• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    两株不同硫氧化菌对砷黄铁矿中砷迁移转化的影响

    张静 寇祝 卿纯 李平

    张静, 寇祝, 卿纯, 李平, 2025. 两株不同硫氧化菌对砷黄铁矿中砷迁移转化的影响. 地球科学, 50(5): 2023-2031. doi: 10.3799/dqkx.2023.219
    引用本文: 张静, 寇祝, 卿纯, 李平, 2025. 两株不同硫氧化菌对砷黄铁矿中砷迁移转化的影响. 地球科学, 50(5): 2023-2031. doi: 10.3799/dqkx.2023.219
    Zhang Jing, Kou Zhu, Qing Chun, Li Ping, 2025. Effects of Two Different Strains of Sulfur Oxidizing Bacteria on Arsenic Migration and Transformation in Arsenopyrite. Earth Science, 50(5): 2023-2031. doi: 10.3799/dqkx.2023.219
    Citation: Zhang Jing, Kou Zhu, Qing Chun, Li Ping, 2025. Effects of Two Different Strains of Sulfur Oxidizing Bacteria on Arsenic Migration and Transformation in Arsenopyrite. Earth Science, 50(5): 2023-2031. doi: 10.3799/dqkx.2023.219

    两株不同硫氧化菌对砷黄铁矿中砷迁移转化的影响

    doi: 10.3799/dqkx.2023.219
    基金项目: 

    国家自然科学基金项目 41772260

    详细信息
      作者简介:

      张静(1999—),女,硕士研究生,主要从事环境微生物研究. ORCID:0009-0006-0008-5130. E-mail:2359440997@qq.com

      通讯作者:

      李平, E-mail: pli@cug.edu.cn

    • 中图分类号: P66

    Effects of Two Different Strains of Sulfur Oxidizing Bacteria on Arsenic Migration and Transformation in Arsenopyrite

    • 摘要: 生物硫氧化作用对热泉环境砷的迁移转化有显著影响.然而,不同类型的硫氧化微生物对砷转化的影响尚不完全清楚.本研究对比分析了硫代硫酸盐氧化型细菌Anoxybacillus flavithermus DB-1和单质硫氧化型古菌Sulfolobus tengchong RT8-4对热泉典型含硫砷矿物‒砷黄铁矿的作用.结果表明,在50 ℃、pH值为7.0~8.0的条件下,菌株A. flavithermus DB-1能在2天内将初始浓度为0.1 mmol/L的As(Ⅲ)氧化60%,但不能氧化单质硫.菌株S. tengchong RT8-4在pH值为3.0、温度为75 ℃的条件下,能在8天内将初始浓度为0.1 mmol/L的Fe(Ⅱ)氧化54.3%,但不能氧化硫离子和砷.A. flavithermus DB-1与砷黄铁矿共培养促进了砷和硫的释放,最终释放到溶液中的砷浓度为1.8 mmol/L,SO42-浓度为10.4 mmol/L,且无次级矿物生成.而S. tengchong RT8-4与砷黄铁矿共培养时释放出12.8 mmol/L的砷、87.7 mmol/L的SO42-以及8.5 mmol/L的Fe(Ⅲ),同时生成黄铁矾(Jarosite)、斜黄铁矾(Yavapaiite)、砷酸铁(Scorodite)等次级矿物.这些结果表明不同类型的硫氧化菌能促进含硫砷矿物的转化并促进砷的迁移/释放,但机理不同.本研究促进了我们对热泉中硫砷生物地球化学的认识.

       

    • 图  1  菌株A. flavithermus DB-1和菌株S. tengchong RT8-4的硫/砷/铁氧化功能分析

      图a和b分别为菌株A. flavithermus DB-1硫氧化功能和砷氧化功能验证,图c、d和e分别为菌株S. tengchong RT8-4的硫氧化功能、铁氧化功能和砷氧化功能验证

      Fig.  1.  Analysis of S/As/Fe oxidation with the strains A. flavithermus DB-1 and S. tengchong RT8-4

      图  2  菌株A. flavithermus DB-1作用于砷黄铁矿过程中As的浓度和菌量(a)、pH值和SO42-浓度(b)的变化

      Fig.  2.  As concentrations and biomass (a), pH and SO42- concentration variations (b) with strain A. flavithermus DB-1 and arsenopyrite

