• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    大陆深部地壳脱水熔融与水致熔融的演化特征及其流变学意义

    陶丽蓉 曹淑云 李文元 程雪梅 王浩博 董彦龙

    陶丽蓉, 曹淑云, 李文元, 程雪梅, 王浩博, 董彦龙, 2024. 大陆深部地壳脱水熔融与水致熔融的演化特征及其流变学意义. 地球科学, 49(6): 2001-2023. doi: 10.3799/dqkx.2024.007
    引用本文: 陶丽蓉, 曹淑云, 李文元, 程雪梅, 王浩博, 董彦龙, 2024. 大陆深部地壳脱水熔融与水致熔融的演化特征及其流变学意义. 地球科学, 49(6): 2001-2023. doi: 10.3799/dqkx.2024.007
    Tao Lirong, Cao Shuyun, Li Wenyuan, Cheng Xuemei, Wang Haobo, Dong Yanlong, 2024. Evolution Characteristics and Rheological Significance of Dehydration Melting and Water-Fluxed Melting in Deep Continental Crust. Earth Science, 49(6): 2001-2023. doi: 10.3799/dqkx.2024.007
    Citation: Tao Lirong, Cao Shuyun, Li Wenyuan, Cheng Xuemei, Wang Haobo, Dong Yanlong, 2024. Evolution Characteristics and Rheological Significance of Dehydration Melting and Water-Fluxed Melting in Deep Continental Crust. Earth Science, 49(6): 2001-2023. doi: 10.3799/dqkx.2024.007

    大陆深部地壳脱水熔融与水致熔融的演化特征及其流变学意义

    doi: 10.3799/dqkx.2024.007
    基金项目: 

    国家自然科学基金项目 42320104007

    国家自然科学基金项目 4197220

    详细信息
      作者简介:

      陶丽蓉(1999-),女,硕士研究生,主要从事构造地质学研究.ORCID:0009-0007-7179-1320. E-mail:taorong1220@163.com

      通讯作者:

      曹淑云,教授,ORCID:0000-0002-8630-2709. E-mail: shuyun.cao@cug.edu.cn

    • 中图分类号: P54

    Evolution Characteristics and Rheological Significance of Dehydration Melting and Water-Fluxed Melting in Deep Continental Crust

    • 摘要: 深熔作用是链接地壳深部变质作用、构造变形以及岩浆活动的重要纽带,对大陆地壳演化及其流变学性质具有重要意义.根据是否有自由水的参与,深熔作用分为水致熔融和脱水熔融两种机制.脱水熔融主要通过云母、角闪石等含水矿物的分解来实现,其发生所需的温度一般大于650 ℃.在脱水熔融反应中会生成钾长石、石榴石等转熔矿物和部分熔体,该熔体呈水不饱和态,具有高Rb、高Rb/Sr比、高87Sr/86Sr,低Sr、Ba和Ca的特点.其产生的熔体含量主要受温压条件和全岩水含量的影响,在麻粒岩相条件下才有可能产生大量熔体.水致熔融是在含水流体参与下所发生的熔融反应,其最显著的特点就是所需温度较低,在角闪岩相条件下可以生成大量熔体.生成的熔体可以是水饱和或水不饱和,在高温条件下生成的水不饱和熔体具有向上迁移的能力.水致熔融生成熔体的地球化学特征与脱水熔融相反,Sr、Ca、Ba含量较高,Rb、Rb/Sr比较低.深熔作用不仅可以显著改变岩石的热力学和流变学性质,而且熔体的迁移可以促进地壳分异并形成广泛的淡色花岗岩,在陆壳的起源、改造和稳定中起着至关重要的作用.

       

    • 图  1  大陆地壳的深熔作用(修改自Sawyer et al., 2011)

      图中显示当温度升高超过固相线时,深部地壳就会发生深熔作用并生成混合岩.熔体首先形成于颗粒边界,沿一条逐渐集中的路径(红色线)从残余固相中分离出来.当有H2O参与熔融时,会降低固相线的温度(蓝色线),使深熔作用更容易发生

      Fig.  1.  Anatexis of the continental crust (modified from Sawyer et al., 2011)

      图  2  水致熔融和脱水熔融反应的对比总结图(修改自Weinberg and Hasalová, 2015)

      Fig.  2.  Summarizing diagram comparing H2O-present and absent melting reactions (modified from Weinberg and Hasalová, 2015)

      图  3  实验得到的不同水致熔融反应(修改自Weinberg and Hasalová, 2015)

      虚线2a~2e代表了Qtz+Or+Ab+H2O体系在不同水活度下发生熔融所需的温压条件,红色线代表了变泥质岩的水致熔融反应,绿色反应线代表了变基性岩的水致熔融反应

      Fig.  3.  Experimentally determined water-fluxed melting reactions (modified from Weinberg and Hasalová, 2015)

      图  4  由脱水熔融形成的混合岩的宏观和显微特征

      a,b.由脱水熔融形成的混合岩,浅色体与围岩之间具有尖锐的接触边界,存在清晰界定的暗色边缘;c.暗色体中存在石榴石暗色矿物;d.浅色体中存在石榴石;e.变泥质岩中黑云母脱水熔融的逆反应,形成了黑云母与矽线石的交织连晶结构;f.变基质岩中角闪石的脱水熔融,石榴石和辉石共生

      Fig.  4.  Outcrop and microscopic features of migmatites resulting from dehydration melting

      图  5  脱水熔融和水致熔融生成熔体的地球化学特征

      a. An-Ab-Or标准三元长石图;b. Rb vs. Sr;c. Sr vs. 87Sr/86Sr(t);d. Ba vs. Rb/Sr;e. Sr vs. Rb/Sr;f. Nb vs. Ta;b,c中数据来源于Gao et al.(2017)

