• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    大陆碰撞带深熔变质与花岗岩成因

    郑永飞 陈仁旭 高彭

    郑永飞, 陈仁旭, 高彭, 2024. 大陆碰撞带深熔变质与花岗岩成因. 地球科学, 49(1): 1-28. doi: 10.3799/dqkx.2023.215
    引用本文: 郑永飞, 陈仁旭, 高彭, 2024. 大陆碰撞带深熔变质与花岗岩成因. 地球科学, 49(1): 1-28. doi: 10.3799/dqkx.2023.215
    Zheng Yongfei, Chen Renxu, Gao Peng, 2024. Anatectic Metamorphism and Granite Petrogenesis in Continental Collision Zones. Earth Science, 49(1): 1-28. doi: 10.3799/dqkx.2023.215
    Citation: Zheng Yongfei, Chen Renxu, Gao Peng, 2024. Anatectic Metamorphism and Granite Petrogenesis in Continental Collision Zones. Earth Science, 49(1): 1-28. doi: 10.3799/dqkx.2023.215

    大陆碰撞带深熔变质与花岗岩成因

    doi: 10.3799/dqkx.2023.215
    基金项目: 

    国家自然科学基金项目 92155306

    详细信息
      作者简介:

      郑永飞(1959-),男,教授,博士生导师,中国科学院院士,主要从事汇聚板块边缘化学地球动力学研究.ORCID:0000-0003-0332-4871. E-mail:yfzheng@ustc.edu.cn

    • 中图分类号: P542

    Anatectic Metamorphism and Granite Petrogenesis in Continental Collision Zones

    • 摘要: 大陆碰撞带是地壳岩石发生深熔变质和花岗岩浆作用的重要场所,也是超大陆发生聚合和裂解过程的关键位置.对深熔变质作用的理解有助于揭示地壳分异过程和花岗岩成因等诸多问题,同时对威尔逊旋回过程中超大陆动力学的理解有重要启示.在大陆碰撞过程的不同阶段,其动力体制会从挤压变成拉张,地温梯度会由低变高,从而形成时空分布不同、矿物组合各异的变质岩和岩浆岩.在大陆碰撞和俯冲的挤压阶段,变质温压比值较低,只有硬碰撞引起的地壳加厚产生的高压麻粒岩相变质作用以及深俯冲导致的超高压变质作用,不会发生深熔变质作用.在大陆深俯冲结束之际,板块界面动力体制由挤压变为拉张,受到超高压变质的地壳会以岩片状沿俯冲隧道发生逆冲折返.在大陆碰撞后阶段,一旦碰撞带岩石圈地幔发生减薄,软流圈地幔上涌导致主动张裂,上覆地壳就会在高的地温梯度下发生巴肯型深熔变质作用,从而形成大量的花岗岩.因此,地壳深熔变质和花岗质岩浆的发育程度与岩石圈厚度的变化密切相关.虽然幔源镁铁质岩浆结晶分异作用是大洋俯冲带之上花岗岩形成的常见方式,但是地壳部分熔融才是大陆碰撞带花岗岩浆作用的典型方式.地壳岩石性质是形成不同类型花岗岩的关键,Ⅰ型和S型花岗岩分别主要来自于变火成岩和变沉积岩的部分熔融,而A型花岗岩则起源于堆晶或残留体的部分熔融.脱水熔融和水化熔融是产生花岗岩浆的两种基本物理化学机制,二者可在同一区域内发生,构成脱水‒水化耦合的部分熔融机制.大陆碰撞带作为古板块缝合带,也是构造薄弱带,易于发育大陆主动张裂,这是在碰撞后阶段深部陆壳脱水‒水化耦合熔融直至浅部陆壳部分熔融的主要构造机制,结果形成花岗岩‒混合岩‒麻粒岩高温岩石组合.一般来说,超大陆聚合阶段与碰撞挤压背景下的变质作用相关,而超大陆裂解与主动张裂拉张体制下的变质作用相关.虽然大陆张裂未必都能成功,但是其中夭折张裂在业已汇聚板块边缘最为常见.因此,夭折大陆张裂与陆内深熔变质作用和花岗岩浆作用之间的关系最为密切,这也是正确认识超大陆聚合之后到裂解之前陆内地质过程与构造演化之间关系的关键.

       

    • 图  1  大陆碰撞带软碰撞(浅俯冲)形成增生楔示意图(修改自Zheng et al., 2005)

      Fig.  1.  Schematic diagram showing the formation of accretionary wedge during continental soft collision (shallow subduction)

      图  2  汇聚大陆边缘两类挤压构造示意图(修改自郑永飞等, 2022)

      大陆板块俯冲之前首先是大洋板块俯冲,然后或者是大陆地壳硬碰撞加厚(图a)、或者是大陆地壳深俯冲到岩石圈地幔深度(图b)

      Fig.  2.  Schematic diagrams showing the two types of compressional tectonics at converging continental margins

      图  3  喜马拉雅造山带岩相构造单元分布示意图(修改自Zhang et al., 2012)

      岩石构造单元缩写:SG.Siwalik沉积建造;LHS.小喜马拉雅低级变质岩;GHS.大喜马拉雅高级变质岩‒淡色花岗岩;THS.特提斯喜马拉雅增生楔;YZS.雅鲁藏布缝合带;GD.片麻岩穹窿.断层缩写:STD.藏南拆离断层;MCT.主中逆冲断层;MFT.主前锋逆冲断层;MBT.主边界逆冲断层;GCT.大中逆冲断层

      Fig.  3.  Schematic diagram showing the occurrence of lithotectonic units in the Himalayan orogen

      图  4  大别造山带岩相构造单元分布示意图(修改自Zheng et al., 2019)

      Fig.  4.  Schematic diagram showing the occurrence of lithotectonic units in the Dabie orogen

      图  5  汇聚板块边缘变质相系与地温梯度关系图解(修改自Zheng and Chen, 2021)

      图中矿物反应或矿物相变才是标志变质相系的边界:阿尔卑斯型与巴罗型变质相系之间以钠长石分解形成硬玉和石英为界(Zheng and Chen,2017),巴罗型与巴肯型变质相系之间以铝硅酸盐同质多像转变为界(Zheng and Chen,2021Pattison and Goldsmith,2022).矿物缩写:Ab. 钠长石;And. 红柱石;Coe. 柯石英;Jd. 硬玉;Ky. 蓝晶石;Sil. 夕线石;Qz. 石英

