• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    实时高温作用下砂岩的热损伤与能量特征

    廖安杰 张岩 王飞 马煜

    廖安杰, 张岩, 王飞, 马煜, 2025. 实时高温作用下砂岩的热损伤与能量特征. 地球科学, 50(1): 286-298. doi: 10.3799/dqkx.2023.206
    引用本文: 廖安杰, 张岩, 王飞, 马煜, 2025. 实时高温作用下砂岩的热损伤与能量特征. 地球科学, 50(1): 286-298. doi: 10.3799/dqkx.2023.206
    Liao Anjie, Zhang Yan, Wang Fei, Ma Yu, 2025. Thermal Damage and Energy Characteristics of Sandstone under Real-Time High Temperatures. Earth Science, 50(1): 286-298. doi: 10.3799/dqkx.2023.206
    Citation: Liao Anjie, Zhang Yan, Wang Fei, Ma Yu, 2025. Thermal Damage and Energy Characteristics of Sandstone under Real-Time High Temperatures. Earth Science, 50(1): 286-298. doi: 10.3799/dqkx.2023.206

    实时高温作用下砂岩的热损伤与能量特征

    doi: 10.3799/dqkx.2023.206
    基金项目: 

    四川省乐山市科技局重点研究项目 21GZD019

    国家自然科学基金项目 42107211

    四川省自然科学基金项目 2025ZNSFSC0097

    地质灾害防治与地质环境保护国家重点实验室自主课题 SKLGP2022Z008

    详细信息
      作者简介:

      廖安杰(1989-),男,硕士,讲师,主要从事地质工程及地质灾害防治研究. ORCID:0009-0009-6556-3967. E-mail:307079800@qq.com

      通讯作者:

      张岩, ORCID: 0000-0002-4791-7081. E-mail: zhangyan2020@cdut.edu.cn

    • 中图分类号: TV223.1

    Thermal Damage and Energy Characteristics of Sandstone under Real-Time High Temperatures

    • 摘要: 岩石实时高温下的损伤破坏及能量演化特征是深部地质工程的热点与难点问题.利用MTS815型程控伺服刚性试验机和PCI-Ⅱ声发射仪对砂岩开展实时高温作用下的三轴压缩试验,基于试验结果并引入能耗演化规律,分析探讨高温作用下砂岩的力学特性与能量特征.结果表明:(1)温度120~150 ℃之间存在温度阈值,导致砂岩内部出现热损伤,其峰值强度大幅度降低,宏观破裂形式由剪切破坏过渡到张拉破坏;(2)温度25~120 ℃之间,砂岩累计AE能量、储存和释放能量随着温度升高而增大,而温度150 ℃时,砂岩内部开始产生热损伤,声发射累计AE能量、储能能力和能量释放能力大幅度减弱;(3)随着温度的升高,砂岩脆性指标BE不断减小,温度120~150 ℃之间,砂岩BE值从0.5大幅度减小到0.26,表现出明显的塑性破坏特征.系统地分析了温度作用对砂岩的力学性质、破坏模式、声发射活动、应变能演化过程及脆性状态的影响规律,发现存在明显的温度阈值使砂岩的各类行为在阈值前后产生较为明显的转变.

       

    • 图  1  MTS815型岩石力学试验系统

      Fig.  1.  Rock mechanics testing system of MTS815

      图  2  不同温度作用下砂岩σ-ε曲线

      Fig.  2.  The σ-ε curves of sandstone under different temperatures

      图  3  弹性模量与温度的关系

      Fig.  3.  Relationship between elastic modulus and temperature

      图  4  泊松比与温度的关系

      Fig.  4.  Relationship between Poisson's ratio and temperature

      图  5  峰值强度与温度关系

      Fig.  5.  Relationship between peak stress and temperature

      图  6  不同温度作用下试样破坏形态

      Fig.  6.  Failure patterns of specimens under different temperatures

      图  7  不同温度作用下砂岩应力、AE能量与时间的关系

      a. 25 ℃; b. 60 ℃; c. 90 ℃; d. 120 ℃; e. 150 ℃

      Fig.  7.  The curves of stress and AE energy with time for sandstone under different temperatures