      Fig.  5.  Geochemical characteristics of melt resulting from dehydration melting and water-fluxed melting

      图  6  副矿物溶解行为对生成熔体的微量元素影响

      a. Zr vs. Hf;b. Th vs. U;修改自Gao et al.(2017

      Fig.  6.  The effect of dissolution behavior of accessory minerals on the trace elements in the melt

      图  7  NCKFMASH体系中泥质岩变质过程中温度与熔体产量的关系(a)和泥质岩和片麻岩在脱水熔融和水致熔融中的熔体产量(b)

      a.修改自White et al.(2001);b.修改自Weinberg and Hasalová(2015)

      Fig.  7.  The relationship between temperature and melt production of metapelite in NCKFMASH system (a); melt prodution of metapelite and gneiss in dehydration melting or water-fluxed melting (b)

      图  8  由水致熔融形成的混合岩的宏观和显微特征

      a. 深熔形成的浅色体呈网状,存在从孤立碎块状到脉状的短距离变化,可能暗示了流体的流入;b. 浅色体与围岩之间无暗色边界,呈弥散状;c. 淡色花岗岩中发育的熔体薄膜,分布于长石颗粒边界;d. 混合岩中发育的蠕英结构

      Fig.  8.  Outcrop and microscopic features of migmatites resulting from water-fluxed melting

      图  9  等压升温下细晶花岗岩的演化

      点B.系统在645 ℃开始熔融,生成熔体中的水含量为10 %;点C.785 ℃时达到4%H2O的液相线;点D.890 ℃时达到完全熔化,此时2% H2O的液相线.黑色实线:液相线;近水平虚线:熔体的最大水溶解度;修改自Weinberg and Hasalová(2015)

      Fig.  9.  Evolution of a haplogranite undergoing isobaric heating

      图  10  大陆弧环境下流体控制的地壳熔融示意

      大洋板块俯冲诱发了软流圈上涌和下地壳含水玄武岩岩浆底侵,温度升高发生了脱水熔融;含水矿物中的水向上运移,进一步诱发了水致熔融;修改自Xu et al.(2022)

      Fig.  10.  Schematic diagram illustrating the fluid-controlled crustal melting in a continental arc setting

      图  11  典型超高压变质岩的P-T轨迹与主要脱水熔融反应

      红色线代表了苏鲁造山带的P-T轨迹,苏鲁造山带在近等温降压过程中经历了脱水熔融作用.矿物缩写:Zo.黝帘石;Phe.多硅白云母;Pl.斜长石;Coe.柯石英;Qtz.石英;Grt.石榴石;Bt.黑云母;Cpx.单斜辉石;Tc.滑石;m.熔体;修改自 张泽明等(2020)

      Fig.  11.  P-T tracks and dehydration melting reactions of typical UHP metamorphic rocks

      图  12  喜马拉雅造山带的流体循环模式简图

      热板片逆冲于冷板片之上,温度的升高石冷板片发生脱水熔融,释放的含水流体向上运移,引发上部板片的水致熔融;脱水熔融产生的含水流体也可能向周围运移,并使围岩发生水致熔融.STD.藏南拆离带;MCT.主中央逆冲断层;修改自 雷凯(2020)

      Fig.  12.  Schematic diagram of fluid circulation patterns in the Himalayan orogenic belt

      图  13  剪切带作为流体通道示意

      如果流体高效流动,流体与岩石之间的相互作用较小,几乎不发生熔融;当剪切带为网络状时,或当流体运移减慢时,流体与岩石相互作用增加,为了与周围环境保持平衡,岩石发生大量熔融;修改自Weinberg and Hasalová(2015)

      Fig.  13.  Schematic diagram of shear zone as fluid channels

      图  14  部分熔融岩石和岩浆的密度与熔体分数的关系

      紫色阴影部分表示在封闭系统下熔体/固体两相系统的密度范围,浅灰色阴影表示与熔体连通性和固体连续性相对应的熔体分数范围;熔体连通性允许熔体迁移,而固体框架的破裂允许固相沉降;黑色粗箭头描绘了熔体/固相系统密度的演变:(ⅰ)在熔体迁移导致残余部分熔融岩石密度增加,(ⅱ)在固相沉降的情况下残余岩浆相对于部分熔融岩石的浮力增加;修改自Vanderhaeghe(2009)

      Fig.  14.  Density of partially-molten rocks and magmas as a function of melt fraction taking into account melt migration and solid settling

      图  15  熔体分离、迁移和岩浆流动的机制

      a. 沿断裂上升;b. 透入性运移;修改自Vanderhaeghe(2009)

      Fig.  15.  Mechanisms of melt segregation, melt migration, magma mobility and solid segregation

      图  16  深熔作用中岩石的流变学强度与熔体比例的关系

      变熔岩代表先前部分熔融的岩石,全熔岩和花岗岩代表了先前的岩浆.变熔岩/全熔岩过渡标志着由部分熔融岩向岩浆的过渡;修改自Vanderhaeghe(2009)

      Fig.  16.  The relationship between the rheological strength of rocks and the melt ratio during anatexis

      图  17  岩石在部分熔融和结晶过程中的几何演化

      熔体首先在颗粒边界聚集,随着熔体含量的增加,形成熔体网络,最后失去固相骨架;修改自Vanderhaeghe(2009)

      Fig.  17.  Geometric evolution of partially-molten rocks during partial melting and crystallization

