• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    吐鲁番盆地地下水动态变化及其与地面沉降关系研究

    丁启振 周金龙 张红忠 黄静 孙英 白凡 涂治 李军

    丁启振, 周金龙, 张红忠, 黄静, 孙英, 白凡, 涂治, 李军, 2025. 吐鲁番盆地地下水动态变化及其与地面沉降关系研究. 地球科学, 50(2): 737-751. doi: 10.3799/dqkx.2023.212
    引用本文: 丁启振, 周金龙, 张红忠, 黄静, 孙英, 白凡, 涂治, 李军, 2025. 吐鲁番盆地地下水动态变化及其与地面沉降关系研究. 地球科学, 50(2): 737-751. doi: 10.3799/dqkx.2023.212
    Ding Qizhen, Zhou Jinlong, Zhang Hongzhong, Huang Jing, Sun Ying, Bai Fan, Tu Zhi, Li Jun, 2025. Study on Groundwater Dynamics and Its Relationship with Land Subsidence in Turpan Basin. Earth Science, 50(2): 737-751. doi: 10.3799/dqkx.2023.212
    Citation: Ding Qizhen, Zhou Jinlong, Zhang Hongzhong, Huang Jing, Sun Ying, Bai Fan, Tu Zhi, Li Jun, 2025. Study on Groundwater Dynamics and Its Relationship with Land Subsidence in Turpan Basin. Earth Science, 50(2): 737-751. doi: 10.3799/dqkx.2023.212

    吐鲁番盆地地下水动态变化及其与地面沉降关系研究

    doi: 10.3799/dqkx.2023.212
    基金项目: 

    国家科技基础资源调查专项“第三次新疆综合科学考察”项目“吐哈盆地水资源调查和承载力评估” 2021xjkk1000

    详细信息
      作者简介:

      丁启振(1998-), 男, 博士研究生, 主要研究方向为干旱区地下水水质演化. ORCID:0000-0003-4304-3628. E-mail:1650655141@qq.com

      通讯作者:

      周金龙,ORCID:0000-0001-5055-0252. E-mail: zjzhoujl@163.com

    • 中图分类号: P641.3

    Study on Groundwater Dynamics and Its Relationship with Land Subsidence in Turpan Basin

    • 摘要: 地面沉降的发生、发展已成为一种全球性的地质灾害.基于多年地下水位、水质和地面沉降监测数据,综合运用GIS技术、逻辑斯谛曲线模型、线性趋势分析和灰色关联分析等方法,从空间水平向-垂向-点的角度探究地下水位动态与地面沉降的关系,最后讨论了地面沉降对地下水水质的影响.研究区地下水动态类型包括开采型、水文-灌溉型和灌溉型,2019—2022年地下水位整体呈快速下降和缓慢下降趋势,年均速率范围为-0.97~-0.25 m·a-1. 截至2021年,南盆地高昌区东南方向大型地面沉降漏斗中心地面沉降量与沉降速率分别为-366 mm和-140 mm·a-1. 承压水位降落漏斗与地面沉降漏斗耦合度良好,深层承压水位与地面沉降量呈显著正相关(r=1.00),且在逻辑斯谛曲线模型中近似呈线性关系. 深层承压水监测井的地面沉降量与地下水SO42-含量显著正相关(r=0.95). 长期过度开采深层承压水用于农业灌溉,导致黏土压缩固结出现地面沉降漏斗,同时可能释放出部分SO42-进入深层承压含水层.

       

    • 图  1  吐鲁番盆地土地利用与地下水监测井分布(a)和水文地质图(b)与水文地质剖面图(c)

      c. 改自陈鲁(2014)

      Fig.  1.  Land use and groundwater monitoring wells distribution (a), hydrogeological map (b), hydrogeological profile (c) in the Turpan Basin

      图  2  典型监测井G110(a)、G219(b)、G227(c)、G105(d)、G228(e)、G226(f)地下水位年内、年际动态

      Fig.  2.  Intra-year and inter-year dynamics of groundwater level in typical monitoring wells G110(a)、G219(b)、G227(c)、G105(d)、G228(e)、G226(f)

