Optimization of Soil Radon Quantitative Testing Methods and Its Application in Identification of Medium-Low Temperature Convective Geothermal Systems
-
摘要: 为了指示地热勘察空白区内地热水的分布,经系统试验阐明了土壤氡含量测试结果与采样深度、测量时间、土壤孔隙度、土壤湿度等重要影响因素的关系,确定了最佳的土壤测试条件,优化了传统土壤氡测量方法.在此基础上,选择山西忻州盆地内的地热勘查空白区为典型研究区,基于优化后的土壤氡测量方法识别了区内控制地热水升流的主要导水断裂,并辅以浅层地下水温测量及其水文地球化学研究,查明了区内水热型地热的分布规律.研究成果有望推广应用于受断裂控制的中低温对流型地热系统的勘查实践.Abstract: Soil radon measurement is one of the important geochemical exploration methods to investigate concealed fracture, and also an effective means to identify hydrothermal geothermal systems. In this paper it clarified the relationship between the test results of soil radon content and sampling depth, measurement time, soil porosity, soil humidity and optimizes the traditional soil radon measurement method. On this basis, choose the geothermal exploration in Shanxi Xinzhou Basin as a typical research area, based on the optimization of soil radon measurement method to identify the control of geothermal water flow main water fracture, supplemented by shallow groundwater temperature measurement and hydrogeochemical research, find out the distribution of hydrothermal geothermal type in the area. The results of this study are expected to be applied to the exploration practice of medium-low temperature convective geothermal system controlled by fracture.
-
图 1 忻州盆地地质简图及地热区分布(改自张梦昭等,2023)
Fig. 1. Geologic map and geothermal field distribution of the Xinzhou Basin (after Zhang et al., 2023)
表 1 研究区土壤氡含量范围划分依据
Table 1. Basis for the range division of soil radon content in the study area
正常值 偏高值 高值 异常值 划分标准 300<Rn<C+σ C+σ<Rn<C+2σ C+2σ<Rn<C+3σ C+3σ<Rn 下限(Bq/m3) 300 10 070 13 727 17 385 表 2 南岗-李三泉剖面(A-A')浅层地下水样中冷水端元的混合比(%)
Table 2. Mixing ratio of cold water element in shallow groundwater sample of section (A-A')
ID Na B Cl F 南岗村 CW01 93.96 90.53 93.26 99.65 CW02 93.12 74.13 97.65 97.77 CW03 90.73 78.52 92.84 98.59 CW04 93.06 92.15 97.47 96.95 CW05 92.64 93.53 97.17 99.18 Average 92.70 85.77 95.68 98.43 上院村 CW06 93.78 88.45 98.43 98.47 CW07 93.96 91.45 98.98 99.53 CW08 94.26 92.61 94.76 99.65 CW09 95.57 90.07 98.19 98.47 Average 94.39 90.65 97.59 99.03 解村 CW10 93.78 94.69 98.43 99.18 CW11 95.63 89.61 97.89 99.30 Average 94.71 92.15 98.16 99.24 圪妥村 CW12 93.06 93.76 96.45 99.77 CW13 91.93 95.84 96.81 100.00 CW14 90.01 92.61 94.58 99.41 CW15 89.95 90.76 94.40 98.59 Average 91.24 93.24 95.56 99.44 中三泉村 CW16 97.61 97.69 98.74 99.18 CW17 99.04 98.61 98.98 99.65 CW18 94.14 97.46 / 99.53 Average 96.93 97.92 98.86 99.45 李三泉村 CW19 96.35 96.07 98.80 99.65 -
Alharbi, W. R., Abbady, A. G. E., 2013. Measurement of Radon Concentrations in Soil and the Extent of Their Impact on the Environment from Al-Qassim, Saudi Arabia. Natural Science, 5(1): 93-98. https://doi.org/10.4236/ns.2013.51015 Deng, A. L., Sun, H. P., 2002. Dynamic Changes of Hot Water Caused by Over-Exploitation of Qicun Geothermal Field in Shanxi Province. Earth Science, 27(2): 134-208(in Chinese with English abstract). Duggal, V., Rani, A., Mehra, R., 2014. Measurement of Soil-Gas Radon in Some Areas of