• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    傅里叶变换离子回旋共振质谱在溶解性有机质分子表征中的应用:基于文献计量学可视化研究

    杨伦 吴仕希 付庆龙

    杨伦, 吴仕希, 付庆龙, 2024. 傅里叶变换离子回旋共振质谱在溶解性有机质分子表征中的应用:基于文献计量学可视化研究. 地球科学, 49(11): 4156-4168. doi: 10.3799/dqkx.2023.220
    引用本文: 杨伦, 吴仕希, 付庆龙, 2024. 傅里叶变换离子回旋共振质谱在溶解性有机质分子表征中的应用:基于文献计量学可视化研究. 地球科学, 49(11): 4156-4168. doi: 10.3799/dqkx.2023.220
    Yang Lun, Wu Shixi, Fu Qinglong, 2024. Application of Fourier Transform Ion Cyclotron Resonance Mass Spectrometry in Molecular Characterization of Dissolved Organic Matter: A Bibliometrics-Based Visual Study. Earth Science, 49(11): 4156-4168. doi: 10.3799/dqkx.2023.220
    Citation: Yang Lun, Wu Shixi, Fu Qinglong, 2024. Application of Fourier Transform Ion Cyclotron Resonance Mass Spectrometry in Molecular Characterization of Dissolved Organic Matter: A Bibliometrics-Based Visual Study. Earth Science, 49(11): 4156-4168. doi: 10.3799/dqkx.2023.220

    傅里叶变换离子回旋共振质谱在溶解性有机质分子表征中的应用:基于文献计量学可视化研究

    doi: 10.3799/dqkx.2023.220
    基金项目: 

    国家自然科学基金项目 42107484

    详细信息
      作者简介:

      杨伦(1996-),男,硕士研究生,主要从事溶解性有机质的高分辨率质谱研究. E-mail:lunyang@cug.edu.cn

      通讯作者:

      付庆龙,ORCID: 0000-0002-7125-6877. E-mail:fuqinglong@cug.edu.cn

    • 中图分类号: P69

    Application of Fourier Transform Ion Cyclotron Resonance Mass Spectrometry in Molecular Characterization of Dissolved Organic Matter: A Bibliometrics-Based Visual Study

    • 摘要: 溶解性有机质(Dissolved organic matter,DOM)是广泛分布于各类环境介质中的复杂有机混合物,对污染物和营养元素的环境行为以及全球碳循环具有深远影响. 傅里叶变换离子回旋共振质谱(Fourier transform ion cyclotron resonance mass spectrometry,FT-ICR MS)是当今研究有机混合物分子组成最为先进的质谱技术,对DOM的生态环境效应研究具有重要意义. 为了解FT-ICR MS在环境科学、地球科学领域的研究现状、热点、趋势以及典型应用,基于Web of Science数据库并结合VOSviewer软件进行文献计量学可视化分析. 结果表明:中国大陆在该研究领域的发文量最多,其次是美国. 在学科上是以环境科学为发文量最多;在期刊上是以Environmental Science & Technology期刊发文量最多. 国内高产作者为史权教授与何晨博士,国外高产作者为Thorsten Dittmar教授;相关研究热点关键词涉及空气、地下水、生物群落、饮用水消毒、水处理等为主. 此外,相关典型应用旨在帮助人们提高对DOM高通量、非靶向定性分析的认识. 首次报道了FT-ICR MS在环境地球科学中的文献计量学研究,指出了当前的研究现状与热点,彰显了FT-ICR MS在环境地球科学研究方面的巨大潜力.

