between Patterned Ground and Ground Ice Detected by the Neutron Spectrometer on Mars. Journal of Geophysical Research: Planets, 109(E8): E08001. https://doi.org/10.1029/2004je002235
      Mattei, E., Pettinelli, E., Lauro, S. E., et al., 2022. Assessing the Role of Clay and Salts on the Origin of MARSIS Basal Bright Reflections. Earth and Planetary Science Letters, 579: 117370. https://doi.org/10.1016/j.epsl.2022.117370
      McGill, G. E., Hills, L. S., 1992. Origin of Giant Martian Polygons. Journal of Geophysical Research: Planets, 97(E2): 2633-2647. https://doi.org/10.1029/91JE02863
      Mellon, M. T., Arvidson, R. E., Marlow, J. J., et al., 2008a. Periglacial Landforms at the Phoenix Landing Site and the Northern Plains of Mars. Journal of Geophysical Research: Planets, 113(E3): E00A23. https://doi.org/10.1029/2007JE003039
      Mellon, M. T., Boynton, W. V., Feldman, W. C., et al., 2008b. A Prelanding Assessment of the Ice Table Depth and Ground Ice Characteristics in Martian Permafrost at the Phoenix Landing Site. Journal of Geophysical Research: Planets, 113(E3): E00A25. https://doi.org/10.1029/2007je003067
      Mellon, M. T., Arvidson, R. E., Sizemore, H. G., et al., 2009. Ground Ice at the Phoenix Landing Site: Stability State and Origin. Journal of Geophysical Research: Planets, 114(E1): E00E07. https://doi.org/10.1029/2009je003417
      Milkovich, S. M., Head, J. W., Marchant, D. R., 2006. Debris-Covered Piedmont Glaciers along the Northwest Flank of the Olympus Mons Scarp: Evidence for Low-Latitude Ice Accumulation during the Late Amazonian of Mars. Icarus, 181(2): 388-407. https://doi.org/10.1016/j.icarus.2005.12.006
      Milliken, R. E., Mustard, J. F., Goldsby, D. L., 2003. Viscous Flow Features on the Surface of Mars: Observations from High-Resolution Mars Orbiter Camera (MOC) Images. Journal of Geophysical Research: Planets, 108(E6): 5057. https://doi.org/10.1029/2002je002005
      Mischna, M. A., Richardson, M. I., Wilson, R. J., et al., 2003. On the Orbital Forcing of Martian Water and CO2 Cycles: A General Circulation Model Study with Simplified Volatile Schemes. Journal of Geophysical Research: Planets, 108(E6): 5062. https://doi.org/10.1029/2003je002051
      Morgan, G. A., Head, J. W., Marchant, D. R., 2009. Lineated Valley Fill (LVF) and Lobate Debris Aprons (LDA) in the Deuteronilus Mensae Northern Dichotomy Boundary Region, Mars: Constraints on the Extent, Age and Episodicity of Amazonian Glacial Events. Icarus, 202(1): 22-38. https://doi.org/10.1016/j.icarus.2009.02.017
      Morgan, G. A., Putzig, N. E., Perry, M. R., et al., 2021. Availability of Subsurface Water-Ice Resources in the Northern Mid-Latitudes of Mars. Nature Astronomy, 5: 230-236. https://doi.org/10.1038/s41550-020-01290-z
      Mouginot, J., Kofman, W., Safaeinili, A., et al., 2009. MARSIS Surface Reflectivity of the South Residual Cap of Mars. Icarus, 201(2): 454-459. https://doi.org/10.1016/j.icarus.2009.01.009
      Mouginot, J., Pommerol, A., Kofman, W., et al., 2010. The 3-5 MHz Global Reflectivity Map of Mars by MARSIS/Mars Express: Implications for the Current Inventory of Subsurface H2O. Icarus, 210(2): 612-625. https://doi.org/10.1016/j.icarus.2010.07.003
      Musselwhite, D. S., Swindle, T. D., Lunine, J. I., 2001. Liquid CO2 Breakout and the Formation of Recent Small Gullies on Mars. Geophysical Research Letters, 28(7): 1283-1285. https://doi.org/10.1029/2000GL012496
      Mustard, J. F., Cooper, C. D., Rifkin, M. K., 2001. Evidence for Recent Climate Change on Mars from the Identification of Youthful Near-Surface Ground Ice. Nature, 412: 411-414. https://doi.org/10.1038/35086515