    • Acosta-Vigil, A., London, D., Morgan, G. B., 2006. Experiments on the Kinetics of Partial Melting of a Leucogranite at 200 MPa H2O and 690-800 ℃: Compositional Variability of Melts during the Onset of H2O-Saturated Crustal Anatexis. Contributions to Mineralogy and Petrology, 151(5): 539-557. https://doi.org/10.1007/s00410-006-0081-8
      Acosta-Vigil, A., London, D., Morgan, G. B., et al. , 2003. Solubility of Excess Alumina in Hydrous Granitic Melts in Equilibrium with Peraluminous Minerals at 700-800 ℃ and 200 MPa, and Applications of the Aluminum Saturation Index. Contributions to Mineralogy and Petrology, 146(1): 100-119. https://doi.org/10.1007/s00410-003-0486-6
      Aikman, A. B., Harrison, T. M., Hermann, J., 2012. The Origin of Eo- and Neo-Himalayan Granitoids, Eastern Tibet. Journal of Asian Earth Sciences, 58: 143-157. https://doi.org/10.1016/j.jseaes.2012.05.018
      Aranovich, L. Y., Makhluf, A. R., Manning, C. E., et al., 2014. Dehydration Melting and the Relationship between Granites and Granulites. Precambrian Research, 253: 26-37. https://doi.org/10.1016/j.precamres.2014.07.004
      Aranovich, L. Y., Newton, R. C., Manning, C. E., 2013. Brine-Assisted Anatexis: Experimental Melting in the System Haplogranite-H2O-NaCl-KCl at Deep-Crustal Conditions. Earth and Planetary Science Letters, 374: 111-120. https://doi.org/10.1016/j.epsl.2013.05.027
      Bea, F., 2012. The Sources of Energy for Crustal Melting and the Geochemistry of Heat-Producing Elements. Lithos, 153: 278-291. https://doi.org/10.1016/j.lithos.2012.01.017
      Beaumont, C., Jamieson, R. A., Nguyen, M. H., et al., 2004. Crustal Channel Flows: 1. Numerical Models with Applications to the Tectonics of the Himalayan-Tibetan Orogen. Journal of Geophysical Research, 109(B6): B06406. https://doi.org/10.1029/2003jb002809
      Berger, A., Burri, T., Alt-Epping, P., et al., 2008. Tectonically Controlled Fluid Flow and Water-Assisted Melting in the Middle Crust: An Example from the Central Alps. Lithos, 102(3-4): 598-615. https://doi.org/10.1016/j.lithos.2007.07.027
      Brown, M., Korhonen, F. J., 2009. Some Remarks on Melting and Extreme Metamorphism of Crustal Rocks. In: Gupta, A. K., Dasgupta, S., eds., Physics and Chemistry of the Earth's Interior. Springer, New York, U. S. A. . https://doi.org/10.1007/978-1-4419-0346-4_4
      Cao, H. W., Pei, Q. M., Santosh, M., et al., 2022. Himalayan Leucogranites: A Review of Geochemical and Isotopic Characteristics, Timing of Formation, Genesis, and Rare Metal Mineralization. Earth-Science Reviews, 234: 104229. https://doi.org/10.1016/j.earscirev.2022.104229
      Cao, S. Y., Neubauer, F., 2016. Deep Crustal Expressions of Exhumed Strike-Slip Fault Systems: Shear Zone Initiation on Rheological Boundaries. Earth-Science Reviews, 162: 155-176. https://doi.org/10.1016/j.earscirev.2016.09.010
      Cao, S. Y., Neubauer, F., 2019. Graphitic Material in Fault Zones: Implications for Fault Strength and Carbon Cycle. Earth-Science Reviews, 194: 109-124. https://doi.org/10.1016/j.earscirev.2019.05.008
      Carosi, R., Montomoli, C., Iaccarino, S., 2018.20 Years of Geological Mapping of the Metamorphic Core across Central and Eastern Himalayas. Earth-Science Reviews, 177: 124-138. https://doi.org/10.1016/j.earscirev.2017.11.006
      Cartwright, L., Buick, S. L., 1998. The Link between Oxygen Isotope Resetting, Partial Melting, and Fluid Flow in Metamorphic Terrains. Terra Nova, 10(2): 81-85. https://doi.org/10.1046/j.1365-3121.1998.00171.x
      Chappell, B. W., White, A. J. R., 2001. Two Contrasting Granite Types: 25 Years Later. Australian Journal of Earth Sciences, 48(4): 489-499. https://doi.org/10.1046/j.1440-0952.2001.00882.x
      Chen, X. Y., Liu, J. L., Tang, Y., et al., 2015. Contrasting Exhumation Histories along a Crustal-Scale Strike-Slip Fault Zone: The Eocene to Miocene Ailao Shan-Red River Shear Zone in Southeastern Tibet. Journal of Asian Earth Sciences, 114: 174-187. https://doi.org/10.1016/j.jseaes.2015.05.020
      Cheng, X. M., Cao, S. Y., Li, J. Y., et al., 2022. Early Paleoproterozoic Tectono-Magmatic and Metamorphic Evolution of the Yuanmou Complex in the Southwestern Yangzte Block. Precambrian Research, 371: 106572. https://doi.org/10.1016/j.precamres.2022.106572
      Cipar, J. H., Garber, J. M., Kylander-Clark, A. R. C., et al., 2020. Active Crustal Differentiation beneath the Rio Grande Rift. Nature Geoscience, 13(11): 758-763. https://doi.org/10.1038/s41561-020-0640-z
      Clark, C., Fitzsimons, I. C. W., Healy, D., et al., 2011. How does the Continental Crust Get Really Hot? Elements, 7(4): 235-240. https://doi.org/10.2113/gselements.7.4.235