      Fig.  5.  The thermodynamic relationship between metamorphic facies series and geothermal gradients at convergent plate margins

      图  6  大陆碰撞带地壳变质P-T轨迹示意图(底图修改自Zheng and Chen, 2021)

      图中矿物缩写:Ab. 钠长石;And. 红柱石;Coe. 柯石英;Jd. 硬玉;Ky. 蓝晶石;Sil. 夕线石;Qz. 石英

      Fig.  6.  Schematic diagram showing the metamorphic P-T paths of crustal rocks in continental collision zones

      图  7  大陆碰撞带超高压地体三类变质P-T轨迹(修改自Faryad and Cuthbert, 2020)

      a.降温降压,对应于超高压岩片沿俯冲隧道快速折返;b.等温降压,对应于超高压岩片沿俯冲隧道缓慢折返;c.降压加热,对应于超高压地体以穹窿式抬升.矿物名称缩写:Coe.柯石英,Dia.金刚石,Gra.石墨,Qz.石英.图中字母缩写表示不同名称的大陆碰撞带:DS.中国中东部的大别‒苏鲁造山带,KM.哈萨克斯坦的Kokchetav地体,SM1.土耳其中部的Sivrihisar地体,WD、WS.西阿尔卑斯的Dora Maira地体和Sesia带;AT.中国西北的阿尔金带,D1.中国中东部的中大别带,EG.波希米亚地体的Erzgebirge,NQ.中国西部的柴北缘,PL.西阿尔卑斯的Piemonte Ligurian,WM.西阿尔卑斯的Monviso带;D2.中国中东部的北大别带,LD.中阿尔卑斯的Lepontin穹窿,ME.波希米亚地体的Moldanubian榴辉岩带,MG.波希米亚地体的Moldanubian麻粒岩带,NG.新几内亚,SM2.土耳其中部的Sivrihisar地体,WG.挪威西片麻岩省

      Fig.  7.  Three types of metamorphic P-T paths for ultrahigh-pressure terranes in continental collision zones

      图  8  汇聚板块边缘双变质带形成机制和P-T轨迹卡通图(修改自Zheng and Chen, 2021)

      a.板片汇聚期间大洋或大陆岩石圈的冷俯冲产生较低T/P变质带和顺时针P-T轨迹;b.板片汇聚之后减薄造山带岩石圈的热张裂作用产生较高T/P变质带和顺时针或逆时针P-T轨迹

      Fig.  8.  Schematic cartoons for the formation mechanism and P-T path of paired metamorphic belts at convergent plate margins

      图  9  大陆碰撞带两阶段构造演化模式图(引自Zheng and Gao, 2021)

      a.早期阶段:大陆俯冲导致挤压体制和地壳加厚,此时俯冲板片与地幔楔保持耦合,地壳变质作用发生在低热梯度下;b.晚期阶段:俯冲板片回卷导致俯冲板片与地幔楔之间解耦,深俯冲地壳折返甚至减压熔融,此时处于高热梯度和伸展条件

      Fig.  9.  Schematic diagrams for the two-stage tectonic evolution of continental collision zones

      图  10  岩石圈厚度对变质脱水和地壳深熔的影响(引自Zheng and Gao, 2021)

      a.碰撞造山作用导致造山带岩石圈被加厚;b.造山带岩石圈地幔减薄,软流圈地幔上涌,导致主动型张裂作用,加厚地壳发生大规模部分熔融,形成花岗岩‒混合岩‒麻粒岩组合;c.加厚地壳经剥蚀作用而减薄,恢复至正常厚度,大陆岩石圈进入成熟阶段

      Fig.  10.  The effect of lithospheric thickness on metamorphic dehydration and crustal anatexis

      图  11  大陆碰撞带岩石圈加厚与减薄导致大陆主动张裂(修改自Zheng and Chen, 2021)

      a.大陆岩石圈碰撞挤压加厚引起地壳发生巴罗型变质作用;b.加厚岩石圈地幔减薄伸展引起地壳发生巴肯型变质作用

      Fig.  11.  Schematic diagrams showing the thickening and thinning of the lithosphere and their effect on continental active rifting along continental collision zones

      图  12  花岗岩成因上的两种物理化学机制示意图(修改自Moyen et al., 2021)

      a.幔源镁铁质岩浆结晶分异形成长英质岩浆;b.地壳部分熔融产生长英质岩浆

      Fig.  12.  Schematic diagrams showing two types of physical mechanisms for the origin of granites

      图  13  汇聚板块边缘花岗岩I-S-A分类与源区性质关系示意图

      Fig.  13.  The relationship in granite petrogenesis between I-S-A classification and source nature

      图  14  澳大利亚拉克兰造山带古生代花岗岩Sr-Nd同位素组成关系(修改自Zheng and Gao, 2021)

      Fig.  14.  The Sr-Nd isotope compositions of Paleozoic granites from the Lachlan orogen in Australia

      图  15  汇聚板块边缘花岗岩成因中的两组分混合关系示意图

      缩写AFC代表同化分异结晶;MASH代表同化‒混合‒储存‒均一化

      Fig.  15.  Two-component mixing in petrogenesis of granites at convergent plate margins

      图  16  地壳深熔作用产生的花岗岩中不同种类锆石的成因(引自Zheng and Gao, 2021)

      图中内部和外部轨迹分别代表固相线之下和固相线之上的锆石行为

      Fig.  16.  Origin of different types of zircon in granites produced by crustal anatexis

      图  17  地壳在主动型张裂作用条件下因软流圈地幔上涌加热导致的脱水和水化熔融模式图(引自Zheng and Gao,2021

      图中脱水熔融发生的外部热量来源于因大陆碰撞带岩石圈去根作用所引起的软流圈地幔上涌,而水化熔融是由下伏地壳受热脱水产生的外来流体所诱发

      Fig.  17.  Schematic diagram showing the coupled dehydration and hydration melting of the crust during active rifting consequential to asthenospheric heating

      图  18  威尔逊旋回构造演化示意图(修改自Zheng and Chen, 2021)

      Fig.  18.  Schematic diagrams showing the tectonic evolution in a Wilson cycle

      图  19  超大陆裂解的两类地球动力学构造机制示意图(修改自Zheng and Chen, 2021)

      Fig.  19.  Schematic diagrams showing the two types of geodynamic mechanism for supercontinent breakup