      图  3  菌株S. tengchong RT8-4作用于砷黄铁矿过程中As浓度和菌量(a)、pH值和SO42-浓度(b)以及Fe浓度(c)的变化

      Fig.  3.  Arsenic concentrations and biamass (a), pH and SO42- concentration (b), and Fe concentration (c) with strain S. tengchong RT8-4 and arsenopyrite

      图  4  菌株A. flavithermus DB-1与砷黄铁矿反应后矿物的扫描电镜(SEM)照片及矿物种类分析的X射线衍射图(XRD)

      a.反应前;b.第24天反应产物;c.第36天反应产物;d.空白组第36天;e.XRD

      Fig.  4.  The SEM micrographs of minerals and XRD diffraction patterns of mineral species with strain A. flavithermus DB-1 and arsenopyrite

      图  5  菌株S. tengchong RT8-4与砷黄铁矿反应后矿物的扫描电镜(SEM)照片及矿物种类分析的X射线衍射图(XRD)

      a.反应前原料物;b.实验组第8天反应产物;c.实验组第24天反应产物;d.空白组第24天;e. XRD

      Fig.  5.  The SEM micrographs of minerals and XRD diffraction patterns of mineral species with strain S. tengchong RT8-4 and arsenopyrite

    • Abbas, S. Z., Riaz, M., Ramzan, N., et al., 2015. Isolation and Characterization of Arsenic Resistant Bacteria from Wastewater. Brazilian Journal of Microbiology, 45(4): 1309-1315. https://doi.org/10.1590/s1517-83822014000400022
      Amenabar, M. J., Boyd, E. S., 2018. Mechanisms of Mineral Substrate Acquisition in a Thermoacidophile. Applied and Environmental Microbiology, 84(12): e00334-18. https://doi.org/10.1128/AEM.00334-18
      Baba, A., Uzelli, T., Sozbilir, H., 2021. Distribution of Geothermal Arsenic in Relation to Geothermal Play Types: A Global Review and Case Study from the Anatolian Plate (Turkey). Journal of Hazardous Materials, 414: 125510. https://doi.org/10.1016/j.jhazmat.2021.125510
      Boughanemi, S., Infossi, P., Giudici-Orticoni, M. T., et al., 2020. Sulfite Oxidation by the Quinone-Reducing Molybdenum Sulfite Dehydrogenase SoeABC from the Bacterium Aquifex Aeolicus. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1861(11): 148279. https://doi.org/10.1016/j.bbabio.2020.148279
      Brock, T. D., Brock, K. M., Belly, R. T., et al., 1972. Sulfolobus: A New Genus of Sulfur-Oxidizing Bacteria Living at Low pH and High Temperature. Archiv fur Mikrobiologie, 84(1): 54-68. https://doi.org/10.1007/BF00408082
      Bundschuh, J., Maity, J. P., 2015. Geothermal Arsenic: Occurrence, Mobility and Environmental Implications. Renewable and Sustainable Energy Reviews, 42: 1214-1222. https://doi.org/10.1016/j.rser.2014.10.092
      Castelán-Sánchez, H. G., Meza-Rodríguez, P. M., Carrillo, E., et al., 2020. The Microbial Composition in Circumneutral Thermal Springs from Chignahuapan, Puebla, Mexico Reveals the Presence of Particular Sulfur-Oxidizing Bacterial and Viral Communities. Microorganisms, 8(11): 1677. https://doi.org/10.3390/microorganisms8111677
      Chen, J. S., Hussain, B., Tsai, H. C., et al., 2023. Analysis and Interpretation of Hot Springs Water, Biofilms, and Sediment Bacterial Community Profiling and Their Metabolic Potential in the Area of Taiwan Geothermal Ecosystem. Science of the Total Environment, 856(1) : 159115. https://doi.org/10.1016/j.scitotenv.2022.159115
      Chen, M. J., Zhang, Z. F., Hu, X. J., et al., 2022. Oxidation Mechanism of Arsenopyrite under Alkaline Conditions: Experimental and Theoretical Analyses. Journal of Cleaner Production, 358: 131987. https://doi.org/10.1016/j.jclepro.2022.131987
      Dahl, C., 2015. Cytoplasmic Sulfur Trafficking in Sulfur-Oxidizing Prokaryotes. IUBMB Life, 67(4): 268-274. https://doi.org/10.1002/iub.1371