      Clemens, J., Watkins, J., 2001. The Fluid Regime of High-Temperature Metamorphism during Granitoid Magma Genesis. Contributions to Mineralogy and Petrology, 140(5): 600-606. https://doi.org/10.1007/s004100000205
      Clemens, J. D., 1990. The Granulite-Granite Connexion. In: Vielzeuf, D., Vidal, P., eds., Granulites and Crustal Evolution. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2055-2_3
      Clemens, J. D., Droop, G. T. R., 1998. Fluids, P-T Paths and the Fates of Anatectic Melts in the Earth's Crust. Lithos, 44(1-2): 21-36. https://doi.org/10.1016/s0024-4937(98)00020-6
      Clemens, J. D., Stevens, G., Bryan, S. E., 2020. Conditions during the Formation of Granitic Magmas by Crustal Melting—Hot or Cold; Drenched, Damp or Dry? Earth-Science Reviews, 200: 102982. https://doi.org/10.1016/j.earscirev.2019.102982
      Collins, W. J., Huang, H. Q., Jiang, X. Y., 2016. Water-Fluxed Crustal Melting Produces Cordilleran Batholiths. Geology, 44(2): 143-146. https://doi.org/10.1130/g37398.1
      Collins, W. J., Murphy, J. B., Blereau, E., et al., 2021. Water Availability Controls Crustal Melting Temperatures. Lithos, 402-403: 106351. https://doi.org/10.1016/j.lithos.2021.106351
      Daniel, C. G., Hollister, L. S., Parrish, R. R., et al., 2003. Exhumation of the Main Central Thrust from Lower Crustal Depths, Eastern Bhutan Himalaya. Journal of Metamorphic Geology, 21(4): 317-334. https://doi.org/10.1046/j.1525-1314.2003.00445.x
      Dewey, J. F., Robb, L., van Schalkwyk, L., 2006. Did Bushmanland Extensionally Unroof Namaqualand? Precambrian Research, 150(3-4): 173-182. https://doi.org/10.1016/j.precamres.2006.07.007
      Dokukina, K. A., Khiller, V. V., Khubanov, V. B., et al., 2022. Neoarchean High-Pressure Granulite-Facies Anatexis of Continental Rocks in the Belomorian Eclogite Province, Russia. Precambrian Research, 381: 106843. https://doi.org/10.1016/j.precamres.2022.106843
      Dong, Y. L., Cao, S. Y., Neubauer, F., et al., 2022a. Exhumation of the Crustal-Scale Gaoligong Strike-Slip Shear Belt in SE Asia. Journal of the Geological Society, 179(2): JGS2021. https://doi.org/10.1144/jgs2021-038
      Dong, Y. L., Cao, S. Y., Zhan, L. F., et al., 2022b. Tectono-Magmatism Evolution in the Gaoligong Orogen Belt during Neoproterozoic to Paleozoic: Significance for Assembly of East Gondwana. Precambrian Research, 378: 106776. https://doi.org/10.1016/j.precamres.2022.106776
      Finch, M., Hasalova, P., Weinberg, R. F., et al., 2014. Switch from Thrusting to Normal Shearing in the Zanskar Shear Zone, NW Himalaya: Implications for Channel Flow. Geological Society of America Bulletin, 126(7-8): 892-924. https://doi.org/10.1130/b30817.1
      Ganzhorn, A. C., Labrousse, L., Prouteau, G., et al., 2014. Structural, Petrological and Chemical Analysis of Syn-Kinematic Migmatites: Insights from the Western Gneiss Region, Norway. Journal of Metamorphic Geology, 32(6): 647-673. https://doi.org/10.1111/jmg.12084
      Gao, L. E., Zeng, L. S., Asimow, P. D., 2017. Contrasting Geochemical Signatures of Fluid-Absent versus Fluid-Fluxed Melting of Muscovite in Metasedimentary Sources: The Himalayan Leucogranites. Geology, 45(1): 39-42. https://doi.org/10.1130/g38336.1
      Gao, L. E., Zeng, L. S., Hu, G. Y., 2010. High Sr/Y Two-Mica Granite from Quedang Area, Southern Tibet, China: Formation Mechanism and Tectonic Implications. Geological Bulletin of China, 29(2): 214-226(in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2010.02.005
      Gao, L. E., Zeng, L. S., Liu, J., et al., 2009. Early Oligocene Na-Rich Peraluminous Leucogranites in the Yardoi Gneiss Dome, Southern Tibet: Formation Mechanism and Tectonic Implications. Acta Petrologica Sinica, 25(9): 2289-2302(in Chinese with English abstract).
      Gao, L. E., Zeng, L. S., Wang, L., et al., 2016. Timing of Different Crustal Partial Melting in the Himalayan Orogenic Belt and Its Tectonic Implications. Acta Geologica Sinica, 90(11): 3039-3059(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2016.11.006
      Gao, P., Zheng, Y. F., Yakymchuk, C., et al., 2021. The Effects of Source Mixing and Fractional Crystallization on the Composition of Eocene Granites in the Himalayan Orogen. Journal of Petrology, 62(7): EGAB037. https://doi.org/10.1093/petrology/egab037
      Gardien, V., Thompson, A. B., Ulmer, P., 2000. Melting of Biotite+Plagioclase+Quartz Gneisses: The Role of H2O in the Stability of Amphibole. Journal of Petrology, 41(5): 651-666. https://doi.org/10.1093/petrology/41.5.651
      Genier, F., Bussy, F., Epard, J. L., et al., 2008. Water-Assisted Migmatization of Metagraywackes in a Variscan Shear Zone, Aiguilles-Rouges Massif, Western Alps. Lithos, 102(3-4): 575-597. https://doi.org/10.1016/j.lithos.2007.07.024