Northern Rajasthan, India. Journal of Earth System Science, 123(6): 1241-1247. https://doi.org/10.1007/s12040-014-0473-5 Fujiyoshi, R., Ohno, M., Okamoto, K., et al., 2015. Soil Radon (222Rn) Monitoring in a Forest Site in Fukushima, Japan. Environmental Earth Sciences, 73(8): 4135-4142. https://doi.org/10.1007/s12665-014-3698-3 Gao, H. L., Hu, Z. H., Wan, H. P., et al., 2023. Characteristics of Geothermal Geology of the Gulu Geothermal Field in Tibet. Earth Science, 48(3): 1014-1029(in Chinese with English abstract). Gao, L. P., 2007. Ground Hot Water Resources and Their Development and Utilization in Daying, Xinzhou City. Today Hubei (Theory Edition), 1(6): 4-5(in Chinese). Han, D. M., Liang, X., Currell, M. J., et al., 2010a. Environmental Isotopic and Hydrochemical Characteristics of Groundwater Systems in Daying and Qicun Geothermal Fields, Xinzhou Basin, Shanxi, China. Hydrological Processes, 24(22): 3157-3176. https://doi.org/10.1002/hyp.7742 Han, D. M., Liang, X., Jin, M. G., et al., 2010b. Evaluation of Groundwater Hydrochemical Characteristics and Mixing Behavior in the Daying and Qicun Geothermal Systems, Xinzhou Basin. Journal of Volcanology and Geothermal Research, 189(1/2): 92-104. https://doi.org/10.1016/j.jvolgeores.2009.10.011 Kumar, A., Arora, V., Walia, V., et al., 2014. Study of Soil Gas Radon Variations in the Tectonically Active Dharamshala and Chamba Regions, Himachal Pradesh, India. Environmental Earth Sciences, 72(8): 2837-2847. https://doi.org/10.1007/s12665-014-3188-7 Li, J. B., Zhou, Z. C., Yun, L., et al., 2022. Identification of Hidden Faults Based on Soil Radon Measurement in the Southern Margin of the Beishan Area, Gansu Province. Acta Geologica Sinica, 96(6): 2240-2250(in Chinese with English abstract). Liao, Z. J., 2012. Deep-Circulation Hydrothermal Systems without Magmatic Heat Source in Fujian Province. Geoscience, 26(1): 85-98(in Chinese with English abstract). Liao, Z. J., Zhao, P., 1999. Tropical Yunnan and Tibet: Geothermal Resources and Typical Geothermal Systems. Science Press, Beijing(in Chinese). Liu, J. H., Wang, Z. W., Liu, S. T., et al., 2006. The Evaluation Method of Soil Radon and Mercury Gas Measurement about Urban Active Fault Zones. Journal of Jilin University (Earth Science Edition), 36(2): 295-297, 304(in Chinese with English abstract). Ma, J. H., Shi, J. D., 2004. Analysis on Geothermal Characteristics of Duncun Village in Xinzhou City. Huabei Natural Resources, (4): 7-10(in Chinese). Miao, Q. Z., Wang, G. L., Xing, L. X., et al., 2020. Study on Application of Deep Thermal Reservoir by Using Geophysical and Geochemical Methods in the Jizhong Depression Zone. Acta Geologica Sinica, 94(7): 2147-2156(in Chinese with English abstract). Pang, Z. H., 1988. Basic Characteristics and Genetic Analysis of Geothermal Field in Zhangzhou Basin. Advances in Earth Science, 3(3): 62-63(in Chinese). Ruckerbauer, F., Winkler, R., 2001. Radon Concentration in Soil Gas: A Comparison of Methods. Applied Radiation and Isotopes, 55(2): 273-280. https://doi.org/10.1016/S0969-8043(00)00389-4 