Application of Fourier Transform Ion Cyclotron Resonance Mass Spectrometry in Molecular Characterization of Dissolved Organic Matter: A Bibliometrics-Based Visual Study
-
摘要: 溶解性有机质(Dissolved organic matter,DOM)是广泛分布于各类环境介质中的复杂有机混合物,对污染物和营养元素的环境行为以及全球碳循环具有深远影响. 傅里叶变换离子回旋共振质谱(Fourier transform ion cyclotron resonance mass spectrometry,FT-ICR MS)是当今研究有机混合物分子组成最为先进的质谱技术,对DOM的生态环境效应研究具有重要意义. 为了解FT-ICR MS在环境科学、地球科学领域的研究现状、热点、趋势以及典型应用,基于Web of Science数据库并结合VOSviewer软件进行文献计量学可视化分析. 结果表明:中国大陆在该研究领域的发文量最多,其次是美国. 在学科上是以环境科学为发文量最多;在期刊上是以Environmental Science & Technology期刊发文量最多. 国内高产作者为史权教授与何晨博士,国外高产作者为Thorsten Dittmar教授;相关研究热点关键词涉及空气、地下水、生物群落、饮用水消毒、水处理等为主. 此外,相关典型应用旨在帮助人们提高对DOM高通量、非靶向定性分析的认识. 首次报道了FT-ICR MS在环境地球科学中的文献计量学研究,指出了当前的研究现状与热点,彰显了FT-ICR MS在环境地球科学研究方面的巨大潜力.Abstract: Dissolved organic matter (DOM) is composed of complex organic mixtures in diverse environments and plays critical roles in governing the environmental fate and transport of pollutants and nutritious elements and the global carbon cycle. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) is the most advanced mass technique for the molecular composition of organic matter, with great importance in elucidating the ecological and environmental significance of DOM. This bibliometrics study based on Web of Science database was performed to visually analyze the current status, hot spots, trends and typical applications of FT-ICR MS in environmental earth science research. The results show that Mainland China has the largest number of publications in this field, followed by the United States. Environmental science is the most published among all disciplines with the most prolific journal, Environmental Science & Technology. The most productive domestic and foreign authors are Prof. Shi Quan, Dr. He Cen and Prof. Thorsten Dittmar in this field, respectively. The relevant research is mainly focused on air, groundwater, biological community, drinking water disinfection and water treatment. In addition, typical applications are reviewed to facilitate our understanding in the high-throughput and non-targeted qualitative analysis of DOM. For the first time, this bibliometrics study reports the current research status and hot spots of FT-ICR MS in the molecular characterization of DOM from diverse environments, highlighting its great potential in environmental earth science research.
-
表 1 检索词类别和检索式
Table 1. Search term category and search mode
检索词类别 检索式(不同检索式之间用“AND”连接) 高分辨率质谱 “ultra-high resolution mass spectrometer” OR “ultra-high-resolution mass spectrometer” OR “ultrahigh-resolution mass spectrometric” OR “ultrahigh resolution mass spectrometer” OR “ultrahigh-resolution mass spectrometry” OR “ultra-high resolution mass spectrometry” OR “ultra-high-resolution mass spectrometry” OR “UHRMS” OR “Fourier transform ion cyclotron resonance mass spectrometer” OR “FT-ICR MS” OR “FTICR-MS” OR “FT-ICR-MS” OR “FT-MS” OR “FTCR MS” OR “FTMS” OR “FTICR MS” OR “FTICRMS” OR “FT-ICRMS” OR “FT ICR-MS” 有机质 “organic matter” OR “organic-matter” OR “OM” OR “natural organic matter” OR “NOM” OR “dissolved organic matter” OR “DOM” OR “HUmic-LIke Substances*” OR “HULIS*” OR “water-soluble organic matter” OR “WSOM” OR “effluent organic matter” OR “EfOM” OR “humic acid*” OR “fulvic acid*” OR “humic” OR “humic substance*” 环境