      Groppo, C., Rubatto, D., Rolfo, F., et al., 2010. Early Oligocene Partial Melting in the Main Central Thrust Zone (Arun Valley, Eastern Nepal Himalaya). Lithos, 118(3-4): 287-301. https://doi.org/10.1016/j.lithos.2010.05.003
      Gu, D. X., Zhang, J. J., Lin, C., et al., 2022. Anatexis and Resultant Magmatism of the Ama Drime Massif: Implications for Himalayan Mid-Miocene Tectonic Regime Transition. Lithos, 424-435: 106773. https://doi.org/10.1016/j.lithos.2022.106773
      Guernina, S., Sawyer, E. W., 2003. Large-Scale Melt-Depletion in Granulite Terranes: An Example from the Archean Ashuanipi Subprovince of Quebec. Journal of Metamorphic Geology, 21(2): 181-201. https://doi.org/10.1046/j.1525-1314.2003.00436.x
      Guo, Z. F., Wilson, M., 2012. The Himalayan Leucogranites: Constraints on the Nature of Their Crustal Source Region and Geodynamic Setting. Gondwana Research, 22(2): 360-376. https://doi.org/10.1016/j.gr.2011.07.027
      Harley, S. L., 2016. A Matter of Time: The Importance of the Duration of UHT Metamorphism. Journal of Mineralogical and Petrological Sciences, 111(2): 50-72. https://doi.org/10.2465/jmps.160128
      Harris, N., Massey, J., Inger, S., 1993. The Role of Fluids in the Formation of High Himalayan Leucogranites. Geological Society, London, Special Publications, 74(1): 391-400. https://doi.org/10.1144/gsl.sp.1993.074.01.26
      Hermann, J., Green, D. H., 2001. Experimental Constraints on High Pressure Melting in Subducted Crust. Earth and Planetary Science Letters, 188(12): 149-168. https://doi.org/10.1016/s0012-821x(01)00321-1
      Holness, M. B., Cesare, B., Sawyer, E. W., 2011. Melted Rocks under the Microscope: Microstructures and Their Interpretation. Elements, 7(4): 247-252. https://doi.org/10.2113/gselements.7.4.247
      Holtzman, B. K., Groebner, N. J., Zimmerman, M. E., et al., 2003. Stress-Driven Melt Segregation in Partially Molten Rocks. Geochemistry, Geophysics, Geosystems, 4(5): 8607. https://doi.org/10.1029/2001gc000258
      Hopkinson, T., Harris, N., Roberts, N. M. W., et al., 2020. Evolution of the Melt Source during Protracted Crustal Anatexis: An Example from the Bhutan Himalaya. Geology, 48(1): 87-91. https://doi.org/10.1130/g47078.1
      Hu, Z. P., Zhang, Y. S., Hu, R., et al., 2016. Amphibole-Bearing Migmatite in North Dabie, Eastern China: Water-Fluxed Melting of the Orogenic Crust. Journal of Asian Earth Sciences, 125: 100-116. https://doi.org/10.1016/j.jseaes.2016.05.018
      Inger, S., Harris, N., 1993. Geochemical Constraints on Leucogranite Magmatism in the Langtang Valley, Nepal Himalaya. Journal of Petrology, 34(2): 345-368. https://doi.org/10.1093/petrology/34.2.345
      Jamtveit, B., Austrheim, H., Putnis, A., 2016. Disequilibrium Metamorphism of Stressed Lithosphere. Earth-Science Reviews, 154: 1-13. https://doi.org/10.1016/j.earscirev.2015.12.002
      Johnson, T. E., White, R. W., Powell, R., 2008. Partial Melting of Metagreywacke: A Calculated Mineral Equilibria Study. Journal of Metamorphic Geology, 26(8): 837-853. https://doi.org/10.1111/j.1525-1314.2008.00790.x
      Jung, C., Jung, S., Nebel, O., et al., 2009. Fluid-Present Melting of Meta-Igneous Rocks and the Generation of Leucogranites-Constraints from Garnet Major- and Trace Element Data, Lu-Hf Whole Rock-Garnet Ages and Whole Rock Nd-Sr-Hf-O Isotope Data. Lithos, 111(3-4): 220-235. https://doi.org/10.1016/j.lithos.2008.11.008
      Jung, S., Hoernes, S., Mezger, K., 2000. Geochronology and Petrology of Migmatites from the Proterozoic Damara Belt: Importance of Episodic Fluid-Present Disequilibrium Melting and Consequences for Granite Petrology. Lithos, 51(3): 153-179. https://doi.org/10.1016/s0024-4937(99)00062-6
      Kelsey, D. E., Hand, M., 2015. On Ultrahigh Temperature Crustal Metamorphism: Phase Equilibria, Trace Element Thermometry, Bulk Composition, Heat Sources, Timescales and Tectonic Settings. Geoscience Frontiers, 6(3): 311-356. https://doi.org/10.1016/j.gsf.2014.09.006
      Koester, E., Pawley, A. R., Fernandes, L. A. D., et al., 2002. Experimental Melting of Cordierite Gneiss and the Petrogenesis of Syntranscurrent Peraluminous Granites in Southern Brazil. Journal of Petrology, 43(8): 1595-1616. https://doi.org/10.1093/petrology/43.8.1595
      Labrousse, L., Duretz, T., Gerya, T., 2015. H2O - Fluid-Saturated Melting of Subducted Continental Crust Facilitates Exhumation of Ultrahigh-Pressure Rocks in Continental Subduction Zones. Earth and Planetary Science Letters, 428: 151-161. https://doi.org/10.1016/j.epsl.2015.06.016