       

    • 图  1  基于FT-ICR MS在环境地球科学领域的发文量趋势

      a.总发表文量年际产出图;b.不同国家(或地区)的总发文量年际产出图

      Fig.  1.  Trend chart of publication volume in environmental geoscience based on FT-ICR MS

      图  2  基于FT-ICR MS在环境地球科学领域的发文量情况

      a.发文量前10的学科领域占比;b.发文量前10的出版商占比;c.发文量前10的期刊占比

      Fig.  2.  Based on the number of papers published by FT-ICR MS in the field of environmental geoscience

      图  3  发文量不少于5篇的作者合著共现网络

      节点大小表示作者发文量,发文量越多节点越大. 序号1~10为作者发文量排序;括号内数字分别表示发文量、平均被引用次数、平均发表年份和总链接强度

      Fig.  3.  Authors with no less than 5 papers co-authored on the network

      图  4  关键词密度分布

      密度圆圈的颜色越深代表该关键词出现的频次越多,序号1~10代表关键词出现频次最高的前10位. 括号内数字分别表示出现频次和平均发表年份

      Fig.  4.  Keywords density distribution map

      表  1  检索词类别和检索式

      Table  1.   Search term category and search mode

      检索词类别 检索式(不同检索式之间用“AND”连接)
      高分辨率质谱 “ultra-high resolution mass spectrometer” OR “ultra-high-resolution mass spectrometer” OR “ultrahigh-resolution mass spectrometric” OR “ultrahigh resolution mass spectrometer” OR “ultrahigh-resolution mass spectrometry” OR “ultra-high resolution mass spectrometry” OR “ultra-high-resolution mass spectrometry” OR “UHRMS” OR “Fourier transform ion cyclotron resonance mass spectrometer” OR “FT-ICR MS” OR “FTICR-MS” OR “FT-ICR-MS” OR “FT-MS” OR “FTCR MS” OR “FTMS” OR “FTICR MS” OR “FTICRMS” OR “FT-ICRMS” OR “FT ICR-MS”
      有机质 “organic matter” OR “organic-matter” OR “OM” OR “natural organic matter” OR “NOM” OR “dissolved organic matter” OR “DOM” OR “HUmic-LIke Substances*” OR “HULIS*” OR “water-soluble organic matter” OR “WSOM” OR “effluent organic matter” OR “EfOM” OR “humic acid*” OR “fulvic acid*” OR “humic” OR “humic substance*”
      环境
      体系
      “water*”OR“freshwater*” OR “seawater*” OR “marine” OR “lake*” OR “river” OR “estuary*” OR “tap water*” OR “surface water*” OR “groundwater*” OR “underground water*” OR “subsoil water*” OR “subterranean water*” OR “drinking water*” OR “waste water*” OR “wastewater*” OR “reclaimed water*” OR “landfill*” OR “landfill leachate*” OR “refuse percolate*” OR “percolate*” OR “Landfill waste leachate*” OR “soil*” OR “bog*” OR “marsh*” OR “moors*” OR “sludge*” OR “sewage sludge*” OR “sediment*” OR “atmosphere” OR “gas*” OR “air” OR “meteorology” OR “aerosol*”
      分子 “molecular” OR “molecular characterization” OR “molecular-level characterization” OR “molecular composition” OR “molecular component*” OR “molecular weight component*” OR “molecular formula*” OR “molecular-level comparison” OR “molecule*”
      注:检索数据库为Web of Science Core Collection,检索日期:1997‒01‒01到2023‒09‒01.
      下载: 导出CSV