      图  8  累计AE能量与温度关系

      Fig.  8.  Relationship between accumulative energy and temperature

      图  9  岩石单元能量关系图(谢和平等,2005

      Fig.  9.  Energy relationship diagram of rock unit(Xie et al., 2005)

      图  10  不同温度作用下砂岩应力‒轴向应变‒应变能的关系曲线

      a. 25 ℃; b. 60 ℃; c. 90 ℃; d. 120 ℃; e. 150 ℃

      Fig.  10.  The curves of stress-axial strain-strain energy for sandstone under different temperatures

      图  11  能量参数与温度的关系

      Fig.  11.  Relationship between energy parameters and temperature

      图  12  能量比例与温度的关系

      Fig.  12.  Relationship between energy ratio and temperature

      图  13  砂岩热损伤与温度的关系

      Fig.  13.  Relationship between thermal damage and temperature

      图  14  不同温度作用下砂岩SEM扫描图

      a. 25 ℃; b. 60 ℃; c. 90 ℃; d. 120 ℃; e. 150 ℃

      Fig.  14.  SEM scanning images of sandstone under different temperatures

      图  15  脆性指标BE与温度的关系

      Fig.  15.  Relationship between brittleness index BE and temperature

      表  1  不同温度作用下砂岩试验结果

      Table  1.   Test results of sandstone under different temperatures

      温度(℃) 弹性模量(GPa) 泊松比 峰值强度(MPa)
      25 30.01 0.241 246.41
      60 30.13 0.266 248.33
      90 30.85 0.272 251.98
      120 31.14 0.276 254.07
      150 28.20 0.289 112.29
      下载: 导出CSV

      表  2  不同温度作用下砂岩脆性指标结果

      Table  2.   Results of brittleness index of sandstone under different temperatures