体系“water*”OR“freshwater*” OR “seawater*” OR “marine” OR “lake*” OR “river” OR “estuary*” OR “tap water*” OR “surface water*” OR “groundwater*” OR “underground water*” OR “subsoil water*” OR “subterranean water*” OR “drinking water*” OR “waste water*” OR “wastewater*” OR “reclaimed water*” OR “landfill*” OR “landfill leachate*” OR “refuse percolate*” OR “percolate*” OR “Landfill waste leachate*” OR “soil*” OR “bog*” OR “marsh*” OR “moors*” OR “sludge*” OR “sewage sludge*” OR “sediment*” OR “atmosphere” OR “gas*” OR “air” OR “meteorology” OR “aerosol*” 分子 “molecular” OR “molecular characterization” OR “molecular-level characterization” OR “molecular composition” OR “molecular component*” OR “molecular weight component*” OR “molecular formula*” OR “molecular-level comparison” OR “molecule*” 注:检索数据库为Web of Science Core Collection,检索日期:1997‒01‒01到2023‒09‒01. 表 2 引用次数最多的前10篇论文基本情况
Table 2. Basic information about the top 10 most cited papers
序号 第一作者 & 年份 论文标题 期刊(缩写) 被引用次数 1 Koch and Dittmar(2006) From mass to structure: an aromaticity index for high-resolution mass data of natural organic matter Rapid Commun Mass Spectrom 891 2 Hertkorn et al.(2006) Characterization of a major refractory component of marine dissolved organic matter Geochim Cosmochim Acta 601 3 Stenson et al. (2003) Exact masses and chemical formulas of individual Suwannee river fulvic acids from ultrahigh resolution electrospray ionization Anal Chem 473 4 Stubbins et al. (2010) Illuminated darkness: molecular signatures of Congo river dissolved organic matter and its photochemical alteration as revealed by ultrahigh precision mass spectrometry Limnol Oceanogr 473 5 Kellerman et al. (2014) Chemodiversity of dissolved organic matter in lakes driven by climate and hydrology* Nat Commun 407 6 Kellerman et al.(2015) Persistence of dissolved organic matter in lakes related to its molecular characteristics* Nat Geosci 382 7 Sleighter and Hatcher(2007) The application of electrospray ionization coupled to ultrahigh resolution mass spectrometry for the molecular characterization of natural organic matter J Mass Spectrom 356 8 Sleighter and Hatcher (2008) Molecular characterization of dissolved organic matter (DOM) along a river to ocean transect of the lower Chesapeake bay by ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass Mar Chem 321 9 Lv et al.(2016) Molecular-scale investigation with ESI-FT-ICR-MS on fractionation of dissolved organic matter induced by adsorption on iron* EST 297 10 Hockaday et al.(2006) Direct molecular evidence for the degradation and mobility of black carbon in soils from ultrahigh-resolution mass spectral Org Geochem 276 注:*代表高被引论文. -
Bahureksa, W., Young, R. B., McKenna, A. M., et al., 2022. Nitrogen Enrichment during Soil Organic Matter Burning and Molecular Evidence of Maillard Reactions. Environmental Science & Technology, 56(7): 4597-4609. https://doi.org/10.1021/acs.est.1c06745 Chen, M. L., Jung, J., Lee, Y. K., et al., 2018. Surface Accumulation of Low Molecular Weight Dissolved Organic Matter in Surface Waters and Horizontal Off⁃Shelf Spreading of Nutrients and Humic⁃Like Fluorescence in the Chukchi Sea of the Arctic Ocean. Science of the Total Environment, 639: 624-632. https://doi.org/10.1016/j.scitotenv.2018.05.205 Du, L., Liu, Y. M., Hao, Z. N., et al., 2022. Fertilization Regime Shifts the Molecular Diversity and Chlorine Reactivity of Soil Dissolved Organic Matter from Tropical Croplands. Water Research, 225: 119106. https://doi.org/10.1016/j.watres.2022.119106 Du, P. H., Liu, W., Zhang, Q., et al., 2023a. Transformation of Dissolved Organic Matter during UV/Peracetic Acid Treatment. Water Research, 232: 119676. https://doi.org/10.1016/j.watres.2023.119676 Du, Y., Deng, Y. M., Li, Y. P., et al., 2023b. Paleo⁃ Geomorphology Determines Spatial Variability of Geogenic Ammonium Concentration in Quaternary Aquifers. Environmental