      表  2  引用次数最多的前10篇论文基本情况

      Table  2.   Basic information about the top 10 most cited papers

      序号 第一作者 & 年份 论文标题 期刊(缩写) 被引用次数
      1 Koch and Dittmar(2006) From mass to structure: an aromaticity index for high-resolution mass data of natural organic matter Rapid Commun Mass Spectrom 891
      2 Hertkorn et al.(2006) Characterization of a major refractory component of marine dissolved organic matter Geochim Cosmochim Acta 601
      3 Stenson et al. (2003) Exact masses and chemical formulas of individual Suwannee river fulvic acids from ultrahigh resolution electrospray ionization Anal Chem 473
      4 Stubbins et al. (2010) Illuminated darkness: molecular signatures of Congo river dissolved organic matter and its photochemical alteration as revealed by ultrahigh precision mass spectrometry Limnol Oceanogr 473
      5 Kellerman et al. (2014) Chemodiversity of dissolved organic matter in lakes driven by climate and hydrology* Nat Commun 407
      6 Kellerman et al.(2015) Persistence of dissolved organic matter in lakes related to its molecular characteristics* Nat Geosci 382
      7 Sleighter and Hatcher(2007) The application of electrospray ionization coupled to ultrahigh resolution mass spectrometry for the molecular characterization of natural organic matter J Mass Spectrom 356
      8 Sleighter and Hatcher (2008) Molecular characterization of dissolved organic matter (DOM) along a river to ocean transect of the lower Chesapeake bay by ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass Mar Chem 321
      9 Lv et al.(2016) Molecular-scale investigation with ESI-FT-ICR-MS on fractionation of dissolved organic matter induced by adsorption on iron* EST 297
      10 Hockaday et al.(2006) Direct molecular evidence for the degradation and mobility of black carbon in soils from ultrahigh-resolution mass spectral Org Geochem 276
      注:*代表高被引论文.
      下载: 导出CSV
    • Bahureksa, W., Young, R. B., McKenna, A. M., et al., 2022. Nitrogen Enrichment during Soil Organic Matter Burning and Molecular Evidence of Maillard Reactions. Environmental Science & Technology, 56(7): 4597-4609. https://doi.org/10.1021/acs.est.1c06745
      Chen, M. L., Jung, J., Lee, Y. K., et al., 2018. Surface Accumulation of Low Molecular Weight Dissolved Organic Matter in Surface Waters and Horizontal Off⁃Shelf Spreading of Nutrients and Humic⁃Like Fluorescence in the Chukchi Sea of the Arctic Ocean. Science of the Total Environment, 639: 624-632. https://doi.org/10.1016/j.scitotenv.2018.05.205
      Du, L., Liu, Y. M., Hao, Z. N., et al., 2022. Fertilization Regime Shifts the Molecular Diversity and Chlorine Reactivity of Soil Dissolved Organic Matter from Tropical Croplands. Water Research, 225: 119106. https://doi.org/10.1016/j.watres.2022.119106
      Du, P. H., Liu, W., Zhang, Q., et al., 2023a. Transformation of Dissolved Organic Matter during UV/Peracetic Acid Treatment. Water Research, 232: 119676. https://doi.org/10.1016/j.watres.2023.119676
      Du, Y., Deng, Y. M., Li, Y. P., et al., 2023b. Paleo⁃ Geomorphology Determines Spatial Variability of Geogenic Ammonium Concentration in Quaternary Aquifers. Environmental Science & Technology, 57(14): 5726-5738. https://doi.org/10.1021/acs.est.3c00528
      Du, Y., Deng, Y. M., Liu, Z. H., et al., 2021. Novel Insights into Dissolved Organic Matter Processing Pathways in a Coastal Confined Aquifer System with the Highest Known Concentration of Geogenic Ammonium. Environmental Science & Technology, 55(21): 14676-14688. https://doi.org/10.1021/acs.est.1c05301