      Mutch, T. A., Arvidson, R. E., Binder, A. B., et al., 1977. The Geology of the Viking Lander 2 Site. Journal of Geophysical Research, 82(28): 4452-4467. https://doi.org/10.1029/JS082i028p04452
      Ng, F. S. L., Zuber, M. T., 2006. Patterning Instability on the Mars Polar Ice Caps. Journal of Geophysical Research: Planets, 111(E2): E02005. https://doi.org/10.1029/2005je002533
      Orosei, R., Lauro, S. E., Pettinelli, E., et al., 2018. Radar Evidence of Subglacial Liquid Water on Mars. Science, 361(6401): 490-493. https://doi.org/10.1126/science.aar7268
      Pathare, A. V., Feldman, W. C., Prettyman, T. H., et al., 2018. Driven by Excess? Climatic Implications of New Global Mapping of Near-Surface Water-Equivalent Hydrogen on Mars. Icarus, 301: 97-116. https://doi.org/10.1016/j.icarus.2017.09.031
      Pierce, T. L., Crown, D. A., 2003. Morphologic and Topographic Analyses of Debris Aprons in the Eastern Hellas Region, Mars. Icarus, 163(1): 46-65. https://doi.org/10.1016/s0019-1035(03)00046-0
      Plaut, J. J., Picardi, G., Safaeinili, A., et al., 2007. Subsurface Radar Sounding of the South Polar Layered Deposits of Mars. Science, 316(5821): 92-95. https://doi.org/10.1126/science.1139672
      Plaut, J. J., Safaeinili, A., Holt, J. W., et al., 2009. Radar Evidence for Ice in Lobate Debris Aprons in the Mid-Northern Latitudes of Mars. Geophysical Research Letters, 36(2): L02203. https://doi.org/10.1029/2008GL036379
      Plug, L. J., Werner, B. T., 2001. Fracture Networks in Frozen Ground. Journal of Geophysical Research: Solid Earth, 106(B5): 8599-8613. https://doi.org/10.1029/2000jb900320
      Schon, S. C., Head, J. W., Fassett, C. I., 2012. Recent High-Latitude Resurfacing by a Climate-Related Latitude-Dependent Mantle: Constraining Age of Emplacement from Counts of Small Craters. Planetary and Space Science, 69(1): 49-61. https://doi.org/10.1016/j.pss.2012.03.015
      Séjourné, A., Costard, F., Gargani, J., et al., 2011. Scalloped Depressions and Small-Sized Polygons in Western Utopia Planitia, Mars: A New Formation Hypothesis. Planetary and Space Science, 59(5-6): 412-422. https://doi.org/10.1016/j.pss.2011.01.007
      Séjourné, A., Costard, F., Swirad, Z. M., et al., 2019. Grid Mapping the Northern Plains of Mars: Using Morphotype and Distribution of Ice-Related Landforms to Understand Multiple Ice-Rich Deposits in Utopia Planitia. Journal of Geophysical Research: Planets, 124(2): 483-503. https://doi.org/10.1029/2018je005665
      Sharp, R. P., 1973. Mars: Fretted and Chaotic Terrains. Journal of Geophysical Research, 78(20): 4073-4083. https://doi.org/10.1029/JB078i020p04073
      Shean, D. E., 2010. Candidate Ice-Rich Material within Equatorial Craters on Mars. Geophysical Research Letters, 37(24): L24202. https://doi.org/10.1029/2010GL045181
      Shean, D. E., Head, J. W. Ⅲ, Fastook, J. L., et al., 2007. Recent Glaciation at High Elevations on Arsia Mons, Mars: Implications for the Formation and Evolution of Large Tropical Mountain Glaciers. Journal of Geophysical Research: Planets, 112(E3): E03004. https://doi.org/10.1029/2006JE002761
      Shean, D. E., Head, J. W., Marchant, D. R., 2005. Origin and Evolution of a Cold-Based Tropical Mountain Glacier on Mars: The Pavonis Mons Fan-Shaped Deposit. Journal of Geophysical Research: Planets, 110(E5): E05001. https://doi.org/10.1029/2004je002360
      Sizemore, H. G., Zent, A. P., Rempel, A. W., 2015. Initiation and Growth of Martian Ice Lenses. Icarus, 251: 191-210. https://doi.org/10.1016/j.icarus.2014.04.013
      Smith, I. B., 2022. A Retrospective on Mars Polar Ice and Climate. Oxford University Press, Oxford.