      图  3  吐鲁番盆地单一结构潜水-承压水(a)、承压水区潜水(b)水位变幅分区与地下水动态类型

      Fig.  3.  Variation zone of groundwater level and groundwater dynamic type of single structure unconfined-confined groundwater(a), unconfined groundwater in confined area (b) in Turpan Basin

      图  4  吐鲁番盆地平原区2017—2021年地面累积沉降量(a)与平均沉降速率(b)分布

      Fig.  4.  Distribution of cumulative land subsidence (a) and the average land subsidence rate (b) from 2017 to 2021 in the plain area ofTurpan Basin

      图  5  重点沉降区地下水流场与沉降空间分布[潜水(a)、承压水(b)]

      Fig.  5.  Distribution of groundwater flow field and cumulative land subsidence in the key land subsidence area[unconfined groundwater (a) confined groundwater (b)]

      图  6  典型监测井地下水位与地面沉降时序变化图[G220(a)、G226(b)]

      Fig.  6.  Temporal changes of groundwater level and land subsidence in typical monitoring wells [G220(a), G226(b)]

      图  7  监测井G226深层承压水位与地面沉降相关关系[Logistic(a)、线性(b)]

      Fig.  7.  Correlation between deep confined groundwater level in G226 monitoring well and land subsidence [Logistic(a), linear (b)]

      图  8  地下水位、水化学组分含量和地面沉降量的相关性热图[G220(a)、G226(b)、G215(c)、G106(d)、G103(e)、G102(f)]

      Fig.  8.  Correlation heat map of groundwater level, hydrochemical components content and land subsidence[G220(a)、G226(b)、G215(c)、G106(d)、G103(e)、G102(f)]

      图  9  吐鲁番南盆地承压水中SO42-含量时序变化(a)、监测井G226的地面沉降量与SO42-的关系(b)、(Na++ K++Ca2+)-Cl-与SO42-关系(c)

      Fig.  9.  Time series changes of SO42- concentration in confined groundwater of South Turpan Basin(a), the relationship between land subsidence and groundwater SO42- concentration the G226 monitoring well(b), the relationship between(Na++ K++Ca2+)-Cl-and SO42-of groundwater(c)

      表  1  吐鲁番盆地监测井2019—2022年地下水位变幅

      Table  1.   Variation of groundwater level in monitoring wells in Turpan Basin from 2019 to 2022

      地下水类型 区域 井编号 井/眼 年上升/下降速率(m·a-1 年均上升/下降速率(m·a-1 地下水动态类型
      单一结构潜水 北盆地 G105、G108、G111、G212、G215、G227 6 -1.24~0.21 -0.25 缓慢下降
      南盆地 G204 1 -1.27 -1.27 快速下降
      承压水区潜水 北盆地 G110、G216、G219 3 -2.17~-0.17 -0.97 快速下降
      南盆地 G104、G107、G228 3 -0.66~0.005 -0.29 缓慢下降
      承压水 北盆地 G109 1 -1.05 -1.05 快速下降
      南盆地 G102、G103、G106、G220、G226 5 -1.80~-0.02 -0.77 快速下降
      下载: 导出CSV

      表  2  吐鲁番盆地典型监测井地下水位变幅与累计地面沉降量对照

      Table  2.   Comparison between variation of groundwater level and accumulated ground settlement in typical monitoring Wells in Turpan Basin

      监测井编号 井深(m) 花管位置(m) 层位 地下水位年上升/下降速率(m·a-1 地面累计沉降量(mm) 主要的可压缩层 地下水动态类型
      G102 100 52~94 浅层 -1.16 -24.98 黏土 快速下降
      G103 200 146~194 深层 -0.23 15.28 黏土 缓慢下降
      G106 306 143~283 深层 -0.02 -3.00 黏土 基本稳定
      G220 100 52~94 浅层 -0.65 -213.18 / 快速下降
      G226 300 234~294 深层 -1.16 -179.86 黏土 快速下降
      G204 200 99~144 单一结构潜水 -1.20 0.59 / 快速下降
      G227 200 152~194 单一结构潜水 0.16 10.22 / 缓慢上升
      G215 100 94~100 单一结构潜水 0.19 6.26 / 缓慢上升
      注:/表示无可压缩层.
      下载: 导出CSV

      表  3  地面沉降量、地下水位分别与地下水化学组分含量的灰色关联度(G226)