Seyis, C., İnan, S., Yalçın, M. N., 2022. Major Factors Affecting Soil Radon Emanation. Natural Hazards, 114(2): 2139-2162. https://doi.org/10.1007/s11069-022-05464-y Shi, M., Kang, F. X., Yin, T., et al., 2022. Occurrence Mechanism of Convective Geothermal Systems in Jiaodong Peninsula, China. Frontiers in Earth Science, 10: 898414. https://doi.org/10.3389/feart.2022.898414 Shi, M., Kang, F. X., Zhang, J., et al., 2019. Occurrence Mechanism and Geothermal Exploration Model of Low-Medium Temperature Geothermal Systems of Convective Type in Jiaodong Peninsula. Geological Review, 65(5): 1276-1287(in Chinese with English abstract). Shweikani, R., Giaddui, T. G., Durrani, S. A., 1995. The Effect of Soil Parameters on the Radon Concentration Values in the Environment. Radiation Measurements, 25(1/2/3/4): 581-584. https://doi.org/10.1016/1350-4487(95)00188-K Singh, S., Kumar Sharma, D., Dhar, S., et al., 2006. Geological Significance of Soil Gas Radon: A Case Study of Nurpur Area, District Kangra, Himachal Pradesh, India. Radiation Measurements, 41(4): 482-485. https://doi.org/10.1016/j.radmeas.2005.10.009 Su, J. J., 2012. Determination of Soil Radon Concentration and Its Influencing Factors. Technology Innovation and Application, 2(29): 237(in Chinese). Sun, X. L., Yang, P. T., Xiang, Y., et al., 2018. Across-Fault Distributions of Radon Concentrations in Soil Gas for Different Tectonic Environments. Geosciences Journal, 22(2): 227-239. https://doi.org/10.1007/s12303-017-0028-2 Sundal, A. V., Valen, V., Soldal, O., et al., 2008. The Influence of Meteorological Parameters on Soil Radon Levels in Permeable Glacial Sediments. Science of the Total Environment, 389(2/3): 418-428. https://doi.org/10.1016/j.scitotenv.2007.09.001 Tian, J., Li, Y. M., Fan, Y. F., et al., 2023. Geochemical Characteristics and Circulation Conceptual Model of Geothermal Fluid in the Shenzao Coastal Hot Springs in Guangdong Province. Earth Science, 48(3): 894-907(in Chinese with English abstract). Walia, V., Su, T. C., Fu, C. C., et al., 2005. Spatial Variations of Radon and Helium Concentrations in Soil-Gas across the Shan-Chiao Fault, Northern Northern Taiwan. Radiation Measurements, 40(2-6): 513-516. https://doi.org/10.1016/j.radmeas.2005.04.011 Wang, G. L., Lin, W. J., 2020. Main Hydro-Geothermal Systems and Their Genetic Models in China. Acta Geologica Sinica, 94(7): 1923-1937(in Chinese with English abstract). Wang, J. X., 2014. Evaluation of Geothermal Resources in qicun, Xinzhou City (Dissertation). China University of Geosciences, Beijing(in Chinese with English abstract). Wang, J. Y., 1996. Medium-Low Temperature Convective Geothermal System. Earth Science Frontiers, 3(3): 97-99, 101-104(in Chinese with English abstract) Yang, F. T., Pang, Z. H., Wang, C. H., et al., 2012. Genesis Model of Laozishan Geothermal Field, Subei Basin. Journal of Jilin University (Earth Science Edition), 42(2): 468-475(in Chinese with English abstract) Zeng, M., Dong, H. G., Zhang, H. X., et al., 2012. Application Research of Soil Radon Measurement in Concealed Fault Detection