      Smith, I. B., Lalich, D. E., Rezza, C., et al., 2021. A Solid Interpretation of Bright Radar Reflectors under the Mars South Polar Ice. Geophysical Research Letters, 48(15): e2021GL093618. https://doi.org/10.1029/2021GL093618
      Smith, I. B., Putzig, N. E., Holt, J. W., et al., 2016. An Ice Age Recorded in the Polar Deposits of Mars. Science, 352(6289): 1075-1078. https://doi.org/10.1126/science.aad6968
      Smith, P. H., Tamppari, L. K., Arvidson, R. E., et al., 2009. H2O at the Phoenix Landing Site. Science, 325(5936): 58-61. https://doi.org/10.1126/science.1172339
      Soderblom, L. A., Kreidler, T. J., Masursky, H., 1973. Latitudinal Distribution of a Debris Mantle on the Martian Surface. Journal of Geophysical Research, 78(20): 4117-4122. https://doi.org/10.1029/jb078i020p04117
      Sori, M. M., Bramson, A. M., 2019. Water on Mars, with a Grain of Salt: Local Heat Anomalies are Required for Basal Melting of Ice at the South Pole Today. Geophysical Research Letters, 46(3): 1222-1231. https://doi.org/10.1029/2018GL080985.
      Squyres, S. W., 1978. Martian Fretted Terrain: Flow of Erosional Debris. Icarus, 34(3): 600-613. https://doi.org/10.1016/0019-1035(78)90048-9
      Squyres, S. W., 1979. The Distribution of Lobate Debris Aprons and Similar Flows on Mars. Journal of Geophysical Research: Solid Earth, 84(B14): 8087-8096. https://doi.org/10.1029/JB084iB14p08087
      Squyres, S. W., Carr, M. H., 1986. Geomorphic Evidence for the Distribution of Ground Ice on Mars. Science, 231(4735): 249-252. https://doi.org/10.1126/science.231.4735.249
      Tanaka, K., Rodriguez, J., Skinnerjr, J., et al., 2008. North Polar Region of Mars: Advances in Stratigraphy, Structure, and Erosional Modification. Icarus, 196(2): 318-358. https://doi.org/10.1016/j.icarus.2008.01.021
      Titus, T. N., Kieffer, H. H., Christensen, P. R., 2003. Exposed Water Ice Discovered near the South Pole of Mars. Science, 299(5609): 1048-1051. https://doi.org/10.1126/science.1080497
      Treiman, A. H., 2003. Geologic Settings of Martian Gullies: Implications for Their Origins. Journal of Geophysical Research: Planets, 108(E4): 8031. https://doi.org/10.1029/2002je001900
      Tulaczyk, S. M., Foley, N. T., 2020. The Role of Electrical Conductivity in Radar Wave Reflection from Glacier Beds. The Cryosphere, 14(12): 4495-4506. https://doi.org/10.5194/tc-14-4495-2020
      Wagstaff, K. L., Titus, T. N., Ivanov, A. B., et al., 2008. Observations of the North Polar Water Ice Annulus on Mars Using THEMIS and TES. Planetary and Space Science, 56(2): 256-265. https://doi.org/10.1016/j.pss.2007.08.008
      Warner, N. H., Gupta, S., Calef, F., et al., 2015. Minimum Effective Area for High Resolution Crater Counting of Martian Terrains. Icarus, 245: 198-240. https://doi.org/10.1016/j.icarus.2014.09.024
      Xiao, L., 2022. What Geological Habitability Evolution did Mars Undergo? Earth Science, 47(10): 3792-3793(in Chinese).
      Xiao, L., 2023. Evolution of the Geological Environment and Exploration for Life on Mars. Journal of Earth Science, 34(5): 1626-1628. https://doi.org/10.1007/s12583-023-1929-7
      Zhao, J. N., Shi, Y. T., Zhang, M. J., et al., 2021. Advances in Martian Water-Related Landforms. Acta Geologica Sinica, 95(9): 2755-2768 (in Chinese with English abstract).
      刘洋, 刘正豪, 吴兴, 等, 2021. 火星的水环境演化. 地质学报, 95(9): 2725-2741. doi: 10.3969/j.issn.0001-5717.2021.09.007
      肖龙, 2022. 火星的地质环境及宜居性演变历史如何?地球科学, 47(10): 3792-3793. doi: 10.3799/dqkx.2022.811
      赵健楠, 史语桐, 张明杰, 等, 2021. 火星水成地貌研究进展. 地质学报, 95(9): 2755-2768. doi: 10.3969/j.issn.0001-5717.2021.09.009
    • 加载中
    图(15) / 表(1)
    计量
    • 文章访问数:  1298
    • HTML全文浏览量:  173
    • PDF下载量:  128
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-09-25
    • 网络出版日期:  2024-07-11
    • 刊出日期:  2024-06-25

    目录

      /

      返回文章
      返回