      Descostes, M., Vitorge, P., Beaucaire, C., 2004. Pyrite Dissolution in Acidic Media. Geochimica et Cosmochimica Acta, 68(22): 4559-4569. https://doi.org/10.1016/j.gca.2004.04.012
      Dou, L., Zhang, M. Y., Pan, L. Q., et al., 2022. Sulfide Removal Characteristics, Pathways and Potential Application of a Novel Chemolithotrophic Sulfide-Oxidizing Strain, Marinobacter sp. SDSWS8. Environmental Research, 212: 113176. https://doi.org/10.1016/j.envres.2022.113176
      Edwards, K. J., Hu, B., Hamers, R. J., et al., 2001. A New Look at Microbial Leaching Patterns on Sulfide Minerals. FEMS Microbiology Ecology, 34(3): 197-206. https://doi.org/10.1016/S0168-6496(00)00094-5
      Furukawa, T., Ueda, A., 2021. Tamagawa Hyper-Acidic Hot Spring and Phreatic Eruptions at Mt. Akita-Yakeyama: Part 1. The Isotopic and Chemical Characteristics of the Hot Spring Water. Journal of Volcanology and Geothermal Research, 412: 107179. https://doi.org/10.1016/j.jvolgeores.2021.107179
      Guo, L., Wang, G. C., Sheng, Y. Z., et al., 2021. Hydrogeochemical Constraints Shape Hot Spring Microbial Community Compositions: Evidence from Acidic, Moderate Temperature Springs and Alkaline, High Temperature Springs, Southwestern Yunnan Geothermal Areas, China. Journal of Geophysical Research (Biogeosciences), 126(3): e2020JG005868. https://doi.org/10.1029/2020JG005868
      Guo, Q. H., Planer-Friedrich, B., Liu, M. L., et al., 2017. Arsenic and Thioarsenic Species in the Hot Springs of the Rehai Magmatic Geothermal System, Tengchong Volcanic Region, China. Chemical Geology, 453: 12-20. https://doi.org/10.1016/j.chemgeo.2017.02.010
      Jiang, Z., Li, P., Wang, Y. H., et al., 2014. Vertical Distribution of Bacterial Populations Associated with Arsenic Mobilization in Aquifer Sediments from the Hetao Plain, Inner Mongolia. Environmental Earth Sciences, 71(1): 311-318. https://doi.org/10.1007/s12665-013-2435-7
      Kawano, M., Tomita, K., 2001. Geochemical Modeling of Bacterially Induced Mineralization of Schwertmannite and Jarosite in Sulfuric Acid Spring Water. American Mineralogist, 86(10): 1156-1165. https://doi.org/10.2138/am-2001-1005
      Keller, N. S., Stefánsson, A., Sigfússon, B., 2014. Arsenic Speciation in Natural Sulfidic Geothermal Waters. Geochimica et Cosmochimica Acta, 142: 15-26. https://doi.org/10.1016/j.gca.2014.08.007
      Kessler, D., 2006. Enzymatic Activation of Sulfur for Incorporation into Biomolecules in Prokaryotes. FEMS Microbiology Reviews, 30(6): 825-840. https://doi.org/10.1111/j.1574-6976.2006.00036.x
      Klauber, C., 2008. A Critical Review of the Surface Chemistry of Acidic Ferric Sulphate Dissolution of Chalcopyrite with Regards to Hindered Dissolution. International Journal of Mineral Processing, 86(1-4): 1-17. https://doi.org/10.1016/j.minpro.2007.09.003
      Kumarathilaka, P., Seneweera, S., Meharg, A., et al., 2018. Arsenic Speciation Dynamics in Paddy Rice Soil-Water Environment: Sources, Physico-Chemical, and Biological Factors: A Review. Water Research, 140: 403-414. https://doi.org/10.1016/j.watres.2018.04.034
      Li, J. W., Peng, X. T., Zhang, L. X., et al., 2016. Linking Microbial Community Structure to S, N and Fe Biogeochemical Cycling in the Hot Springs at the Tengchong Geothermal Fields, Southwest China. Geomicrobiology Journal, 33(2): 135-150. https://doi.org/10.1080/01490451.2015.1043165