    • Allégre, C. J., Courtillot, V., Tapponnier, P., et al., 1984. Structure and Evolution of the Himalaya-Tibet Orogenic Belt. Nature, 307(5946): 17-22. https://doi.org/10.1038/307017a0
      Ashworth, J. R., Brown, M., 1990. High-Temperature Metamorphism and Crustal Anatexis. Kluwer Academic Publishers, Dordrecht, 407.
      Ballato, P., Uba, C. E., Landgraf, A., et al., 2011. Arabia-Eurasia Continental Collision: Insights from Late Tertiary Foreland-Basin Evolution in the Alborz Mountains, Northern Iran. Geological Society of America Bulletin, 123(1-2): 106-131. https://doi.org/10.1130/b30091.1
      Bartoli, O., 2021. Granite Geochemistry is not Diagnostic of the Role of Water in the Source. Earth and Planetary Science Letters, 564: 116927. https://doi.org/10.1016/j.epsl.2021.116927
      Beaumont, C., Ellis, S., Hamilton, J., et al., 1996. Mechanical Model for Subduction-Collision Tectonics of Alpine-Type Compressional Orogens. Geology, 24(8): 675-678. https://doi.org/10.1130/0091-7613
      Bonin, B., 2007. A-Type Granites and Related Rocks: Evolution of a Concept, Problems and Prospects. Lithos, 97(1-2): 1-29. https://doi.org/10.1016/j.lithos.2006.12.007
      Brown, G. C., Fyfe, W. S., 1970. The Production of Granitic Melts during Ultrametamorphism. Contributions to Mineralogy and Petrology, 28(4): 310-318. https://doi.org/10.1007/BF00388953
      Brown, M., 1993. P-T-t Evolution of Orogenic Belts and the Causes of Regional Metamorphism. Journal of the Geological Society, 150(2): 227-241. https://doi.org/10.1144/gsjgs.150.2.0227
      Brown, M., 2006. Duality of Thermal Regimes is the Distinctive Characteristic of Plate Tectonics since the Neoarchean. Geology, 34(11): 961-964. https://doi.org/10.1130/g22853a.1
      Brown, M., 2007. Metamorphic Conditions in Orogenic Belts: A Record of Secular Change. International Geology Review, 49(3): 193-234. https://doi.org/10.2747/0020-6814.49.3.193
      Brown, M., 2010. Paired Metamorphic Belts Revisited. Gondwana Research, 18(1): 46-59. https://doi.org/10.1016/j.gr.2009.11.004
      Brown, M., 2013. Granite: From Genesis to Emplacement. Geological Society of America Bulletin, 125(7-8): 1079-1113. https://doi.org/10.1130/b30877.1
      Brown, M., 2014. The Contribution of Metamorphic Petrology to Understanding Lithosphere Evolution and Geodynamics. Geoscience Frontiers, 5(4): 553-569. https://doi.org/10.1016/j.gsf.2014.02.005
      Brown, M., Johnson, T., 2018. Secular Change in Metamorphism and the Onset of Global Plate Tectonics. American Mineralogist, 103(2): 181-196. https://doi.org/10.2138/am-2018-6166
      Brown, M., Johnson, T., 2019. Metamorphism and the Evolution of Subduction on Earth. American Mineralogist, 104(8): 1065-1082. https://doi.org/10.2138/am-2019-6956
      Burov, E., Francois, T., Agard, P., et al., 2014. Rheological and Geodynamic Controls on the Mechanisms of Subduction and HP/UHP Exhumation of Crustal Rocks during Continental Collision: Insights from Numerical Models. Tectonophysics, 631: 212-250. https://doi.org/10.1016/j.tecto.2014.04.033
      Cawood, P. A., Buchan, C., 2007. Linking Accretionary Orogenesis with Supercontinent Assembly. Earth-Science Reviews, 82(3-4): 217-256. https://doi.org/10.1016/j.earscirev.2007.03.003
      Cawood, P. A., Kröner, A., Collins, W. J., et al., 2009. Accretionary Orogens through Earth History. Geological Society, London, Special Publications, 318(1): 1-36. https://doi.org/10.1144/sp318.1
      Cawood, P. A., Strachan, R. A., Pisarevsky, S. A., et al., 2016. Linking Collisional and Accretionary Orogens during Rodinia Assembly and Breakup: Implications for Models of Supercontinent Cycles. Earth and Planetary Science Letters, 449: 118-126. https://doi.org/10.1016/j.epsl.2016.05.049
      Chappell, B. W., White, A. J. R., 1974. Two Contrasting Granite Types. Pacific Geology, 7: 173-174.
      Chappell, B. W., White, A. J. R., 1992. I- and S-Type Granites in the Lachlan Fold Belt. Transactions of the Royal Society of Edinburgh: Earth Sciences, 83(1-2): 1-26. doi: 10.1017/S0263593300007720
      Chappell, B. W., White, A. J. R., 2001. Two Contrasting Granite Types: 25 Years Later. Australian Journal of Earth Sciences, 48(4): 489-499. https://doi.org/10.1046/j.1440-0952.2001.00882.x
      Clark, C., Fitzsimons, I. C. W., Healy, D., et al., 2011. How does the Continental Crust Get Really Hot? Elements, 7(4): 235-240. https://doi.org/10.2113/gselements.7.4.235
      Chen, R. X., Zheng, Y. F., Xie, L. W., 2010. Metamorphic Growth and Recrystallization of Zircon: Distinction by Simultaneous In-Situ Analyses of Trace Elements, U-Th-Pb and Lu-Hf Isotopes in Zircons from Eclogite-Facies Rocks in the Sulu Orogen. Lithos, 114(1-2): 132-154. https://doi.org/10.1016/j.lithos.2009.08.006
      Chen, R. X., Zheng, Y. F., 2017. Metamorphic Zirconology of Continental Subduction Zones. Journal of Asian Earth Sciences, 145: 149-176. https://doi.org/10.1016/j.jseaes.2017.04.029
      Clemens, J. D., 2012. Granitic Magmatism, from Source to Emplacement: A Personal View. Applied Earth Science, 121(3): 107-136. https://doi.org/10.1179/1743275813y.0000000023
      Clemens, J. D., Stevens, G., 2012. What Controls Chemical Variation in Granitic Magmas? Lithos, 134-135: 317-329. https://doi.org/10.1016/j.lithos.2012.01.001