      Table  3.   Grey correlation degree between land subsidence, groundwater level and chemical components content of groundwater (G226)

      母序列 子序列 关联度 母序列 子序列 关联度
      地面沉降量S TH 0.71 地下水位H TH 0.72
      TDS 0.90 TDS 0.86
      SO42- 0.86 S 0.83
      H 0.78
      下载: 导出CSV
    • Bai, F., Zhou, J. L., Zeng, Y. Y., 2022. Hydrochemical Characteristics and Quality of Groundwater in the Plains of the Turpan Basin. Arid Zone Research, 39(2): 419-428 (in Chinese with English abstract).
      Cao, H. L., Li, W., Su, C. L., et al., 2022. Indication of Hydrochemistry and δ34S-SO42- on Sulfate Pollution of Groundwater in Daye Mining Area. Earth Science, 48(9): 3432-3443 (in Chinese with English abstract).
      Chen, L., 2014. The Study of Regional Hydrogeological Conditions and Groundwater Circulation in Turpan Basin (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      Chen, C. X., Pei, S. P., 2001. Study on Groundwater Exploitation and Land Subsidence Model. Hydrogeology & Engineering Geology, (2): 5-8(in Chinese with English abstract).
      Cigna, F., Tapete, D., 2021. Urban Growth and Land Subsidence: Multi-Decadal Investigation Usinghuman Settlement Data and Satellite InSAR in Morelia, Mexico. Science of the Total Environment, 811: 152211. https://doi.org/10.1016/j.scitotenv.2021.152211
      Cigna, F., Tapete, D., 2020. Present-Day Land Subsidence Rates, Surface Faulting Hazard and Risk in Mexico City with 2014-2020 Sentinel-1 IW InSAR-ScienceDirect. Remote Sensing of Environment, 253: 112161. https://doi.org/10.1016/j.rse.2020.112161
      Deng, J. L., 1987. Basic Methods of Grey System. Huazhong University of Science and Technology Press, Wuhan, 20-21(in Chinese with English abstract).
      Erban, L. E., Gorelick, S. M., Zebker, H. A., et al., 2013. Release of Arsenic to Deep Groundwater in the Mekong Delta, Vietnam, Linked to Pumping-Induced Land Subsidence. Proceedings of the National Academy of Sciences of the United States of America, 110(34): 13751-13756. https://doi.org/10.1073/pnas.1300503110
      Fu, C. C., Zhang, S., Zhang, W. J., et al., 2014. Hydrochemical Characteristics and Sources of Sulfate in Xijiteritary Confined Groundwater. Agricultural Research in the Arid Areas, 32(4): 187-193 (in Chinese with English abstract).
      Guo, Q. H., 2005. Groundwater System Evolution and Genesis of RelevantEnvironmental Problems: a Case Study at Taiyuan Basin, Shanxi Province, China(Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Hasan, M. F., Smith, R., Vajedian, S., et al., 2023. Global Land Subsidence Mapping Reveals Widespread Loss of Aquifer Storage Capacity. Nature Communications, 14(1): 6180. https://doi.org/10.1038/s41467-023-41933-z
      Herrera-García, G., Ezquerro, P., Tomás, R., et al., 2021. Mapping the Global Threat of Land Subsidence. Science, 371(6524): 34-36. https://doi.org/10.1126/science.abb8549
      Hu, W. R., Fan, L., Tian, X. L., et al., 2013. Application of Excel in Logistic Curve Fitting. Agriculture Network Information, (3): 14-16(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JSJN201303006.htm
      Jones, C. E., An, K., Blom, R. G., et al., 2016. Anthropogenic and Geologic Influences on Subsidence in the Vicinity of New Orleans, Louisiana. Journal of Geophysical Research: Solid Earth, 121, 3867-3887. https://doi.org/10.1002/2015JB012636