      Le Fort, P., 1981. Manaslu Leucogranite: A Collision Signature of the Himalaya: A Model for Its Genesis and Emplacement. Journal of Geophysical Research: Solid Earth, 86(B11): 10545-10568. https://doi.org/10.1029/jb086ib11p10545
      Lee, J., Whitehouse, M. J., 2007. Onset of Mid-Crustal Extensional Flow in Southern Tibet: Evidence from U/Pb Zircon Ages. Geology, 35(1): 45. https://doi.org/10.1130/g22842a.1
      Lee, Y., Cho, M., 2013. Fluid-Present Disequilibrium Melting in Neoarchean Arc-Related Migmatites of Daeijak Island, Western Gyeonggi Massif, Korea. Lithos, 179: 249-262. https://doi.org/10.1016/j.lithos.2013.08.0
      Lei, K., 2020. Genesis of High Himalayan Pale Granite and Its Dynamic Significance (Dissertation). Changan University, Xi'an(in Chinese with English abstract).
      Lei, K., Wang, X. C., Pang, C. J., et al., 2022. Contribution of Free Water in the Anatexis of Continental Crust: Constraints from the High Himalayan Leucogranites. Geochimica, 51(1): 83-97(in Chinese with English abstract).
      Li, H. L., Yang, D. X., Tian, Y., et al., 2023. Genesis and Its Geodynamic Significance of Late Cretaceous Granites in North Lancang River Suture. Earth Science, 48(4): 1330-1350(in Chinese with English abstract).
      Li, J. Y., Cao, S. Y., Neubauer, F., et al., 2021. Structure and Spatial-Temporal Relationships of Eocene-Oligocene Potassic Magmatism Linked to the Ailao Shan-Red River Shear Zone and Post-Collisional Extension. Lithos, 396: 106203. https://doi.org/10.1016/j.lithos.2021.106203
      Li, W. C., Chen, R. X., Zheng, Y. F., et al., 2016. Two Episodes of Partial Melting in Ultrahigh-Pressure Migmatites from Deeply Subducted Continental Crust in the Sulu Orogen, China. Geological Society of America Bulletin, 128(9-10): 1521-1542. https://doi.org/10.1130/b31366.1
      Li, W. Y., Cao, S. Y., Dong, Y. L., et al., 2023. Crustal Anatexis and Initiation of the Continental-Scale Chongshan Strike-Slip Shear Zone on the Southeastern Tibetan Plateau. Tectonics, 42(4): e2023TC007864. https://doi.org/10.1029/2023tc007864
      Li, X. C., Niu, M. L., Yakymchuk, C., et al., 2018. Anatexis of Former Arc Magmatic Rocks during Oceanic Subduction: A Case Study from the North Wulan Gneiss Complex. Gondwana Research, 61: 128-149. https://doi.org/10.1016/j.gr.2018.04.016
      Lin, C., Zhang, J. J., Wang, X. X., et al., 2020. Oligocene Initiation of the South Tibetan Detachment System: Constraints from Syn-Tectonic Leucogranites in the Kampa Dome, Northern Himalaya. Lithos, 354-355: 105332. https://doi.org/10.1016/j.lithos.2019.105332
      Liu, B., Xu, Y., Ma, C. Q., et al., 2023. Petrogenesis and Geodynamic Setting of the Ningduo Peraluminous Granites from the North Qiangtang Terrane. Earth Science, 48(9): 3296-3311(in Chinese with English abstract).
      Liu, F. L., Robinson, P. T., Gerdes, A., et al., 2010. Zircon U-Pb Ages, REE Concentrations and Hf Isotope Compositions of Granitic Leucosome and Pegmatite from the North Sulu UHP Terrane in China: Constraints on the Timing and Nature of Partial Melting. Lithos, 117(1-4): 247-268. https://doi.org/10.1016/j.lithos.2010.03.002
      Liu, J. L., Tran, M. D., Tang, Y., et al., 2012. Permo-Triassic Granitoids in the Northern Part of the Truong Son Belt, NW Vietnam: Geochronology, Geochemistry and Tectonic Implications. Gondwana Research, 22(2): 628-644. https://doi.org/10.1016/j.gr.2011.10.011
      Liu, X. C., Wu, F. Y., Kohn, M. J., et al., 2022. Plutonic-Subvolcanic Connection of the Himalayan Leucogranites: Insights from the Eocene Lhunze Complex, Southern Tibet. Lithos, 434-435: 106939. https://doi.org/10.1016/j.lithos.2022.106939
      Liu, Z. C., Wu, F. Y., Ji, W. Q., et al., 2014. Petrogenesis of the Ramba Leucogranite in the Tethyan Himalaya and Constraints on the Channel Flow Model. Lithos, 208-209: 118-136. https://doi.org/10.1016/j.lithos.2014.08.022
      Mallik, A., Dasgupta, R., Tsuno, K., et al., 2016. Effects of Water, Depth and Temperature on Partial Melting of Mantle-Wedge Fluxed by Hydrous Sediment-Melt in Subduction Zones. Geochimica et Cosmochimica Acta, 195: 226-243. https://doi.org/10.1016/j.gca.2016.08.018
      Meng, Z. Y., Gao, X. Y., Chen, R. X., et al., 2021. Fluid-Present and Fluid-Absent Melting of Muscovite in Migmatites in the Himalayan Orogen: Constraints from Major and Trace Element Zoning and Phase Equilibrium Relationships. Lithos, 388: 106071. https://doi.org/10.1016/j.lithos.2021.106071
      Patiño Douce, A. E., 1996. Effects of Pressure and H2O Content on the Compositions of Primary Crustal Melts. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 87(1-2): 11-21. https://doi.org/10.1017/s026359330000643x