of Middle Segment of Shawan Fault Zone. Journal of Seismological Research, 35(3): 347-352, 441(in Chinese with English abstract) Zhai, Z. W., Yang, H. M., Chang, T. Y., et al., 2019. Influencing Factors of Geothermal Resources Occurrence in Xinding Basin. China Science and Technology Information, (5): 95-96, 13, 98 (in Chinese with English abstract). Zhang, M. Z., Guo, Q. H., Liu, M. L., et al., 2023. Geochemical Characteristics and Formation Mechanisms of the Geothermal Waters in the Xinzhou Basin, Shanxi Province. Earth Science, 48(3): 973-987(in Chinese with English abstract) Zhang, S. M., Ren, J. J., Luo, M. H., et al., 2008. Stepwise Landforms and Quaternary Episodic Uplifts of Mountains around Xinding Basin. Seismology and Geology, 30(1): 187-201(in Chinese with English abstract) Zhang, W. X., Xiang, H. F., Li, R. C., 1995. Preliminary Study on Soil-Radon Distribution along the Xiadian Buried Fault. Northwestern Seismological Journal, (2): 46-50(in Chinese with English abstract) Zhang, Y., Luo, J., Feng, J. Y., 2020. Characteristics of Geothermal Reservoirs and Utilization of Geothermal Resources in the Southeastern Coastal Areas of China. Journal of Groundwater Science and Engineering, 8(2): 134-142. Zheng, T. T., Stefánsson, A., Kang, F. X., et al., 2023. Geochemical and Isotope Constraints on the Hydrogeology and Geochemistry of the Geothermal Waters in the Shandong Peninsula, China. Geothermics, 108: 102628. https://doi.org/10.1016/j.geothermics.2022.102628 邓安利, 孙和平, 2002. 山西省奇村地热田超采引起的热水动态变化. 地球科学, 27(2): 134-208. http://www.earth-science.net/article/id/1101 高洪雷, 胡志华, 万汉平, 等, 2023. 西藏谷露地热田地热地质特征. 地球科学, 48(3): 1014-1029. doi: 10.3799/dqkx.2022.150 高丽平, 2007. 忻州市大营地下热水资源及其开发利用. 今日湖北(理论版), 1(6): 4-5. 李杰彪, 周志超, 云龙, 等, 2022. 基于土壤氡气测量识别甘肃北山南缘隐伏断裂. 地质学报, 96(6): 2240-2250. 廖志杰, 2012. 福建无岩浆热源的深循环水热系统. 现代地质, 26(1): 85-98. 廖志杰, 赵平, 1999. 滇藏地热带: 地热资源和典型地热系统. 北京: 科学出版社. 刘菁华, 王祝文, 刘树田, 等, 2006. 城市活动断裂带的土壤氡、汞气评价方法. 吉林大学学报(地球科学版), 36(2): 295-297, 304. 马俊红, 史俊德, 2004. 忻州市顿村地热特征分析. 华北国土资源, (4): 7-10. 苗青壮, 王贵玲, 邢林啸, 等, 2020. 综合物化探方法在冀中坳陷深部热储探测中的应用. 地质学报, 94(7): 2147-2156. doi: 10.19762/j.cnki.dizhixuebao.2020225 庞忠和, 1988. 漳州盆地地热田基本特征及成因分析. 地球科学信息, 3(3): 62-63. 史猛, 康凤新, 张杰, 等, 2019. 胶东半岛中低温对流型地热资源赋存机理及找热模型. 地质论评, 65(5): 1276-1287. 苏家驹, 2012. 土壤氡浓度的测定及影响因素. 科技创新与应用, 2(29): 237. 天娇, 李义曼, 范翼帆, 等, 2023. 广东神灶海上温泉的流体地球化学特征及循环模式. 地球科学, 48(3): 894-907. doi: 10.3799/dqkx.2022.222 王贵玲, 蔺文静, 2020. 我国主要水热型地热系统形成机制与成因模式. 地质学报, 94(7): 1923-1937. 汪集旸, 1996. 中低温对流型地热系统. 地学前缘, 3(3): 97-99, 101-104. 王俊鑫, 2014. 忻州市奇村地热资源评价(硕士学位论文). 北京: 中国地质大学. 杨峰田, 庞忠和, 王彩会, 等, 2012. 苏北盆地老子山地热田成因模式. 吉林大学学报(地球科学版), 42(2): 468-475. 曾敏, 董好刚, 张宏鑫, 等, 2012. 土壤氡气测量在沙湾断裂带中段隐伏断裂探测中的应用研究. 地震研究, 35(3): 347-352, 441. doi: 10.3969/j.issn.1000-0666.2012.03.009 翟志伟, 杨红梅, 常天印, 等, 2019. 忻定盆地地热资源赋存的影响因素. 中国科技信息, (5): 95-96, 13, 98. 张梦昭, 郭清海, 刘明亮, 等, 2023. 山西忻州盆地地热水地球化学特征及其成因机制. 地球科学, 48(3): 973-987. doi: 10.3799/dqkx.2022.087 张世民, 任俊杰, 罗明辉, 等, 2008. 忻定盆地周缘山地的层状地貌与第四纪阶段性隆升. 地震地质, 30(1): 187-201. 张晚霞, 向宏发, 李如成, 1995. 夏垫隐伏断裂土壤气氡分布特征的初步研究. 西北地震学报, (2): 46-50. -
dqkxzx-50-4-1559-附表1.xlsx
-