      Clemens, J. D., Stevens, G., Bryan, S. E., 2020. Conditions during the Formation of Granitic Magmas by Crustal Melting-Hot or Cold; Drenched, Damp or Dry? Earth-Science Reviews, 200: 102982. https://doi.org/10.1016/j.earscirev.2019.102982
      Collins, W. J., Huang, H. Q., Bowden, P., et al., 2020. Repeated S-I-A-Type Granite Trilogy in the Lachlan Orogen and Geochemical Contrasts with A-Type Granites in Nigeria: Implications for Petrogenesis and Tectonic Discrimination. Geological Society, London, Special Publications, 491(1): 53-76. https://doi.org/10.1144/sp491-2018-159
      Condie, K. C., 1998. Episodic Continental Growth and Supercontinents: A Mantle Avalanche Connection? Earth and Planetary Science Letters, 163(1-4): 97-108. https://doi.org/10.1016/S0012-821X(98)00178-2
      Condie, K. C., Pisarevsky, S. A., Puetz, S. J., et al., 2023. A-Type Granites in Space and Time: Relationship to the Supercontinent Cycle and Mantle Events. Earth and Planetary Science Letters, 610: 118125. https://doi.org/10.1016/j.epsl.2023.118125
      Creaser, R. A., Price, R. C., Wormald, R. J., 1991. A-Type Granites Revisited: Assessment of a Residual-Source Model. Geology, 19(2): 163-166. https://doi.org/10.1130/0091-7613
      Dahlen, F. A., Suppe, J., Davis, D., 1984. Mechanics of Fold-and-Thrust Belts and Accretionary Wedges: Cohesive Coulomb Theory. Journal of Geophysical Research: Solid Earth, 89(B12): 10087-10101. https://doi.org/10.1029/jb089ib12p10087
      Davis, D., Suppe, J., Dahlen, F. A., 1983. Mechanics of Fold-and-Thrust Belts and Accretionary Wedges. Journal of Geophysical Research: Solid Earth, 88(B2): 1153-1172. https://doi.org/10.1029/jb088ib02p01153
      De Graciansky, P. C., Roberts, D. G., Tricart, P., 2011. The Birth of the Western and Central Alps: Subduction, Obduction, Collision. In: De Graciansky, P. C., Tricart, P., Tricart, P., eds., The Western Alps, from Rift to Passive Margin to Orogenic Belt. Developments in Earth Surface Processes, 14: 289-315. https://doi.org/10.1016/S0928-2025(11)14014-6
      Dewey, J. F., Bird, J. M., 1970. Mountain Belts and the New Global Tectonics. Journal of Geophysical Research, 75(14): 2625-2647. https://doi.org/10.1029/jb075i014p02625
      Dewey, J. F., Horsfield, B., 1970. Plate Tectonics, Orogeny and Continental Growth. Nature, 225(5232): 521-525. https://doi.org/10.1038/225521a0
      Eby, G. N., 1992. Chemical Subdivision of the A-Type Granitoids: Petrogenetic and Tectonic Implications. Geology, 20(7): 641-644. https://doi.org/10.1130/0091-7613
      England, P. C., Thompson, A. B., 1984. Pressure-Temperature-Time Paths of Regional Metamorphism I. Heat Transfer during the Evolution of Regions of Thickened Continental Crust. Journal of Petrology, 25(4): 894-928. https://doi.org/10.1093/petrology/25.4.894
      England, P. C., Thompson, A. B., 1986. Some Thermal and Tectonic Models for Crustal Melting in Continental Collision Zones. Geological Society, London, Special Publications, 19(1): 83-94. https://doi.org/10.1144/gsl.sp.1986.019.01.05
      Faryad, S. W., Cuthbert, S. J., 2020. High-Temperature Overprint in (U)HPM Rocks Exhumed from Subduction Zones: A Product of Isothermal Decompression or a Consequence of Slab Break-Off (Slab Rollback)? Earth-Science Reviews, 202: 103108. https://doi.org/10.1016/j.earscirev.2020.103108
      Frost, B. R., Barnes, C. G., Collins, W. J., et al., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11): 2033-2048. https://doi.org/10.1093/petrology/42.11.2033
      Frost, C. D., Frost, B. R., 2011. On Ferroan (A-Type) Granitoids: Their Compositional Variability and Modes of Origin. Journal of Petrology, 52(1): 39-53. https://doi.org/10.1093/petrology/egq070
      Gao, P., Zheng, Y. F., Zhao, Z. F., 2016. Experimental Melts from Crustal Rocks: A Lithochemical Constraint on Granite Petrogenesis. Lithos, 266-267: 133-157. https://doi.org/10.1016/j.lithos.2016.10.005
      Green, D. H., 1977. Introduction to the Symposium Experimental Petrology Related to Extreme Metamorphism. Tectonophysics, 43(1-2): 1-5. https://doi.org/10.1016/0040-1951(77)90002-6
      Guo, J., Zheng, Y. F., Zhao, Z. F., et al., 2022. Generation of Aluminous A-Type Granite by Partial Melting of Felsic Restite: Evidence from Mesozoic Granitoids in the Southern Margin of the North China Craton. Lithos, 428-429: 106837. https://doi.org/10.1016/j.lithos.2022.106837
      Harley, S. L., 2021. UHT Metamorphism. Encyclopedia of Geology, 2: 522-552. https://doi.org/10.1016/b978-0-12-409548-9.12543-6
      Hawkesworth, C. J., Dhuime, B., Pietranik, A. B., et al., 2010. The Generation and Evolution of the Continental Crust. Journal of the Geological Society, 167(2): 229-248. https://doi.org/10.1144/0016-76492009-072
      Holmquist, P. J., 1916. Swedish Archaean Structures and Their Meaning. Bulletin of the Geological Institute Upsala, 15: 125-148.
      Jaquet, Y., Duretz, T., Grujic, D., et al., 2018. Formation of Orogenic Wedges and Crustal Shear Zones by Thermal Softening, Associated Topographic Evolution and Application to Natural Orogens. Tectonophysics, 746: 512-529. https://doi.org/10.1016/j.tecto.2017.07.021