Science & Technology, 57(14): 5726-5738. https://doi.org/10.1021/acs.est.3c00528 Du, Y., Deng, Y. M., Liu, Z. H., et al., 2021. Novel Insights into Dissolved Organic Matter Processing Pathways in a Coastal Confined Aquifer System with the Highest Known Concentration of Geogenic Ammonium. Environmental Science & Technology, 55(21): 14676-14688. https://doi.org/10.1021/acs.est.1c05301 Fievre, A., Solouki, T., Marshall, A. G., et al., 1997. High⁃Resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry of Humic and Fulvic Acids by Laser Desorption/Ionization and Electrospray Ionization. Energy & Fuels, 11(3): 554-560. https://doi.org/10.1021/ef970005q Gonsior, M., Schmitt⁃Kopplin, P., Stavklint, H., et al., 2014. Changes in Dissolved Organic Matter during the Treatment Processes of a Drinking Water Plant in Sweden and Formation of Previously Unknown Disinfection Byproducts. Environmental Science & Technology, 48(21): 12714-12722. https://doi.org/10.1021/es504349p Guo, M. L., Li, X. L., Wang, Y., et al., 2023. New Insights into the Mechanism of Phosphate Release during Particulate Organic Matter Photodegradation Based on Optical and Molecular Signatures. Water Research, 236: 119954. https://doi.org/10.1016/j.watres.2023.119954 Hertkorn, N., Benner, R., Frommberger, M., et al., 2006. Characterization of a Major Refractory Component of Marine Dissolved Organic Matter. Geochimica et Cosmochimica Acta, 70(12): 2990-3010. https://doi.org/10.1016/j.gca.2006.03.021 Hockaday, W. C., Grannas, A. M., Kim, S., et al., 2006. Direct Molecular Evidence for the Degradation and Mobility of Black Carbon in Soils from Ultrahigh⁃ Resolution Mass Spectral Analysis of Dissolved Organic Matter from a Fire⁃Impacted Forest Soil. Organic Geochemistry 37(4): 501-510. https://doi.org/10.1016/j.orggeochem.2005.11.003 Hu, T. C., Luo, M., Qi, Y. L., et al., 2023. Molecular Evidence for the Production of Labile, Sulfur⁃Bearing Dissolved Organic Matter in the Seep Sediments of the South China Sea. Water Research, 233: 119732. https://doi.org/10.1016/j.watres.2023.119732 Kellerman, A. M., Dittmar, T., Kothawala, D. N., et al., 2014. Chemodiversity of Dissolved Organic Matter in Lakes Driven by Climate and Hydrology. Nature Communications, 5: 3804. https://doi.org/10.1038/ncomms4804 Kellerman, A. M., Kothawala, D. N., Dittmar, T., et al., 2015. Persistence of Dissolved Organic Matter in Lakes Related to Its Molecular Characteristics. Nature Geoscience, 8: 454-457. https://doi.org/10.1038/ngeo2440 Koch, B. P., Dittmar, T., 2006. From Mass to Structure: An Aromaticity Index for High⁃Resolution Mass Data of Natural Organic Matter. Rapid Communications in Mass Spectrometry, 20(5): 926-932. https://doi.org/10.1002/rcm.7433 Li, M. J., Fan, X. J., Zhu, M. B., et al., 2019. Abundance and Light Absorption Properties of Brown Carbon Emitted from Residential Coal Combustion in China. Environmental Science & Technology, 53(2): 595-603. https://doi.org/10.1021/acs.est.8b05630 Liu, S. S., He, Z. Q., Tang, Z., et al., 2020. Linking the Molecular Composition of Autochthonous Dissolved Organic Matter to Source Identification for Freshwater Lake Ecosystems by Combination of Optical Spectroscopy and FT⁃ICR⁃MS Analysis. Science of the Total Environment, 703: 134764. https://doi.org/10.1016/j.scitotenv.2019.134764 Longnecker, K., Kujawinski, E. B., 2011. Composition of Dissolved Organic Matter in Groundwater. Geochimica et Cosmochimica Acta, 75(10): 2752-2761. https://doi.org/10.1016/j.gca.2011.02.020 Lu, K. J., Li, X. L., Chen, H. M., et al., 2021. Constraints on Isomers of Dissolved Organic