      Fievre, A., Solouki, T., Marshall, A. G., et al., 1997. High⁃Resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry of Humic and Fulvic Acids by Laser Desorption/Ionization and Electrospray Ionization. Energy & Fuels, 11(3): 554-560. https://doi.org/10.1021/ef970005q
      Gonsior, M., Schmitt⁃Kopplin, P., Stavklint, H., et al., 2014. Changes in Dissolved Organic Matter during the Treatment Processes of a Drinking Water Plant in Sweden and Formation of Previously Unknown Disinfection Byproducts. Environmental Science & Technology, 48(21): 12714-12722. https://doi.org/10.1021/es504349p
      Guo, M. L., Li, X. L., Wang, Y., et al., 2023. New Insights into the Mechanism of Phosphate Release during Particulate Organic Matter Photodegradation Based on Optical and Molecular Signatures. Water Research, 236: 119954. https://doi.org/10.1016/j.watres.2023.119954
      Hertkorn, N., Benner, R., Frommberger, M., et al., 2006. Characterization of a Major Refractory Component of Marine Dissolved Organic Matter. Geochimica et Cosmochimica Acta, 70(12): 2990-3010. https://doi.org/10.1016/j.gca.2006.03.021
      Hockaday, W. C., Grannas, A. M., Kim, S., et al., 2006. Direct Molecular Evidence for the Degradation and Mobility of Black Carbon in Soils from Ultrahigh⁃ Resolution Mass Spectral Analysis of Dissolved Organic Matter from a Fire⁃Impacted Forest Soil. Organic Geochemistry 37(4): 501-510. https://doi.org/10.1016/j.orggeochem.2005.11.003
      Hu, T. C., Luo, M., Qi, Y. L., et al., 2023. Molecular Evidence for the Production of Labile, Sulfur⁃Bearing Dissolved Organic Matter in the Seep Sediments of the South China Sea. Water Research, 233: 119732. https://doi.org/10.1016/j.watres.2023.119732
      Kellerman, A. M., Dittmar, T., Kothawala, D. N., et al., 2014. Chemodiversity of Dissolved Organic Matter in Lakes Driven by Climate and Hydrology. Nature Communications, 5: 3804. https://doi.org/10.1038/ncomms4804
      Kellerman, A. M., Kothawala, D. N., Dittmar, T., et al., 2015. Persistence of Dissolved Organic Matter in Lakes Related to Its Molecular Characteristics. Nature Geoscience, 8: 454-457. https://doi.org/10.1038/ngeo2440
      Koch, B. P., Dittmar, T., 2006. From Mass to Structure: An Aromaticity Index for High⁃Resolution Mass Data of Natural Organic Matter. Rapid Communications in Mass Spectrometry, 20(5): 926-932. https://doi.org/10.1002/rcm.7433
      Li, M. J., Fan, X. J., Zhu, M. B., et al., 2019. Abundance and Light Absorption Properties of Brown Carbon Emitted from Residential Coal Combustion in China. Environmental Science & Technology, 53(2): 595-603. https://doi.org/10.1021/acs.est.8b05630
      Liu, S. S., He, Z. Q., Tang, Z., et al., 2020. Linking the Molecular Composition of Autochthonous Dissolved Organic Matter to Source Identification for Freshwater Lake Ecosystems by Combination of Optical Spectroscopy and FT⁃ICR⁃MS Analysis. Science of the Total Environment, 703: 134764. https://doi.org/10.1016/j.scitotenv.2019.134764
      Longnecker, K., Kujawinski, E. B., 2011. Composition of Dissolved Organic Matter in Groundwater. Geochimica et Cosmochimica Acta, 75(10): 2752-2761. https://doi.org/10.1016/j.gca.2011.02.020
      Lu, K. J., Li, X. L., Chen, H. M., et al., 2021. Constraints on Isomers of Dissolved Organic Matter in Aquatic Environments: Insights from Ion Mobility Mass Spectrometry. Geochimica et Cosmochimica Acta, 308: 353-372. https://doi.org/10.1016/j.gca.2021.05.007
      Lü, J. T., Zhang, S. Z., Wang, S. S., et al., 2016. Molecular⁃Scale Investigation with ESI⁃FT⁃ICR⁃MS on Fractionation of Dissolved Organic Matter Induced by Adsorption on Iron Oxyhydroxides. Environmental Science & Technology, 50(5): 2328-2336. https://doi.org/10.1021/acs.est.5b04996