      Ji, M., Gao, X. Y., Zheng, Y. F., 2023. The Petrogenetic Relationship between Migmatite and Granite in the Himalayan Orogen: Petrological and Geochemical Constraints. Lithos, 444-445: 107110. https://doi.org/10.1016/j.lithos.2023.107110
      Ji, M., Gao, X. Y., Zheng, Y. F., et al., 2024a. Geochemical Variations of Anatectic Melts in Response to Changes of P-T-H2O Conditions: Implication for the Relationship between Dehydration and Hydration Melting in the Himalayan Orogen. Chemical Geology, 643: 121815. https://doi.org/10.1016/j.chemgeo.2023.121815
      Ji, M., Gao, X. Y., Xia, Q. X., et al., 2024b. Secular Change of Metamorphic Features in the Himalayan Orogen during the Cenozoic and Its Tectonic Implications. Earth-Science Reviews, 248: 104640. https://doi.org/10.1016/j.earscirev.2023.104640
      Jiang, N., Zhang, S. Q., Zhou, W. G., et al., 2009. Origin of a Mesozoic Granite with A-Type Characteristics from the North China Craton: Highly Fractionated from I-Type Magmas? Contributions to Mineralogy and Petrology, 158(1): 113-130. https://doi.org/10.1007/s00410-008-0373-2
      Jiao, S. J., Brown, M., Mitchell, R. N., et al., 2023. Mechanisms to Generate Ultrahigh-Temperature Metamorphism. Nature Reviews Earth & Environment, 4(5): 298-318. https://doi.org/10.1038/s43017-023-00403-2
      Karig, D. E., Sharman, G. F., 1975. Subduction and Accretion in Trenches. Geological Society of America Bulletin, 86(3): 377-389. https://doi.org/10.1130/0016-7606
      Kelsey, D. E., Hand, M., 2015. On Ultrahigh Temperature Crustal Metamorphism: Phase Equilibria, Trace Element Thermometry, Bulk Composition, Heat Sources, Timescales and Tectonic Settings. Geoscience Frontiers, 6(3): 311-356. https://doi.org/10.1016/j.gsf.2014.09.006
      Kemp, A. I. S., Hawkesworth, C. J., Foster, G. L., et al., 2007. Magmatic and Crustal Differentiation History of Granitic Rocks from Hf-O Isotopes in Zircon. Science, 315(5814): 980-983. https://doi.org/10.1126/science.1136154
      Kemp, A. I. S., Hawkesworth, C. J., Paterson, B. A., et al., 2006. Episodic Growth of the Gondwana Supercontinent from Hafnium and Oxygen Isotopes in Zircon. Nature, 439(7076): 580-583. https://doi.org/10.1038/nature04505
      Keppie, D. F., 2015. How the Closure of Paleo-Tethys and Tethys Oceans Controlled the Early Breakup of Pangaea. Geology, 43(4): 335-338. https://doi.org/10.1130/g36268.1
      Keppie, D. F., 2016. How Subduction Broke up Pangaea with Implications for the Supercontinent Cycle. Geological Society, London, Special Publications, 424(1): 265-288. https://doi.org/10.1144/sp424.8
      King, P. L., Chappell, B. W., Allen, C. M., et al., 2001. Are A-Type Granites the High-Temperature Felsic Granites? Evidence from Fractionated Granites of the Wangrah Suite. Australian Journal of Earth Sciences, 48(4): 501-514. https://doi.org/10.1046/j.1440-0952.2001.00881.x
      King, P. L., White, A. J. R., Chappell, B. W., et al., 1997. Characterization and Origin of Aluminous A-Type Granites from the Lachlan Fold Belt, Southeastern Australia. Journal of Petrology, 38(3): 371-391. https://doi.org/10.1093/petroj/38.3.371
      Kranck, E. H., 1954. Deep Structures and Ultrametamorphism. Transactions of the New York Academy of Sciences, 16(5): 234-241. https://doi.org/10.1111/j.2164-0947.1954.tb00376.x
      Laurent, O., Martin, H., Moyen, J. F., et al., 2014. The Diversity and Evolution of Late-Archean Granitoids: Evidence for the Onset of "Modern-Style" Plate Tectonics between 3.0 and 2.5 Ga. Lithos, 205: 208-235. https://doi.org/10.1016/j.lithos.2014.06.012
      Leonardos, O. H., Fyfe, W. S., 1974. Ultrametamorphism and Melting of a Continental Margin: The Rio de Janeiro Region, Brazil. Contributions to Mineralogy and Petrology, 46(3): 201-214. https://doi.org/10.1007/BF00487556
      Li, H., Ling, M. X., Ding, X., et al., 2014. The Geochemical Characteristics of Haiyang A-Type Granite Complex in Shandong, Eastern China. Lithos, 200-201: 142-156. https://doi.org/10.1016/j.lithos.2014.04.014
      Li, H., Myint, A. Z., Yonezu, K., et al., 2018. Geochemistry and U-Pb Geochronology of the Wagone and Hermyingyi A-Type Granites, Southern Myanmar: Implications for Tectonic Setting, Magma Evolution and Sn-W Mineralization. Ore Geology Reviews, 95: 575-592. https://doi.org/10.1016/j.oregeorev.2018.03.015
      Loiselle, M. C., Wones, D. R., 1979. Characteristics and Origin of Anorogenic Granites. Geological Society of America Abstracts with Programs, 11: 468-468.
      Luo, X., Xia, Q. X., Zheng, Y. F., et al., 2022. An Experimental Study of Partial Melting of Metafelsic Rocks: Constraints on the Feature of Anatectic Melts and the Origin of Garnets in Collisional Orogens. Journal of Earth Science, 33(3): 753-769. https://doi.org/10.1007/s12583-021-1547-3
      Malavieille, J., 2010. Impact of Erosion, Sedimentation, and Structural Heritage on the Structure and Kinematics of Orogenic Wedges: Analog Models and Case Studies. GSA Today, 20(1): 4-10. https://doi.org/10.1130/gsatg48a.1
      Mehnert, K. R., 1968. Migmatites and the Origin of Granitic Rocks. Elsevier, Amsterdam, 393.
      Miyashiro, A., 1961. Evolution of Metamorphic Belts. Journal of Petrology, 2(3): 277-311. https://doi.org/10.1093/petrology/2.3.277