      温度(℃) S1
      (MPa)
      S2
      (MPa)
      S3
      (MPa)
      S4
      (MPa)
      BEpre BEpost BE
      25 1.13 1.01 0.27 0.38 0.47 0.70 0.59
      60 1.45 1.02 0.31 0.45 0.42 0.66 0.54
      90 1.67 1.03 0.36 0.43 0.39 0.63 0.51
      120 1.94 1.04 0.55 0.41 0.37 0.55 0.46
      150 0.43 0.22 0.89 0.01 0.33 0.19 0.26
      下载: 导出CSV
    • Ai, C., Zhang, J., Li, Y. W., et al., 2016. Estimation Criteria for Rock Brittleness Based on Energy Analysis during the Rupturing Process. Rock Mechanics and Rock Engineering, 49(12): 4681-4698. https://doi.org/10.1007/s00603-016-1078-x
      Altindag, R., 2003. Correlation of Specific Energy with Rock Brittleness Concepts on Rock Cutting. Journal of the South African Institute of Mining and Metallurgy, 103(3): 163-171. http://reference.sabinet.co.za/webx/access/journal_archive/0038223X/2979.pdf
      Bai, F. T., Sun, Y. H., Liu, Y. M., et al., 2017. Evaluation of the Porous Structure of Huadian Oil Shale during Pyrolysis Using Multiple Approaches. Fuel, 187: 1-8. https://doi.org/10.1016/j.fuel.2016.09.012
      Chen, G. Q., Jiang, W. Z., Sun, X., et al., 2019. Quantitative Evaluation of Rock Brittleness Based on Crack Initiation Stress and Complete Stress-Strain Curves. Bulletin of Engineering Geology and the Environment, 78(8): 5919-5936. https://doi.org/10.1007/s10064-019-01486-2
      Chen, G. Q., Wu, J. C., Jiang, W. Z., et al., 2020. An Evaluation Method of Rock Brittleness Based on the Whole Process of Elastic Energy Evolution. Chinese Journal of Rock Mechanics and Engineering, 39(5): 901-911 (in Chinese with English abstract).
      Chen, H. Q., Meng, L. B., 2019. Mechanical Characteristics and Acoustic Emission Characteristics of Limestone Triaxial Unloading after High Temperature Effect. Safety in Coal Mines, 50(4): 58-62 (in Chinese with English abstract).
      Deng, H. F., Yuan, X. F., Li, J. L., et al., 2014. Fracture Mechanics Characteristics and Deterioration Mechanism of Sandstone under Reservoir Immersion Interaction. Earth Science, 39(1): 108-114 (in Chinese with English abstract).
      Gautam, P. K., Verma, A. K., Maheshwar, S., et al., 2016. Thermomechanical Analysis of Different Types of Sandstone at Elevated Temperature. Rock Mechanics and Rock Engineering, 49(5): 1985-1993. https://doi.org/10.1007/s00603-015-0797-8
      Hajiabdolmajid, V., Kaiser, P., 2003. Brittleness of Rock and Stability Assessment in Hard Rock Tunneling. Tunnelling and Underground Space Technology, 18(1): 35-48. https://doi.org/10.1016/S0886-7798(02)00100-1
      Jiang, H. P., Jiang, A. N., Yang, X. R., 2021. Statistical Damage Constitutive Model of High Temperature Rock Based on Weibull Distribution and Its Verification. Rock and Soil Mechanics, 42(7): 1894-1902 (in Chinese with English abstract).
      Kumari, W. G. P., Ranjith, P. G., Perera, M. S. A., et al., 2017. Mechanical Behaviour of Australian Strathbogie Granite under In-Situ Stress and Temperature Conditions: An Application to Geothermal Energy Extraction. Geothermics, 65: 44-59. https://doi.org/10.1016/j.geothermics.2016.07.002
      Li, B. B., Yang, K., Yuan, M., et al., 2017. Effect of Pore Pressure on Seepage Characteristics of Coal and Rock at Different Temperatures. Earth Science, 42(8): 1403-1412 (in Chinese with English abstract).