Matter in Aquatic Environments: Insights from Ion Mobility Mass Spectrometry. Geochimica et Cosmochimica Acta, 308: 353-372. https://doi.org/10.1016/j.gca.2021.05.007 Lü, J. T., Zhang, S. Z., Wang, S. S., et al., 2016. Molecular⁃Scale Investigation with ESI⁃FT⁃ICR⁃MS on Fractionation of Dissolved Organic Matter Induced by Adsorption on Iron Oxyhydroxides. Environmental Science & Technology, 50(5): 2328-2336. https://doi.org/10.1021/acs.est.5b04996 McDonough, L. K., Andersen, M. S., Behnke, M. I., et al., 2022. A New Conceptual Framework for the Transformation of Groundwater Dissolved Organic Matter. Nature Communications, 13(1): 2153. https://doi.org/10.1038/s41467⁃022⁃29711⁃9 Milstead, R. P., Remucal, C. K., 2021. Molecular⁃Level Insights into the Formation of Traditional and Novel Halogenated Disinfection Byproducts. ACS ES & T Water, 1(8): 1966-1974. https://doi.org/10.1021/acsestwater.1c00161 Niu, G. X., Yin, G. G., Mo, X. H., et al., 2022. Do Long⁃Term High Nitrogen Inputs Change the Composition of Soil Dissolved Organic Matter in a Primary Tropical Forest? Environmental Research Letters, 17(9): 095015. https://doi.org/10.1088/1748⁃9326/ac8e87 Noriega⁃Ortega, B. E., Wienhausen, G., Mentges, A., et al., 2019. Does the Chemodiversity of Bacterial Exometabolomes Sustain the Chemodiversity of Marine Dissolved Organic Matter? Frontiers in Microbiology, 10: 215. https://doi.org/10.3389/fmicb.2019.00215 Qiao, W., Guo, H. M., He, C., et al., 2021. Identification of Processes Mobilizing Organic Molecules and Arsenic in Geothermal Confined Groundwater from Pliocene Aquifers. Water Research, 198: 117140. https://doi.org/10.1016/j.watres.2021.117140 Roth, V. N., Lange, M., Simon, C., et al., 2019. Persistence of Dissolved Organic Matter Explained by Molecular Changes during Its Passage through Soil. Nature Geoscience, 12: 755-761. https://doi.org/10.1038/s41561⁃019⁃0417⁃4 Seidel, M., Beck, M., Riedel, T., et al., 2014. Biogeochemistry of Dissolved Organic Matter in an Anoxic Intertidal Creek Bank. Geochimica et Cosmochimica Acta, 140: 418-434. https://doi.org/10.1016/j.gca.2014.05.038 Sleighter, R. L., Hatcher, P. G., 2007. The Application of Electrospray Ionization Coupled to Ultrahigh Resolution Mass Spectrometry for the Molecular Characterization of Natural Organic Matter. Journal of Mass Spectrometry, 42(5): 559-574. https://doi.org/10.1002/jms.1221 Sleighter, R. L., Hatcher, P. G., 2008. Molecular Characterization of Dissolved Organic Matter (DOM) along a River to Ocean Transect of the Lower Chesapeake Bay by Ultrahigh Resolution Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Marine Chemistry, 110(3-4): 140-152. https://doi.org/10.1016/j.marchem.2008.04.008 Sheng, M., Chen, S., Liu, C. Q., et al., 2023. Spatial and Molecular Variations in Forest Topsoil Dissolved Organic Matter as Revealed by FT⁃ICR Mass Spectrometry. Science of the Total Environment, 895: 165099. https://doi.org/10.1016/j.scitotenv.2023.165099 Stainforth, J. G., 2009. Practical Kinetic Modeling of Petroleum Generation and Expulsion. Marine and Petroleum Geology, 26(4): 552-572. https://doi.org/10.1016/j.marpetgeo.2009.01.006 Stenson, A. C., Marshall, A. G., Cooper, W. T., 2003. Exact Masses and Chemical Formulas of Individual Suwannee River Fulvic Acids from Ultrahigh Resolution Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectra. Analytical Chemistry 75(6): 1275-1284. https://doi.org/10.1021/ac026106p Stubbins, A., Spencer, R. G. M., Chen, H. M., et al., 2010. Illuminated Darkness: Molecular Signatures of Congo River Dissolved Organic Matter and Its Photochemical