      Miyashiro, A., 1973. Paired and Unpaired Metamorphic Belts. Tectonophysics, 17(3): 241-254. https://doi.org/10.1016/0040-1951(73)90005-X
      Moyen, J. F., Janoušek, V., Laurent, O., et al., 2021. Crustal Melting vs. Fractionation of Basaltic Magmas: Part 1, Granites and Paradigms. Lithos, 402-403: 106291. https://doi.org/10.1016/j.lithos.2021.106291
      Osanai, Y., Owada, M., Kawasaki, T., 1992. Tertiary Deep Crustal Ultrametamorphism in the Hidaka Metamorphic Belt, Northern Japan. Journal of Metamorphic Geology, 10: 401-414. doi: 10.1111/j.1525-1314.1992.tb00092.x
      Patiño Douce, A. E., 1997. Generation of Metaluminous A-Type Granites by Low-Pressure Melting of Calc-Alkaline Granitoids. Geology, 25(8): 743-746. https://doi.org/10.1130/0091-7613
      Patiño Douce, A. E., Johnston, A. D., 1991. Phase Equilibria and Melt Productivity in the Pelitic System: Implications for the Origin of Peraluminous Granitoids and Aluminous Granulites. Contributions to Mineralogy and Petrology, 107(2): 202-218. https://doi.org/10.1007/BF00310707
      Pattison, D. R. M., Goldsmith, S. A., 2022. Metamorphism of the Buchan Type-Area, NE Scotland and Its Relation to the Adjacent Barrovian Domain. Journal of the Geological Society, 179: jgs2021-040. https://doi.org/10.1144/jgs2021-040
      Pearce, J. A., Harris, N. B. W., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. https://doi.org/10.1093/petrology/25.4.956
      Platt, J. P., 1986. Dynamics of Orogenic Wedges and the Uplift of High-Pressure Metamorphic Rocks. Geological Society of America Bulletin, 97(9): 1037-1053. https://doi.org/10.1130/0016-7606
      Ramberg, II., 1952. The Origin of Metamorphic and Metasomatic Rocks. The University of Chicago Press, Chicago.
      Ryan, P. D., Dewey, J. F., 2019. The Sources of Metamorphic Heat during Collisional Orogeny: The Barrovian Enigma. Canadian Journal of Earth Sciences, 56(12): 1309-1317. https://doi.org/10.1139/cjes-2018-0182
      Sawyer, E. W., 2010. Migmatites Formed by Water-Fluxed Partial Melting of a Leucogranodiorite Protolith: Microstructures in the Residual Rocks and Source of the Fluid. Lithos, 116(3-4): 273-286. https://doi.org/10.1016/j.lithos.2009.07.003
      Sawyer, E. W., Brown, M., 2008. Working with Migmatites. Mineralogical Association of Canada Short Course Series, 38: 1-158.
      Sawyer, E. W., Cesare, B., Brown, M., 2011. When the Continental Crust Melts. Elements, 7(4): 229-234. https://doi.org/10.2113/gselements.7.4.229
      Sederholm, J. J., 1907. On Granite and Gneiss, Their Origin, Relations and Occurrence in the Precambrian Complex of Fenno-Scandia. Bulletin de la Commission Géologique de la Finlande, 23: 1-110.
      Simon, M., Pitra, P., Yamato, P., et al., 2023. Isothermal Compression of an Eclogite from the Western Gneiss Region (Norway). Journal of Metamorphic Geology, 41(1): 181-203. https://doi.org/10.1111/jmg.12692
      Sizova, E., Gerya, T., Brown, M., 2014. Contrasting Styles of Phanerozoic and Precambrian Continental Collision. Gondwana Research, 25(2): 522-545. https://doi.org/10.1016/j.gr.2012.12.011
      Soret, M., Larson, K. P., Cottle, J., et al., 2021. How Himalayan Collision Stems from Subduction. Geology, 49(8): 894-898. https://doi.org/10.1130/g48803.1
      Storey, B. C., 1995. The Role of Mantle Plumes in Continental Breakup: Case Histories from Gondwanaland. Nature, 377: 301-308. doi: 10.1038/377301a0
      Tang, Y. W., Chen, L., Zhao, Z. F., et al., 2020. Geochemical Evidence for the Production of Granitoids through Reworking of the Juvenile Mafic Arc Crust in the Gangdese Orogen, Southern Tibet. GSA Bulletin, 132(7-8): 1347-1364. https://doi.org/10.1130/b35304.1
      Tarbuck, E. J., Lutgens, F. K., 1994. Earth Science. Macmillan College Publishing Company, New York, 659.
      Tavani, S., Granado, P., Corradetti, A., et al., 2021. Rift Inheritance Controls the Switch from Thin-to Thick-Skinned Thrusting and Basal Décollement Re-Localization at the Subduction-to-Collision Transition. Geological Society of America Bulletin, 133(9-10): 2157-2170. https://doi.org/10.1130/b35800.1
      Thompson, A. B., England, P. C., 1984. Pressure-Temperature-Time Paths of Regional Metamorphism Ⅱ. Their Inference and Interpretation Using Mineral Assemblages in Metamorphic Rocks. Journal of Petrology, 25(4): 929-955. https://doi.org/10.1093/petrology/25.4.929
      Van Staal, C., Zagorevski, A., 2020. Accretion, Soft and Hard Collision: Similarities, Differences and an Application from the Newfoundland Appalachian Orogen. Geoscience Canada, 47(3): 103-118. https://doi.org/10.12789/geocanj.2020.47.161
      Vielzeuf, D., Vidal, Ph., 1990. Granulites and Crustal Evolution. Kluwer Academic Publishers, Dordrecht, 585.
      Viete, D. R., Oliver, G. J. H., Fraser, G. L., et al., 2013. Timing and Heat Sources for the Barrovian Metamorphism, Scotland. Lithos, 177: 148-163. https://doi.org/10.1016/j.lithos.2013.06.009
      Weinberg, R. F., Hasalová, P., 2015. Water-Fluxed Melting of the Continental Crust: A Review. Lithos, 212-215: 158-188. https://doi.org/10.1016/j.lithos.2014.08.021
      Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/BF00402202