      Li, C. D., Meng, J., Xiang, L. Y., et al., 2023. Multi-Scale Evolution Mechanism of Sandstone Structure in Baihetan Reservoir Head Region. Earth Science, 48(12): 4658-4667 (in Chinese with English abstract).
      Li, Q. S., Yang, S. Q., Chen, G. F., 2014. Strength and Deformation Properties of Post-High-Temperature Joint Sandstone. Journal of China Coal Society, 39(4): 651-657 (in Chinese with English abstract).
      Li, T. B., Chen, Z. Q., Chen, G. Q., et al., 2015. An Experimental Study of Energy Mechanism of Sandstone with Different Moisture Contents. Rock and Soil Mechanics, 36(S2): 229-236 (in Chinese with English abstract).
      Liang, S. F., Fang, S. Z., Wei, G. H., et al., 2021. Experiments on Mechanical Properties of Siliceous Sandstone after High Temperature. Journal of Zhengzhou University (Engineering Science), 42(3): 87-92 (in Chinese with English abstract).
      Liu, Q. S., Xu, X. C., 2000. Damage Analysis of Brittle Rock at High Temperature. Chinese Journal of Rock Mechanics and Engineering, 19(4): 408-411 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2000.04.002
      Liu, X. F., Zhao, Y. Q., Wang, X. R., et al., 2022. Current Status and Prospects of Research on Fatigue Damage and Failure Precursors of Rocks. Earth Science, 47(6): 2190-2198 (in Chinese with English abstract).
      Meng, L. B., Li, T. B., Xu, J., et al., 2012. Experimental Study on Influence of Confining Pressure on Shale Mechanical Properties under High Temperature Condition. Journal of China Coal Society, 37(11): 1829-1833 (in Chinese with English abstract).
      Meng, W., He, C., Wu, F. Y., et al., 2022. Effects of Thermal Stress of Rock Masses Generated by Geothermal Gradient on Rockburst Prediction. Journal of Southwest Jiaotong University, 57(4): 903-909 (in Chinese with English abstract).
      Qin, Y., Tian, H., Xu, N. X., et al., 2020. Physical and Mechanical Properties of Granite after High-Temperature Treatment. Rock Mechanics and Rock Engineering, 53: 305-322. https://doi.org/10.1007/s00603-019-01919-0
      Su, C. D., Guo, W. B., Li, X. S., 2008. Experimental Research on Mechanical Properties of Coarse Sandstone after High Temperatures. Chinese Journal of Rock Mechanics and Engineering, 27(6): 1162-1170 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2008.06.009
      Tang, H. M., Zhang, Y. H., Sun, Y. Z., 2007. A Study of Equivalent Deformability Parameters in Rock Masses. Earth Science, 32(3): 389-396 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-2383.2007.03.012
      Tang, M. G., Xu, Q., Deng, W. F., et al., 2022. Degradation Law of Mechanical Properties of Typical Rock in Sichuan-Tibet Traffic Corridor under Freeze-Thaw and Unloading Conditions. Earth Science, 47(6): 1917-1931 (in Chinese with English abstract).
      Tarasov, B. G., Potvin, Y., 2013. Universal Criteria for Rock Brittleness Estimation under Triaxial Compression. International Journal of Rock Mechanics and Mining Sciences, 59(4): 57-69. https://doi.org/10.1016/j.ijrmms.2012.12.011
      Wan, Z. J., Zhao, Y. S., Dong, F. K., et al., 2008. Experimental Study on Mechanical Characteristics of Granite under High Temperatures and Triaxial Stresses. Chinese Journal of Rock Mechanics and Engineering, 27(1): 72-77 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2008.01.011