      Jin, M. G., 1991. The Forecast of Groundwater Regime in the Grey System. Earth Science, 16(1): 91-94, 78 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX199101011.htm
      Li, H., Tang, Z. F., Liu, C. F., et al., 2008. Comprehansive Exploitation and Research of Brine Resources in the Lop Nur Salt Lake, Xinjiang. Acta Geoscientica Sinica, 29(4): 517-524 (in Chinese with English abstract).
      Liu, Y, 2013. Spatiotemporal Evolution of Land Subsidence and Mechanism Discussion in the Yellow River Delta(Dissertation). Institute of Oceanology, Chinese Academy of Science, Qingdao(in Chinese with English abstract).
      Li, Y. L., 2017. The Integrated Governance Research of Groundwater Over-Exploitation Region in Turpan Basin (Dissertation). Xinjiang Agricultural University, Urumqi (in Chinese with English abstract).
      Liu, Y. J., Ma, T., Du, Y., et al., 2021. Compaction of Clay Aquitard: Principle, Technology and Hydrogeological Significance. Earth Science Frontiers, 25(5): 59-67(in Chinese with English abstract).
      Luo, Z. J., Wang, X., Dai, J., et al., 2023. Research on the Influence of Land Subsidence on the Minable Groundwater Resources. Earth Science, 49(1): 238-252 (in Chinese with English abstract).
      Pearl, R., Reed, L. J., 1920. On the Rate of Growth of the Population of the United States since 1790 and Its Mathematical Representation. Proceedings of the National Academy of Sciences of the United States of America, 6(6): 275-288. https://doi.org/10.1073/pnas.6.6.275
      Reed, L. J., Pearl, R., 1927. On the Summation of Logistic Curves. Journal of the Royal Statistical Society, 90(4): 729-746. https://doi.org/10.1111/j.2397-2335.1927.tb02016.x
      Ren, G. Y., Xu, M. Z., Chu, Z. Y., et al., 2005. Changes of Surface Air Temperature in China during 1951-2004. Climatic and Environmental Research, 10(4): 717-727(in Chinese with English abstract). http://www.oalib.com/paper/1699661
      Smith, R., Knight, R., Fendorf, S., 2018. Overpumping Leads to California Groundwater Arsenic Threat. Nature Communications, 9(1): 2089. https://doi.org/10.1038/s41467-018-04475-3
      Sun, X. H., 2012. The Relationship between Sand Creep Characteristic and Land Subsidence of Xi'an (Dissertation). Chang'an University, Xian (in Chinese with English abstract).
      Terzaghi, K., 1943. Theoretical Soil Mechanics. John Wiley and Sons, Inc, New York, 265-269.
      Wan, C. X., Liang, Z. Y., 1983. A Method Fitting the Logistic Curve. Acta Ecologica Sinica, 3(3): 288-296(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-STXB198303010.htm
      Wang, F., Miu, L. C., 2011. Study of Long-Term Deformation Characteristic of Sand Aquifers for Land Subsidence Caused by Groundwater Withdrawal. Chinese Journal of Rock Mechanics and Engineering, 30(S1): 3135-3140 (in Chinese with English abstract).
      Wang, Z. Y., Gao, Z. J., Wang, Z., et al., 2019. Variation Characteristics of Groundwater Level in the Middle Reaches of the Heihe River Basin. Water Resources and Power, 37(4): 140-143(in Chinese with English abstract).