      Luo, J. F., Tian, G. L., Lin, W. T., 2013. Enrichment, Isolation and Identification of Sulfur-Oxidizing Bacteria from Sulfide Removing Bioreactor. Journal of Environmental Sciences, 25(7): 1393-1399. https://doi.org/10.1016/S1001-0742(12)60179-X
      Merkel, A. Y., Pimenov, N. V., Rusanov, I. I., et al., 2017. Microbial Diversity and Autotrophic Activity in Kamchatka Hot Springs. Extremophiles, 21(2): 307-317. https://doi.org/10.1007/s00792-016-0903-1
      Nagar, S., Talwar, C., Motelica-Heino, M., et al., 2022. Microbial Ecology of Sulfur Biogeochemical Cycling at a Mesothermal Hot Spring Atop Northern Himalayas, India. Frontiers in Microbiology, 13: 848010. https://doi.org/10.3389/fmicb.2022.848010
      Nordstrom, D. K., Ball, J. W., McCleskey, R. B., 2005. Ground Water to Surface Water: Chemistry of Thermal Outflows in Yellowstone National Park. In: Inskeep, W. P., McDermott, T. R., eds., Geothermal Biology and Geochemistry in Yellowstone National Park. Montana State University Publications, Bozeman, 73-94.
      Oremland, R. S., Stolz, J. F., 2003. The Ecology of Arsenic. Science, 300(5621): 939-944. https://doi.org/10.1126/science.1081903
      Pascua, C., Sato, T., Golla, G., 2010. Mineralogical and Geochemical Constraints on Arsenic Mobility in a Philippine Geothermal Field. Acta Geologica Sinica, 80(2): 330-335. https://doi.org/10.1111/j.1755-6724.2006.tb00250.x
      Qing, C., Nicol, A., Li, P., et al., 2023. Different Sulfide to Arsenic Ratios Driving Arsenic Speciation and Microbial Community Interactions in Two Alkaline Hot Springs. Environmental Research, 218: 115033. https://doi.org/10.1016/j.envres.2022.115033
      Regenspurg, S., Brand, A., Peiffer, S., 2004. Formation and Stability of Schwertmannite in Acidic Mining Lakes. Geochimica et Cosmochimica Acta, 68(6): 1185-1197. https://doi.org/10.1016/j.gca.2003.07.015
      Reis, V., Duarte, A. C., 2019. Occurrence, Distribution, and Significance of Arsenic Speciation. Arsenic Speciation in Algae. Elsevier, Amsterdam, 1-14. https://doi.org/10.1016/bs.coac.2019.03.006
      Seo, E. Y., Cheong, Y. W., Yim, G. J., et al., 2017. Recovery of Fe, Al and Mn in Acid Coal Mine Drainage by Sequential Selective Precipitation with Control of pH. CATENA, 148: 11-16. https://doi.org/10.1016/j.catena.2016.07.022
      Shi, W. J., Song, W. J., Zheng, J. L., et al., 2021. Factors and Pathways Regulating the Release and Transformation of Arsenic Mediated by Reduction Processes of Dissimilated Iron and Sulfate. Science of the Total Environment, 768: 144697. https://doi.org/10.1016/j.scitotenv.2020.144697
      Tao, X. U., Liao, M. T., Yin, Z. G., 2015. A Study of Surface Mechanism of Arsenopyrite in Alkaline Solution. Acta Petrologica et Mineralogica, 34(6): 821-826. https://doi.org/10.1016/j.jclepro.2022.131987
      Ullrich, M. K., Pope, J. G., Seward, T. M., et al., 2013. Sulfur Redox Chemistry Governs Diurnal Antimony and Arsenic Cycles at Champagne Pool, Waiotapu, New Zealand. Journal of Volcanology and Geothermal Research, 262: 164-177. https://doi.org/10.1016/j.jvolgeores.2013.07.007