      Wang, X. G., Hu, B., Tang, H. M., et al., 2016. Triaxial Rheological Experiments and Rheological Constitutive of Mudstone under Hydro-Mechanical Coupling State. Earth Science, 41(5): 886-894 (in Chinese with English abstract).
      Wang, Z. Z., Qin, B. D., Guo, J. Q., et al., 2022. Influence of High Temperature Treatment on Mechanical Properties and Energy Evolution Mechanism of Sandstone. Journal of Henan Polytechnic University (Natural Science), 41(6): 181-187 (in Chinese with English abstract).
      Wen, T., Zhang, X., Sun, J. S., et al., 2021. Brittle Evaluation Based on Energy Evolution at Pre-Peak and Post-Peak Stage. Earth Science, 46(9): 3385-3396 (in Chinese with English abstract).
      Wu, G., Wang, D. Y., Zhai, S. T., 2012. Acoustic Emission Characteristics of Sandstone after High Temperature under Uniaxial Compression. Rock and Soil Mechanics, 33(11): 3237-3242 (in Chinese with English abstract).
      Xie, H. P., Ju, Y., Li, L. Y., 2005. Criteria for Strength and Structural Failure of Rocks Based on Energy Dissipation and Energy Release Principles. Chinese Journal of Rock Mechanics and Engineering, 24(17): 3003-3010 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2005.17.001
      Yang, S. Q., Ranjith, P. G., Jing, H. W., et al., 2017. An Experimental Investigation on Thermal Damage and Failure Mechanical Behavior of Granite after Exposure to Different High Temperature Treatments. Geothermics, 65: 180-197. https://doi.org/10.1016/j.geothermics.2016.09.008
      Yin, G. Z., Li, X. S., Zhao, H. B., 2009. Experimental Investigation on Mechanical Properties of Coarse Sandstone after High Temperature under Conventional Triaxial Compression. Chinese Journal of Rock Mechanics and Engineering, 28(3): 598-604 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2009.03.020
      Zhang, H., Li, T. B., Chen, G. Q., et al., 2014. Acoustic Emission Characteristics of Granite in a Triaxial Compression Test at Different Temperatures. Modern Tunnelling Technology, 51(5): 33-40 (in Chinese with English abstract).
      Zhang, J., Ai, C., Li, Y. W., et al., 2018. Energy-Based Brittleness Index and Acoustic Emission Characteristics of Anisotropic Coal under Triaxial Stress Condition. Rock Mechanics and Rock Engineering, 51: 3343-3360. https://doi.org/10.1007/s00603-018-1535-9
      Zhang, L. Y., Lu, W. T., Mao, X. B., 2007. Experimental Research on Mechanical Properties of Sandstone at High Temperature. Journal of Mining & Safety Engineering, 24(3): 293-297 (in Chinese with English abstract). doi: 10.3969/j.issn.1673-3363.2007.03.009
      Zhang, Y., Feng, X. T., Yang, C. X., et al., 2019. Fracturing Evolution Analysis of Beishan Granite under True Triaxial Compression Based on Acoustic Emission and Strain Energy. International Journal of Rock Mechanics and Mining Sciences, 117: 150-161. https://doi.org/10.1016/j.ijrmms.2019.03.029
      Zhang, Y., Feng, X. T., Yang, C. X., et al., 2021. Evaluation Method of Rock Brittleness under True Triaxial Stress States Based on Pre-Peak Deformation Characteristic and Post-Peak Energy Evolution. Rock Mechanics and Rock Engineering, 54: 1277-1291. https://doi.org/10.1007/s00603-020-02330-w