      White, A. J. R., Chappell, B. W., 1977. Ultrametamorphism and Granitoid Genesis. Tectonophysics, 43(1-2): 7-22. https://doi.org/10.1016/0040-1951(77)90003-8
      Willett, S., Beaumont, C., Fullsack, P., 1993. Mechanical Model for the Tectonics of Doubly Vergent Compressional Orogens. Geology, 21(4): 371-374. https://doi.org/10.1130/0091-7613
      Wu, F. Y., Li, X. H., Yang, J. H., et al., 2007. Discussions on the Petrogenesis of Granites. Acta Petrologica Sinica, 23(6): 1217-1238 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0569.2007.06.001
      Wu, F. Y., Liu, X. C., Ji, W. Q., et al., 2017. Highly Fractionated Granites: Recognition and Research. Scientia Sinica Terrae, 47(7): 745-765 (in Chinese). doi: 10.1360/N072016-00139
      Wu, F. Y., Sun, D. Y., Li, H. M., et al., 2002. A-Type Granites in Northeastern China: Age and Geochemical Constraints on Their Petrogenesis. Chemical Geology, 187(1-2): 143-173. https://doi.org/10.1016/S0009-2541(02)00018-9
      Wu, R. X., Zheng, Y. F., Wu, Y. B., et al., 2006. Reworking of Juvenile Crust: Element and Isotope Evidence from Neoproterozoic Granodiorite in South China. Precambrian Research, 146(3-4): 179-212. https://doi.org/10.1016/j.precamres.2006.01.012
      Wyllie, P. J., 1977. Crustal Anatexis— An Experimental Review. Tectonophysics, 43(1-2): 41-71. https://doi.org/10.1016/0040-1951(77)90005-1
      Xia, Q. X., Yu, M., Zhu, E. L., et al., 2023a. Two Generations of Crustal Anatexis in Association with Two-Stage Exhumation of Ultrahigh-Pressure Metamorphic Rocks in the Dabie Orogen. Lithos, 446-447: 107146. https://doi.org/10.1016/j.lithos.2023.107146
      Xia, M., Zhang, Q. Q., Gao, X. Y., 2023b. Thermal Structure of the Paleo-Continental Subduction Zone: Insights from Quantitatively Constrained Prograde P-T Paths of Exhumed LT/UHP Eclogites in the Dabie Orogen. Geochemistry, Geophysics, Geosystems, 24(5): e2022GC010852. https://doi.org/10.1029/2022gc010852
      Xia, Q. X., Zheng, Y. F., Yuan, H. L., et al., 2009. Contrasting Lu-Hf and U-Th-Pb Isotope Systematics between Metamorphic Growth and Recrystallization of Zircon from Eclogite-Facies Metagranites in the Dabie Orogen, China. Lithos, 112(3-4): 477-496. https://doi.org/10.1016/j.lithos.2009.04.015
      Yan, Q. S., Shi, X. F., 2014. Geochemistry and Petrogenesis of the Cretaceous A-Type Granites in the Laoshan Granitic Complex, Eastern China. Island Arc, 23(3): 221-235. https://doi.org/10.1111/iar.12070
      Yang, G., Chen, R. X., Zheng, Y. F., et al., 2023. Multiple Episodes of Zircon Growth during Anatectic Metamorphism of Metasedimentary Rocks in Collisional Orogens: Constraints from Felsic Granulites in the Bohemian Massif. Journal of Earth Science, 34(3): 609-639. https://doi.org/10.1007/s12583-021-1487-y
      Yang, J. H., Wu, F. Y., Chung, S. L., et al., 2006. A Hybrid Origin for the Qianshan A-Type Granite, Northeast China: Geochemical and Sr-Nd-Hf Isotopic Evidence. Lithos, 89(1-2): 89-106. https://doi.org/10.1016/j.lithos.2005.10.002
      Yin, A., 2006. Cenozoic Tectonic Evolution of the Himalayan Orogen as Constrained by Along-Strike Variation of Structural Geometry, Exhumation History, and Foreland Sedimentation. Earth-Science Reviews, 76(1-2): 1-131. https://doi.org/10.1016/j.earscirev.2005.05.004
      You, Z. D., 2014. Metamorphism under Extreme Conditions: Categories and Criteria. Earth Science Frontiers, 21(1): 32-39 (in Chinese with English abstract).
      Zen, E. A., 1988. Thermal Modelling of Stepwise Anatexis in a Thrust-Thickened Sialic Crust. Transaction of the Royal Society of Edinburgh: Earth Sciences, 79: 223-235. doi: 10.1017/S0263593300014231
      Zhang, J. J., Santosh, M., Wang, X. X., et al., 2012. Tectonics of the Northern Himalaya since the India-Asia Collision. Gondwana Research, 21(4): 939-960. https://doi.org/10.1016/j.gr.2011.11.004
      Zhang, L. F., 2007. Extreme Metamorphism: The Frontier of Metamorphic Geology. Earth Science Frontiers, 14(1): 33-42 (in Chinese with English abstract).
      Zhang, Q. Q., Gao, X. Y., Chen, R. X., et al., 2023. Metamorphic Evolution of the East Tethys Tectonic Domain and Its Tectonic Implications. Scientia Sinica Terrae, 53(12): 2723-2749 (in Chinese). doi: 10.1360/SSTe-2023-0206
      Zhao, Z. F., Liu, Z. B., Chen, Q., 2017. Melting of Subducted Continental Crust: Geochemical Evidence from Mesozoic Granitoids in the Dabie-Sulu Orogenic Belt, East-Central China. Journal of Asian Earth Sciences, 145: 260-277. https://doi.org/10.1016/j.jseaes.2017.03.038
      Zheng, Y. F., 2021. Exhumation of Ultrahigh-Pressure Metamorphic Terranes. Encyclopedia of Geology. Elsevier, Amsterdam, 868-878. https://doi.org/10.1016/b978-0-08-102908-4.00016-3
      Zheng, Y. F., 2022. Does the Mantle Contribute to Granite Petrogenesis? Journal of Earth Science, 33(5): 1320. https://doi.org/10.1007/s12583-022-1747-5
      Zheng, Y. F., 2022. Earth system Science of Convergent Plate Margins. Science Press, Beijing (in Chinese).
      Zheng, Y. F., 2023. Plate Tectonics in the 21st Century. Scientia Sinica Terrae, 53(1): 1-40 (in Chinese). doi: 10.1360/SSTe-2022-0229