      Patiño Douce, A. E., Harris, N., 1998. Experimental Constraints on Himalayan Anatexis. Journal of Petrology, 39(4): 689-710. https://doi.org/10.1093/petroj/39.4.689
      Pourteau, A., Doucet, L. S., Blereau, E. R., et al., 2020. TTG Generation by Fluid-Fluxed Crustal Melting: Direct Evidence from the Proterozoic Georgetown Inlier, NE Australia. Earth and Planetary Science Letters, 550: 116548. https://doi.org/10.1016/j.epsl.2020.116548
      Powell, R., Guiraud, M., White, R. W., 2005. Truth and Beauty in Metamorphic Phase-Equilibria: Conjugate Variables and Phase Diagrams. The Canadian Mineralogist, 43(1): 21-33. https://doi.org/10.2113/gscanmin.43.1.21
      Prince, C., Harris, N., Vance, D., 2001. Fluid-Enhanced Melting during Prograde Metamorphism. Journal of the Geological Society, 158(2): 233-241. https://doi.org/10.1144/jgs.158.2.233
      Rabillard, A., Jolivet, L., Arbaret, L., et al., 2018. Synextensional Granitoids and Detachment Systems within Cycladic Metamorphic Core Complexes (Aegean Sea, Greece): Toward a Regional Tectonomagmatic Model. Tectonics, 37(8): 2328-2362. https://doi.org/10.1029/2017tc004697
      Regis, D., Warren, C. J., Young, D., et al., 2014. Tectono-Metamorphic Evolution of the Jomolhari Massif: Variations in Timing of Syn-Collisional Metamorphism across Western Bhutan. Lithos, 190-191: 449-466. https://doi.org/10.1016/j.lithos.2014.01.001
      Reichardt, H., Weinberg, R. F., 2012. Hornblende Chemistry in Meta- and Diatexites and Its Retention in the Source of Leucogranites: An Example from the Karakoram Shear Zone, NW India. Journal of Petrology, 53(6): 1287-1318. https://doi.org/10.1093/petrology/egs017
      Reichardt, H., Weinberg, R. F., Andersson, U. B., et al., 2010. Hybridization of Granitic Magmas in the Source: The Origin of the Karakoram Batholith, Ladakh, NW India. Lithos, 116(3-4): 249-272. https://doi.org/10.1016/j.lithos.2009.11.013
      Ricketts, J. W., Karlstrom, K. E., Kelley, S. A., 2015. Embryonic Core Complexes in Narrow Continental Rifts: The Importance of Low-Angle Normal Faults in the Rio Grande Rift of Central New Mexico. Geosphere, 11(2): 425-444. https://doi.org/10.1130/GES01109.1
      Rosenberg, C. L., Handy, M. R., 2005. Experimental Deformation of Partially Melted Granite Revisited: Implications for the Continental Crust. Journal of Metamorphic Geology, 23(1): 19-28. https://doi.org/10.1111/j.1525-1314.2005.00555.x
      Rosenberg, C. L., Handy, M. R., 2005. Experimental Deformation of Partially Melted Granite Revisited: Implications for the Continental Crust. Journal of Metamorphic Geology, 23(1): 19-28. https://doi.org/10.1111/j.1525-1314.2005.00555.x doi: 10.1130/G34584.1
      Rubatto, D., Hermann, J., Berger, A., et al., 2009. Protracted Fluid-Induced Melting during Barrovian Metamorphism in the Central Alps. Contributions to Mineralogy and Petrology, 158(6): 703-722. https://doi.org/10.1007/s00410-009-0406-5
      Rudnick, R. L., Fountain, D. M., 1995. Nature and Composition of the Continental Crust: A Lower Crustal Perspective. Reviews of Geophysics, 33(3): 267-309. https://doi.org/10.1029/95rg01302
      Sawyer, E. W., 2001. Melt Segregation in the Continental Crust: Distribution and Movement of Melt in Anatectic Rocks. Journal of Metamorphic Geology, 19(3): 291-309. https://doi.org/10.1046/j.0263-4929.2000.00312.x
      Sawyer, E. W., 2008. Atlas of migmatites. The Canadian Mineralogist Special Publication 9. NRC Research Press, Ottawa, Ontario, Canada, 371.
      Sawyer, E. W., 2010. Migmatites Formed by Water-Fluxed Partial Melting of a Leucogranodiorite Protolith: Microstructures in the Residual Rocks and Source of the Fluid. Lithos, 116(3-4): 273-286. https://doi.org/10.1016/j.lithos.2009.07.003
      Sawyer, E. W., Cesare, B., Brown, M., 2011. When the Continental Crust Melts. Elements, 7(4): 229-234 https://doi.org/10.2113/gselements.7.4.229
      Schmidt, M. W., Vielzeuf, D., Auzanneau, E., 2004. Melting and Dissolution of Subducting Crust at High Pressures: The Key Role of White Mica. Earth and Planetary Science Letters, 228(1-2): 65-84. https://doi.org/10.1016/j.epsl.2004.09.020
      Shi, Q., Ding, D., Xu, Z. Y., et al., 2021. Metamorphic Evolution of Daqingshan Supracrustal Rocks and Garnet Granite from the North China Craton: Constraints from Phase Equilibria Modelling, Geochemistry, and SHRIMP U-Pb Geochronology. Gondwana Research, 97: 101-120. https://doi.org/10.1016/j.gr.2021.05.014
      Shuai, X., Li, S. M., Zhu, D. C., et al., 2021. Tetrad Effect of Rare Earth Elements Caused by Fractional Crystallization in High-Silica Granites: An Example from Central Tibet. Lithos, 384-385: 105968. https://doi.org/10.1016/j.lithos.2021.105968