      McDonough, L. K., Andersen, M. S., Behnke, M. I., et al., 2022. A New Conceptual Framework for the Transformation of Groundwater Dissolved Organic Matter. Nature Communications, 13(1): 2153. https://doi.org/10.1038/s41467⁃022⁃29711⁃9
      Milstead, R. P., Remucal, C. K., 2021. Molecular⁃Level Insights into the Formation of Traditional and Novel Halogenated Disinfection Byproducts. ACS ES & T Water, 1(8): 1966-1974. https://doi.org/10.1021/acsestwater.1c00161
      Niu, G. X., Yin, G. G., Mo, X. H., et al., 2022. Do Long⁃Term High Nitrogen Inputs Change the Composition of Soil Dissolved Organic Matter in a Primary Tropical Forest? Environmental Research Letters, 17(9): 095015. https://doi.org/10.1088/1748⁃9326/ac8e87
      Noriega⁃Ortega, B. E., Wienhausen, G., Mentges, A., et al., 2019. Does the Chemodiversity of Bacterial Exometabolomes Sustain the Chemodiversity of Marine Dissolved Organic Matter? Frontiers in Microbiology, 10: 215. https://doi.org/10.3389/fmicb.2019.00215
      Qiao, W., Guo, H. M., He, C., et al., 2021. Identification of Processes Mobilizing Organic Molecules and Arsenic in Geothermal Confined Groundwater from Pliocene Aquifers. Water Research, 198: 117140. https://doi.org/10.1016/j.watres.2021.117140
      Roth, V. N., Lange, M., Simon, C., et al., 2019. Persistence of Dissolved Organic Matter Explained by Molecular Changes during Its Passage through Soil. Nature Geoscience, 12: 755-761. https://doi.org/10.1038/s41561⁃019⁃0417⁃4
      Seidel, M., Beck, M., Riedel, T., et al., 2014. Biogeochemistry of Dissolved Organic Matter in an Anoxic Intertidal Creek Bank. Geochimica et Cosmochimica Acta, 140: 418-434. https://doi.org/10.1016/j.gca.2014.05.038
      Sleighter, R. L., Hatcher, P. G., 2007. The Application of Electrospray Ionization Coupled to Ultrahigh Resolution Mass Spectrometry for the Molecular Characterization of Natural Organic Matter. Journal of Mass Spectrometry, 42(5): 559-574. https://doi.org/10.1002/jms.1221
      Sleighter, R. L., Hatcher, P. G., 2008. Molecular Characterization of Dissolved Organic Matter (DOM) along a River to Ocean Transect of the Lower Chesapeake Bay by Ultrahigh Resolution Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Marine Chemistry, 110(3-4): 140-152. https://doi.org/10.1016/j.marchem.2008.04.008
      Sheng, M., Chen, S., Liu, C. Q., et al., 2023. Spatial and Molecular Variations in Forest Topsoil Dissolved Organic Matter as Revealed by FT⁃ICR Mass Spectrometry. Science of the Total Environment, 895: 165099. https://doi.org/10.1016/j.scitotenv.2023.165099
      Stainforth, J. G., 2009. Practical Kinetic Modeling of Petroleum Generation and Expulsion. Marine and Petroleum Geology, 26(4): 552-572. https://doi.org/10.1016/j.marpetgeo.2009.01.006
      Stenson, A. C., Marshall, A. G., Cooper, W. T., 2003. Exact Masses and Chemical Formulas of Individual Suwannee River Fulvic Acids from Ultrahigh Resolution Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectra. Analytical Chemistry 75(6): 1275-1284. https://doi.org/10.1021/ac026106p
      Stubbins, A., Spencer, R. G. M., Chen, H. M., et al., 2010. Illuminated Darkness: Molecular Signatures of Congo River Dissolved Organic Matter and Its Photochemical Alteration as Revealed by Ultrahigh Precision Mass Spectrometry. Limnology and Oceanography 55(4): 1467-1477. https://doi.org/10.4319/lo.2010.55.4.1467
      Tong, G. H., Yang, X. L., Li, Y., et al., 2022. Impacts of Haze on the Photobleaching of Chromophoric Dissolved Organic Matter in Surface Water. Environmental Research, 212: 113305. https://doi.org/10.1016/j.envres.2022.113305