      Zheng, Y. F., 2024. The Archean Geology and Plate Tectonics: Observation versus Interpretation. Scientia Sinica Terrae, 54(1): 1-30 (in Chinese). doi: 10.1360/SSTe-2023-0186
      Zheng, Y. F., Chen, R. X., 2017. Regional Metamorphism at Extreme Conditions: Implications for Orogeny at Convergent Plate Margins. Journal of Asian Earth Sciences, 145: 46-73. https://doi.org/10.1016/j.jseaes.2017.03.009
      Zheng, Y. F., Chen, R. X., 2021. Extreme Metamorphism and Metamorphic Facies Series at Convergent Plate Boundaries: Implications for Supercontinent Dynamics. Geosphere, 17(6): 1647-1685. https://doi.org/10.1130/ges02334.1
      Zheng, Y. F., Chen, R. X., Xu, Z., et al., 2016. The Transport of Water in Subduction Zones. Scientia Sinica Terrae, 46(3): 253-286 (in Chinese). doi: 10.1360/N072015-00493
      Zheng, Y. F., Chen, R. X., Zhao, Z. F., 2009. Chemical Geodynamics of Continental Subduction-Zone Metamorphism: Insights from Studies of the Chinese Continental Scientific Drilling (CCSD) Core Samples. Tectonophysics, 475(2): 327-358. https://doi.org/10.1016/j.tecto.2008.09.014
      Zheng, Y. F., Chen, Y. X., 2016. Continental versus Oceanic Subduction Zones. National Science Review, 3(4): 495-519. https://doi.org/10.1093/nsr/nww049
      Zheng, Y. F., Chen, Y. X., Chen, R. X., et al., 2022. Tectonic Evolution of Convergent Plate Margins and Its Geological Effect. Scientia Sinica Terrae, 52(7): 1213-1242 (in Chinese). doi: 10.1360/SSTe-2022-0076
      Zheng, Y. F., Chen, Y. X., Dai, L. Q., et al., 2015. Developing Plate Tectonic Theory: From Oceanic Subduction Zones to Collisional Orogenic Belts. Scientia Sinica Terrae, 45(6): 711-735 (in Chinese). doi: 10.1360/zd-2015-45-6-711
      Zheng, Y. F., Gao, P., 2021. The Production of Granitic Magmas through Crustal Anatexis at Convergent Plate Boundaries. Lithos, 402-403: 106232. https://doi.org/10.1016/j.lithos.2021.106232
      Zheng, Y. F., Miller, C. F., Xu, X. S., et al., 2021. Introduction to the Origin of Granites and Related Rocks. Lithos, 402-403: 106380. https://doi.org/10.1016/j.lithos.2021.106380
      Zheng, Y. F., Wu, R. X., Wu, Y. B., et al., 2008. Rift Melting of Juvenile Arc-Derived Crust: Geochemical Evidence from Neoproterozoic Volcanic and Granitic Rocks in the Jiangnan Orogen, South China. Precambrian Research, 163(3-4): 351-383. https://doi.org/10.1016/j.precamres.2008.01.004
      Zheng, Y. F., Wu, Y. B., Chen, F. K., et al., 2004. Zircon U-Pb and Oxygen Isotope Evidence for a Large-Scale 18O Depletion Event in Igneous Rocks during the Neoproterozoic. Geochimica et Cosmochimica Acta, 68(20): 4145-4165. https://doi.org/10.1016/j.gca.2004.01.007
      Zheng, Y. F., Ye, K., Zhang, L. F., 2009. Developing the Plate Tectonics: From Oceanic Subduction to Continental Collision. Chinese Science Bulletin, 54(13): 1799-1803 (in Chinese). doi: 10.1360/csb2009-54-13-1799
      Zheng, Y. F., Zhang, S. B., Zhao, Z. F., et al., 2007. Contrasting Zircon Hf and O Isotopes in the Two Episodes of Neoproterozoic Granitoids in South China: Implications for Growth and Reworking of Continental Crust. Lithos, 96(1-2): 127-150. https://doi.org/10.1016/j.lithos.2006.10.003
      Zheng, Y. F., Zhao, G. C., 2020. Two Styles of Plate Tectonics in Earth's History. Science Bulletin, 65(4): 329-334. https://doi.org/10.1016/j.scib.2018.12.029
      Zheng, Y. F., Zhao, Z. F., Chen, R. X., 2019. Ultrahigh-Pressure Metamorphic Rocks in the Dabie-Sulu Orogenic Belt: Compositional Inheritance and Metamorphic Modification. Geological Society, London, Special Publications, 474(1): 89-132. https://doi.org/10.1144/sp474.9
      Zheng, Y. F., Zhao, Z. F., Chen, Y. X., 2013. Continental Subduction Channel Process: Plate Interface Interaction during Continental Collision. Chinese Science Bulletin, 58(23): 2233-2239 (in Chinese). doi: 10.1360/csb2013-58-23-2233
      Zheng, Y. F., Zhou, J. B., Wu, Y. B., et al., 2005. Low-Grade Metamorphic Rocks in the Dabie-Sulu Orogenic Belt: A Passive-Margin Accretionary Wedge Deformed during Continent Subduction. International Geology Review, 47(8): 851-871. https://doi.org/10.2747/0020-6814.47.8.851
      吴福元, 李献华, 杨进辉, 等, 2007. 花岗岩成因研究的若干问题. 岩石学报, 23(6): 1217-1238. doi: 10.3969/j.issn.1000-0569.2007.06.001
      吴福元, 刘小驰, 纪伟强, 等, 2017. 高分异花岗岩的识别与研究. 中国科学: 地球科学, 47(7): 745-765.
      游振东, 2014. 极端条件下的变质作用: 范畴与标志. 地学前缘, 21(1): 32-39.
      张立飞, 2007. 极端条件下的变质作用——变质地质学研究的前沿. 地学前缘, 14(1): 33-42.
      张强强, 高晓英, 陈仁旭, 等, 2023. 东特提斯构造域变质演化及其构造启示. 中国科学: 地球科学, 53(12): 2723-2749.
      郑永飞, 2022. 汇聚板块边缘地球系统科学. 北京: 科学出版社.
      郑永飞, 2023.21世纪板块构造. 中国科学: 地球科学, 53(1): 1-40.
      郑永飞, 2024. 太古宙地质与板块构造: 观察与解释. 中国科学: 地球科学, 54(1): 1-30.
      郑永飞, 陈仁旭, 徐峥, 等, 2016. 俯冲带中的水迁移. 中国科学: 地球科学, 46(3): 253-286.
      郑永飞, 陈伊翔, 陈仁旭, 等, 2022. 汇聚板块边缘构造演化及其地质效应. 中国科学: 地球科学, 52(7): 1213-1242.
      郑永飞, 陈伊翔, 戴立群, 等, 2015. 发展板块构造理论: 从洋壳俯冲带到碰撞造山带. 中国科学: 地球科学, 45(6): 711-735.
      郑永飞, 叶凯, 张立飞, 2009. 发展板块构造: 从洋壳俯冲到大陆碰撞. 科学通报, 54(13): 1799-1803.
      郑永飞, 赵子福, 陈伊翔, 2013. 大陆俯冲隧道过程: 大陆碰撞过程中的板块界面相互作用. 科学通报, 58(23): 2233-2239.
    • 加载中
    图(19)
    计量
    • 文章访问数:  846
    • HTML全文浏览量:  116541
    • PDF下载量:  294
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-11-14
    • 网络出版日期:  2024-01-24
    • 刊出日期:  2024-01-25

    目录

      /

      返回文章
      返回