Alteration as Revealed by Ultrahigh Precision Mass Spectrometry. Limnology and Oceanography 55(4): 1467-1477. https://doi.org/10.4319/lo.2010.55.4.1467 Tong, G. H., Yang, X. L., Li, Y., et al., 2022. Impacts of Haze on the Photobleaching of Chromophoric Dissolved Organic Matter in Surface Water. Environmental Research, 212: 113305. https://doi.org/10.1016/j.envres.2022.113305 Wan, X. F., Liu, C. C., Zhao, D. F., et al. 2023. Hotspot and Development Trend of Shale Oil Research. Earth Science, 48(2): 793-813 (in Chinese with English abstract). Wang, K., Fang, H. W., He, G. J., et al., 2023a. Optical and Molecular Diversity of Dissolved Organic Matter in Sediments of the Daning and Shennong Tributaries of the Three Gorges Reservoir. Frontiers in Environmental Science, 10: 1112407. https://doi.org/10.3389/fenvs.2022.1112407 Wang, Y. H., Tian, X. G., Song, T. L., et al., 2023b. Linking DOM Characteristics to Microbial Community: The Potential Role of DOM Mineralization for Arsenic Release in Shallow Groundwater. Journal of Hazardous Materials, 454: 131566. https://doi.org/10.1016/j.jhazmat.2023.131566 Wang, Y. H., Zhang, P., He, C., et al., 2023c. Molecular Signatures of Soil⁃Derived Dissolved Organic Matter Constrained by Mineral Weathering. Fundamental Research, 3(3): 377-383. https://doi.org/10.1016/j.fmre.2022.01.032 Wu, P., Fu, Q. L., Zhu, X. D., et al., 2020. Contrasting Impacts of pH on the Abiotic Transformation of Hydrochar⁃Derived Dissolved Organic Matter Mediated by Δ⁃MnO2. Geoderma, 378: 114627. https://doi.org/10.1016/j.geoderma.2020.114627 Zark, M., Christoffers, J., Dittmar, T., 2017. Molecular Properties of Deep⁃Sea Dissolved Organic Matter are Predictable by the Central Limit Theorem: Evidence from Tandem FT⁃ICR⁃MS. Marine Chemistry, 191: 9-15. https://doi.org/10.1016/j.marchem.2017.02.005 Zhang, F., Jiao, Y. Q., Wang, S. M., et al., 2022a. Origin of Dispersed Organic Matter within Sandstones and Its Implication for Uranium Mineralization: A Case Study from Dongsheng Uranium Ore Filed in China. Journal of Earth Science, 33(2): 325-341. https://doi.org/10.1007/s12583⁃020⁃1364⁃0 Zhang, Q., Li, Z. Y., Shen, Z. X., et al., 2022b. Source Profiles of Molecular Structure and Light Absorption of PM2.5 Brown Carbon from Residential Coal Combustion Emission in Northwestern China. Environmental Pollution, 299: 118866. https://doi.org/10.1016/j.envpol.2022.118866 Zhang, Z. Q., Sun, Y. L., Chen, C., et al., 2022c. Sources and Processes of Water⁃Soluble and Water⁃Insoluble Organic Aerosol in Cold Season in Beijing, China. Atmospheric Chemistry and Physics, 22(15): 10409-10423. https://doi.org/10.5194/acp⁃22⁃10409⁃2022 Zhang, P., Cao, C., Wang, Y. H., et al., 2021. Chemodiversity of Water⁃Extractable Organic Matter in Sediment Columns of a Polluted Urban River in South China. Science of the Total Environment, 777: 146127. https://doi.org/10.1016/j.scitotenv.2021.146127 Zhang, R. Y., Qiao, J., Huang, D. K., et al., 2023. Seasonal Variations in the Sources and Influential Factors of Aerosol Dissolved Black Carbon at a Southeast Coastal Site in China. Journal of Geophysical Research: Atmospheres, 128(7): e2023jd038515. https://doi.org/10.1029/2023jd038515 Zhou, Y. Q., Zhou, L., Zhang, Y. L., et al., 2022. Unraveling the Role of Anthropogenic and Natural Drivers in Shaping the Molecular Composition and Biolability of Dissolved Organic Matter in Non⁃Pristine Lakes. Environmental Science & Technology, 56(7): 4655-4664. https://doi.org/10.1021/acs.est.1c08003 万晓帆, 刘丛丛, 赵德锋, 等, 2023. 页岩油研究热点与发展趋势. 地球科学, 48(2): 793-813. doi: 10.3799/dqkx.2022.443 -