      Wan, X. F., Liu, C. C., Zhao, D. F., et al. 2023. Hotspot and Development Trend of Shale Oil Research. Earth Science, 48(2): 793-813 (in Chinese with English abstract).
      Wang, K., Fang, H. W., He, G. J., et al., 2023a. Optical and Molecular Diversity of Dissolved Organic Matter in Sediments of the Daning and Shennong Tributaries of the Three Gorges Reservoir. Frontiers in Environmental Science, 10: 1112407. https://doi.org/10.3389/fenvs.2022.1112407
      Wang, Y. H., Tian, X. G., Song, T. L., et al., 2023b. Linking DOM Characteristics to Microbial Community: The Potential Role of DOM Mineralization for Arsenic Release in Shallow Groundwater. Journal of Hazardous Materials, 454: 131566. https://doi.org/10.1016/j.jhazmat.2023.131566
      Wang, Y. H., Zhang, P., He, C., et al., 2023c. Molecular Signatures of Soil⁃Derived Dissolved Organic Matter Constrained by Mineral Weathering. Fundamental Research, 3(3): 377-383. https://doi.org/10.1016/j.fmre.2022.01.032
      Wu, P., Fu, Q. L., Zhu, X. D., et al., 2020. Contrasting Impacts of pH on the Abiotic Transformation of Hydrochar⁃Derived Dissolved Organic Matter Mediated by Δ⁃MnO2. Geoderma, 378: 114627. https://doi.org/10.1016/j.geoderma.2020.114627
      Zark, M., Christoffers, J., Dittmar, T., 2017. Molecular Properties of Deep⁃Sea Dissolved Organic Matter are Predictable by the Central Limit Theorem: Evidence from Tandem FT⁃ICR⁃MS. Marine Chemistry, 191: 9-15. https://doi.org/10.1016/j.marchem.2017.02.005
      Zhang, F., Jiao, Y. Q., Wang, S. M., et al., 2022a. Origin of Dispersed Organic Matter within Sandstones and Its Implication for Uranium Mineralization: A Case Study from Dongsheng Uranium Ore Filed in China. Journal of Earth Science, 33(2): 325-341. https://doi.org/10.1007/s12583⁃020⁃1364⁃0
      Zhang, Q., Li, Z. Y., Shen, Z. X., et al., 2022b. Source Profiles of Molecular Structure and Light Absorption of PM2.5 Brown Carbon from Residential Coal Combustion Emission in Northwestern China. Environmental Pollution, 299: 118866. https://doi.org/10.1016/j.envpol.2022.118866
      Zhang, Z. Q., Sun, Y. L., Chen, C., et al., 2022c. Sources and Processes of Water⁃Soluble and Water⁃Insoluble Organic Aerosol in Cold Season in Beijing, China. Atmospheric Chemistry and Physics, 22(15): 10409-10423. https://doi.org/10.5194/acp⁃22⁃10409⁃2022
      Zhang, P., Cao, C., Wang, Y. H., et al., 2021. Chemodiversity of Water⁃Extractable Organic Matter in Sediment Columns of a Polluted Urban River in South China. Science of the Total Environment, 777: 146127. https://doi.org/10.1016/j.scitotenv.2021.146127
      Zhang, R. Y., Qiao, J., Huang, D. K., et al., 2023. Seasonal Variations in the Sources and Influential Factors of Aerosol Dissolved Black Carbon at a Southeast Coastal Site in China. Journal of Geophysical Research: Atmospheres, 128(7): e2023jd038515. https://doi.org/10.1029/2023jd038515
      Zhou, Y. Q., Zhou, L., Zhang, Y. L., et al., 2022. Unraveling the Role of Anthropogenic and Natural Drivers in Shaping the Molecular Composition and Biolability of Dissolved Organic Matter in Non⁃Pristine Lakes. Environmental Science & Technology, 56(7): 4655-4664. https://doi.org/10.1021/acs.est.1c08003
      万晓帆, 刘丛丛, 赵德锋, 等, 2023. 页岩油研究热点与发展趋势. 地球科学, 48(2): 793-813. doi: 10.3799/dqkx.2022.443
    • 加载中
    图(4) / 表(2)
    计量
    • 文章访问数:  1504
    • HTML全文浏览量:  237
    • PDF下载量:  81
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-12-28
    • 刊出日期:  2024-11-25

    目录

      /

      返回文章
      返回