      Wang, Y. D., Feng, G., Li, Z. W., et al., 2022. A Strategy for Variable-Scale InSAR Deformation Monitoring in a Wide Area: a Case Study in the Turpan-Hami Basin, China. Remote Sens, 14: 3832. https://doi.org/10.3390/rs14153832
      Wang, Y. X., Li, J. X., Ma, T., et al., 2020. Genesis of Geogenic Contaminated Groundwater: As, F and I. Critical Reviews in Environmental Science and Technology, 51(24): 2895-2933. https://doi.org/10.1080/10643389.2020.1807452
      Yang, Y., Zheng, F. D., Liu, L. C., et al., 2013. Study on the Correlation between Groundwater Level and Ground Subsidence in Beijing Plain Areas. Geotechnical Investigation & Surveying, 41(8): 44-48(in Chinese with English abstract).
      Ye, S. J., Xue, Y. Q., Wu, J. C., et al., 2016. Progression and Mitigation of Land Subsidence in China. Hydrogeology Journal, 24(3): 685-693. https://doi.org/10.1007/s10040-015-1356-9
      Zak, D., Hupfer, M., Cabezas, A., et al., 2020. Sulphate in Freshwater Ecosystems: a Review of Sources, Biogeochemical Cycles, Ecotoxicological Effects and Bioremediation. Earth-Science Reviews, 212: 103446. https://doi.org/10.1016/j.earscirev.2020.103446
      Zhang, Y., Xue, Y. Q., Wu, J. C., et al., 2009. Experimental Research on Creep of Shanghai Sands. Rock and Soil Mechanics, 30(5): 1226-1230(in Chinese with English abstract).
      Zhou, Z. Y., 2012. Mechanism Research of Land Subsidence Caused by Groundwater Extraction. Geotechnical Investigation & Surveying, 40(3): 22-26(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCKC201203006.htm
      白凡, 周金龙, 曾妍妍, 2022. 吐鲁番盆地平原区地下水水化学特征及水质评价. 干旱区研究, 39(2): 419-428.
      曹慧丽, 李伟, 苏春利, 等, 2023. 水化学及硫同位素对大冶矿区地下水硫酸盐污染的指示. 地球科学, 48(9): 3432-3443. doi: 10.3799/dqkx.2022.119
      陈崇希, 裴顺平, 2001. 地下水开采-地面沉降模型研究. 水文地质工程地质, (2): 5-8.
      陈鲁, 2014. 吐鲁番盆地区域水文地质条件及地下水循环研究(博士学位论文). 北京: 中国地质大学.
      邓聚龙, 1987. 灰色系统基本方法. 武汉: 华中理工大学出版社.
      付昌昌, 张晟, 张文静, 等, 2014. 西吉县第三系承压水中硫酸盐的水文地球化学特征及其来源. 干旱地区农业研究, 32(4): 187-193.
      郭清海, 2005. 山西太原盆地孔隙地下水系统演化与相关环境问题成因分析(博士学位论文). 武汉: 中国地质大学.
      胡文冉, 范玲, 田晓莉, 等, 2013. Excel在Logistic曲线拟合中的应用. 农业网络信息, (3): 14-16.
      靳孟贵, 1991. 地下水动态的灰色预测. 地球科学, 16(1): 91-94, 78.
      李浩, 唐中凡, 刘传福, 等, 2008. 新疆罗布泊盐湖卤水资源综合开发研究. 地球学报, 29(4): 517-524.
      李英连, 2017. 吐鲁番盆地地下水超采区综合治理研究(硕士学位论文). 乌鲁木齐: 新疆农业大学.
      刘妍君, 马腾, 杜尧, 等, 2021. 黏性土弱透水层压实作用: 原理、技术及其水文地质意义. 地学前缘, 28(5): 59-67.
      刘勇, 2013. 黄河三角洲地区地面沉降时空演化特征及机理研究(博士学位论文). 青岛: 中国科学院研究生院(海洋研究所).
      骆祖江, 王鑫, 代敬, 等, 2023. 地面沉降对地下水可采资源影响研究. 地球科学, 49(1): 238-252. doi: 10.3799/dqkx.2022.143
      任国玉, 徐铭志, 初子莹, 等, 2005. 近54年中国地面气温变化. 气候与环境研究, 10(4): 717-727.
      孙晓涵, 2012. 西安地面沉降与砂土蠕变关系初探(硕士学位论文). 西安: 长安大学.
      万昌秀, 梁中宇, 1983. 逻辑斯谛曲线的一种拟合方法. 生态学报, 3(3): 288-296.
      王非, 缪林昌. 2011. 抽水地面沉降中含水层长期变形特性研究. 岩石力学与工程学报, 30(S1): 3135-3140.
      王贞岩, 高宗军, 王姝, 等, 2019. 黑河流域中游地区地下水水位多年变化特征. 水电能源科学, 37(4): 140-143.
      杨勇, 郑凡东, 刘立才, 等, 2013. 北京平原区地下水水位与地面沉降关系研究. 工程勘察, 41(8): 44-48.
      张云, 薛禹群, 吴吉春, 等, 2009. 上海砂土蠕变变形特征的试验研究. 岩土力学, 30(5): 1226-1230, 1236.
      周载阳, 2012. 地下水开采引起地面沉降的机理研究. 工程勘察, 40(3): 22-26.
    • 加载中
    图(9) / 表(3)
    计量
    • 文章访问数:  189
    • HTML全文浏览量:  98
    • PDF下载量:  33
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-05-23
    • 网络出版日期:  2025-02-26
    • 刊出日期:  2025-02-25

    目录

      /

      返回文章
      返回