      Zunino, F., Castro, J., Lopez, M., 2015. Thermo-Mechanical Assessment of Concrete Microcracking Damage Due to Early-Age Temperature Rise. Construction and Building Materials, 81: 140-153. https://doi.org/10.1016/j.conbuildmat.2014.12.126
      Zuo, J. P., Zhou, H. W., Xie, H. P., et al., 2008. Meso-Experimental Research on Sandstone Failure Behavior under Thermal-Mechanical Coupling Effect. Rock and Soil Mechanics, 29(6): 1477-1482 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2008.06.009
      陈国庆, 吴家尘, 蒋万增, 等, 2020. 基于弹性能演化全过程的岩石脆性评价方法. 岩石力学与工程学报, 39(5): 901-911.
      陈海清, 孟陆波, 2019. 灰岩三轴卸荷力学特性及声发射特征的高温后效应. 煤矿安全, 50(4): 58-62.
      邓华锋, 原先凡, 李建林, 等, 2014. 浸泡作用下砂岩断裂力学特性及劣化机理. 地球科学, 39(1): 108-114. doi: 10.3799/dqkx.2014.011
      蒋浩鹏, 姜谙男, 杨秀荣, 2021. 基于Weibull分布的高温岩石统计损伤本构模型及其验证. 岩土力学, 42(7): 1894-1902.
      李波波, 杨康, 袁梅, 等, 2017. 不同温度下孔隙压力对煤岩渗流特性的影响机制. 地球科学, 42(8): 1403-1412.
      李长冬, 孟杰, 项林语, 等, 2023. 白鹤滩库首区砂岩结构多尺度演变机制. 地球科学, 48(12): 4658-4667. doi: 10.3799/dqkx.2022.486
      李庆森, 杨圣奇, 陈国飞, 2014. 高温后节理砂岩强度及变形破坏特性. 煤炭学报, 39(4): 651-657.
      李天斌, 陈子全, 陈国庆, 等, 2015. 不同含水率作用下砂岩的能量机制研究. 岩土力学, 36(S2): 229-236.
      梁书锋, 方士正, 韦贵华, 等, 2021. 高温作用后硅质砂岩力学性能试验. 郑州大学学报(工学报), 42(3): 87-92.
      刘泉声, 许锡昌, 2000. 温度作用下脆性岩石的损伤分析. 岩石力学与工程学报, 19(4): 408-411. doi: 10.3321/j.issn:1000-6915.2000.04.002
      刘新锋, 赵英群, 王晓睿, 等, 2022. 岩石疲劳损伤及破坏前兆研究现状与展望. 地球科学, 47(6): 2190-2198. doi: 10.3799/dqkx.2021.186
      孟陆波, 李天斌, 徐进, 等, 2012. 高温作用下围压对页岩力学特性影响的试验研究. 煤炭学报, 37(11): 1829-1833.
      蒙伟, 何川, 吴枋胤, 等, 2022. 地温梯度孕育的岩体热应力对岩爆预测的影响. 西南交通大学学报, 57(4): 903-909.
      苏承东, 郭文兵, 李小双, 2008. 粗砂岩高温作用后力学效应的试验研究. 岩石力学与工程学报, 27(6): 1162-1170. doi: 10.3321/j.issn:1000-6915.2008.06.009
      唐辉明, 张宜虎, 孙云志, 2007. 岩体等效变形参数研究. 地球科学, 32(3): 389-396. http://www.earth-science.net/article/id/3465
      汤明高, 许强, 邓文锋, 等, 2022. 冻融及加卸荷条件下川藏交通廊道典型岩石力学特性的劣化规律. 地球科学, 47(6): 1917-1931. doi: 10.3799/dqkx.2021.260
      万志军, 赵阳升, 董付科, 等, 2008. 高温及三轴应力下花岗岩体力学特性的实验研究. 岩石力学与工程学报, 27(1): 72-77. doi: 10.3321/j.issn:1000-6915.2008.01.011
      王新刚, 胡斌, 唐辉明, 等, 2016. 渗透压‒应力耦合作用下泥岩三轴流变实验及其流变本构. 地球科学, 41(5): 886-894. doi: 10.3799/dqkx.2016.075
      王珍珍, 秦本东, 郭佳奇, 等, 2022. 高温作用对煤系砂岩力学性能和能量演化机制的影响. 河南理工大学学报(自然科学版), 41(6): 181-187.
      温韬, 张馨, 孙金山, 等, 2021. 基于峰前和峰后能量演化特征的岩石脆性评价. 地球科学, 46(9): 3385-3396. doi: 10.3799/dqkx.2020.342
      吴刚, 王德咏, 翟松韬, 2012. 单轴压缩下高温后砂岩的声发射特性. 岩土力学, 33(11): 3237-3242.
      谢和平, 鞠杨, 黎立云, 2005. 基于能量耗散与释放原理的岩石强度与整体破坏准则. 岩石力学与工程学报, 24(17): 3003-3010. doi: 10.3321/j.issn:1000-6915.2005.17.001
      尹光志, 李小双, 赵洪宝, 2009. 高温后粗砂岩常规三轴压缩条件下力学特性试验研究. 岩石力学与工程学报, 28(3): 598-604. doi: 10.3321/j.issn:1000-6915.2009.03.020
      张航, 李天斌, 陈国庆, 等, 2014. 不同温度下花岗岩三轴压缩试验的声发射特性. 现代隧道技术, 51(5): 33-40.
      张连英, 卢文厅, 茅献彪, 2007. 高温作用下砂岩力学性能实验. 采矿与安全工程学报, 24(3): 293-297. doi: 10.3969/j.issn.1673-3363.2007.03.009
      左建平, 周宏伟, 谢和平, 等, 2008. 温度和应力耦合作用下砂岩破坏的细观试验研究. 岩土力学, 29(6): 1477-1482. doi: 10.3969/j.issn.1000-7598.2008.06.009
    • 加载中
    图(15) / 表(2)
    计量
    • 文章访问数:  214
    • HTML全文浏览量:  68
    • PDF下载量:  27
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-08-19
    • 网络出版日期:  2025-02-10
    • 刊出日期:  2025-01-25

    目录

      /

      返回文章
      返回