      Viollier, E., Inglett, P. W., Hunter, K., et al., 2000. The Ferrozine Method Revisited: Fe(Ⅱ)/Fe(Ⅲ) Determination in Natural Waters. Applied Geochemistry, 15(6): 785-790. https://doi.org/10.1016/S0883-2927(99)00097-9
      Wang, H. Y., Göttlicher, J., Byrne, J. M., et al., 2021. Vertical Redox Zones of Fe-S-As Coupled Mineralogy in the Sediments of Hetao Basin-Constraints for Groundwater as Contamination. Journal of Hazardous Materials, 408: 124924. https://doi.org/10.1016/j.jhazmat.2020.124924
      Wang, R., Lin, J. Q., Liu, X. M., et al., 2019. Sulfur Oxidation in the Acidophilic Autotrophic Acidithiobacillus Spp. Frontiers in Microbiology, 9: 3290. https://doi.org/10.3389/fmicb.2018.03290
      Wang, Y., Zhang, P. W., Wang, S. F., et al., 2022. Chemical Behaviors of Different Arsenic-Bearing Sulphides Bio-Oxidated by Thermophilic Bacteria. Transactions of Nonferrous Metals Society of China, 15(3): 648-652.
      Wang, Y. X., Li, P., Guo, Q. H., et al., 2018. Environmental Biogeochemistry of High Arsenic Geothermal Fluids. Applied Geochemistry, 97: 81-92. https://doi.org/10.1016/j.apgeochem.2018.07.015
      Wiertz, J. V., Mateo, M., Escobar, B., 2006. Mechanism of Pyrite Catalysis of As(Ⅲ) Oxidation in Bioleaching Solutions at 30 ℃ and 70 ℃. Hydrometallurgy, 83(1-4): 35-39. https://doi.org/10.1016/j.hydromet.2006.03.035
      Xiang, X., Dong, X., Huang, L., 2003. Sulfolobus Tengchongensis Sp. Nov., a Novel Thermoacidophilic Archaeon Isolated from a Hot Spring in Tengchong, China. Extremophiles, 7(6): 493-498. https://doi.org/10.1007/s00792-003-0355-2
      Yang, H. Y., Gong, Y. P., et al., 2005. Chemical Behaviors of Different Arsenic-Bearing Sulphides Bio-Oxidated by Thermophilic Bacteria. Transactions of Nonferrous Metals Society of China, 15(3): 5.
      Yin, Z. P., Ye, L., Jing, C. Y., 2022. Genome-Resolved Metagenomics and Metatranscriptomics Reveal That Aquificae Dominates Arsenate Reduction in Tengchong Geothermal Springs. Environmental Science & Technology, 56(22): 16473-16482. https://doi.org/10.1021/acs.est.2c05764
      Yu, Y. M., Zhu, Y. X., Williams-Jones, A. E., et al., 2004. A Kinetic Study of the Oxidation of Arsenopyrite in Acidic Solutions: Implications for the Environment. Applied Geochemistry, 19(3): 435-444. https://doi.org/10.1016/S0883-2927(03)00133-1
      Zhang, D. R., Xia, J. L., Nie, Z. Y., et al., 2019. Mechanism by Which Ferric Iron Promotes the Bioleaching of Arsenopyrite by the Moderate Thermophile Sulfobacillus Thermosulfidooxidans. Process Biochemistry, 81: 11-21. https://doi.org/10.1016/j.procbio.2019.03.004
      Zhang, G. J., Chao, X. W., Guo, P., et al., 2015. Catalytic Effect of Ag+ on Arsenic Bioleaching from Orpiment (As2S3) in Batch Tests with Acidithiobacillus Ferrooxidans and Sulfobacillus Sibiricus. Journal of Hazardous Materials, 283: 117-122. https://doi.org/10.1016/j.jhazmat.2014.09.022
      Zhu, T., Lu, X., Liu, H., et al., 2014. Quantitative X-Ray Photoelectron Spectroscopy-Based Depth Profiling of Bioleached Arsenopyrite Surface by Acidithiobacillus ferrooxidans. Geochimica et Cosmochimica Acta, 127: 120-139. https://doi.org/10.1016/j.gca.2013.11.025
    • 加载中
    图(5)
    计量
    • 文章访问数:  15
    • HTML全文浏览量:  14
    • PDF下载量:  4
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-08-07
    • 网络出版日期:  2025-06-06
    • 刊出日期:  2025-05-25

    目录

      /

      返回文章
      返回