      Slagstad, T., Jamieson, R. A., Culshaw, N. G., 2005. Formation, Crystallization, and Migration of Melt in the Mid-Orogenic Crust: Muskoka Domain Migmatites, Grenville Province, Ontario. Journal of Petrology, 46(5): 893-919. https://doi.org/10.1093/petrology/egi004
      Solar, G. S., Pressley, R. A., Brown, M., et al., 1998. Granite Ascent in Convergent Orogenic Belts: Testing a Model. Geology, 26(8): 711-714. https://doi.org/10.1130/0091-7613(1998)0260711:gaicob>2.3.co;2 doi: 10.1130/0091-7613(1998)0260711:gaicob>2.3.co;2
      Stepanov, A. S., Hermann, J., Rubatto, D., et al., 2012. Experimental Study of Monazite/Melt Partitioning with Implications for the REE, Th and U Geochemistry of Crustal Rocks. Chemical Geology, 300-301: 200-220. https://doi.org/10.1016/j.chemgeo.2012.01.007
      Storkey, A. C., Hermann, J., Hand, M., et al., 2005. Using In Situ Trace-Element Determinations to Monitor Partial-Melting Processes in Metabasites. Journal of Petrology, 46(6): 1283-1308. https://doi.org/10.1093/petrology/egi017
      Thompson, A. B., 2001. Clockwise P-T Paths for Crustal Melting and H2O Recycling in Granite Source Regions and Migmatite Terrains. Lithos, 56(1): 33-45. https://doi.org/10.1016/s0024-4937(00)00058-x
      Trail, D., Watson, E. B., Tailby, N. D., 2012. Ce and Eu Anomalies in Zircon as Proxies for the Oxidation State of Magmas. Geochimica et Cosmochimica Acta, 97: 70-87. https://doi.org/10.1016/j.gca.2012.08.032
      Vanderhaeghe, O., 2009. Migmatites, Granites and Orogeny: Flow Modes of Partially-Molten Rocks and Magmas Associated with Melt/Solid Segregation in Orogenic Belts. Tectonophysics, 477(3-4): 119-134. https://doi.org/10.1016/j.tecto.2009.06.021
      Vanderhaeghe, O., Teyssier, C., 2001. Partial Melting and Flow of Orogens. Tectonophysics, 342(3-4): 451-472. https://doi.org/10.1016/s0040-1951(01)00175-5
      Vielzeuf, D., Schmidt, M. W., 2001. Melting Relations in Hydrous Systems Revisited: Application to Metapelites, Metagreywackes and Metabasalts. Contributions to Mineralogy and Petrology, 141(3): 251-267. https://doi.org/10.1007/s004100100237
      Wallis, S., Tsuboi, M., Suzuki, K., et al., 2005. Role of Partial Melting in the Evolution of the Sulu (Eastern China) Ultrahigh-Pressure Terrane. Geology, 33(2): 129. https://doi.org/10.1130/g20991.1
      Walte, N. P., Bons, P. D., Passchier, C. W., 2005. Deformation of Melt-Bearing Systems—Insight from In Situ Grain-Scale Analogue Experiments. Journal of Structural Geology, 27(9): 1666-1679. https://doi.org/10.1016/j.jsg.2005.05.006
      Wang, H. B., Cao, S. Y., Li, J. Y., et al., 2022. High-Pressure Granulite-Facies Metamorphism and Anatexis of Deep Continental Crust: New Insights from the Cenozoic Ailao Shan-Red River Shear Zone, Southeast Asia. Gondwana Research, 103: 314-334. https://doi.org/10.1016/j.gr.2021.10.010
      Wang, S. J., Li, S. G., Chen, L. J., et al., 2013. Geochronology and Geochemistry of Leucosomes in the North Dabie Terrane, East China: Implication for Post-UHPM Crustal Melting during Exhumation. Contributions to Mineralogy and Petrology, 165(5): 1009-1029. https://doi.org/10.1007/s00410-012-0845-2
      Wang, Y. Q., Zhai, M. G., He, H. L., et al., 2021. Incipient Charnockite Formation in the Trivandrum Block, Southern India: Evidence from Melt-Related Reaction Textures and Phase Equilibria Modelling. Lithos, 380-381: 105825. https://doi.org/10.1016/j.lithos.2020.105825
      Watkins, J. M., Clemens, J. D., Treloar, P. J., 2007. Archaean TTGS as Sources of Younger Granitic Magmas: Melting of Sodic Metatonalites at 0.6-1.2 GPa. Contributions to Mineralogy and Petrology, 154(1): 91-110. https://doi.org/10.1007/s00410-007-0181-0
      Webb, A. A. G., Guo, H. C., Clift, P. D., et al., 2017. The Himalaya in 3D: Slab Dynamics Controlled Mountain Building and Monsoon Intensification. Lithosphere, 9(4): 637-651. https://doi.org/10.1130/l636.1
      Wei, C. J., Wang, W., 2007. Phase Equilibria of Anatexis in High-Grade Metapelites. Earth Science Frontiers, 14(1): 125-134(in Chinese with English abstract). doi: 10.1016/S1872-5791(07)60006-2
      Weinberg, R. F., Hasalová, P., 2015. Water-Fluxed Melting of the Continental Crust: A Review. Lithos, 212-215: 158-188. https://doi.org/10.1016/j.lithos.2014.08.021
      White, R. W., Powell, R., 2002. Melt Loss and the Preservation of Granulite Facies Mineral Assemblages. Journal of Metamorphic Geology, 20(7): 621-632. https://doi.org/10.1046/j.1525-1314.2002.00206_20_7.x
      White, R. W., Powell, R., Holland, T. J. B., 2001. Calculation of Partial Melting Equilibria in the System Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O (NCKFMASH). Journal of Metamorphic Geology, 19(2): 139-153. https://doi.org/10.1046/j.0263-4929.2000.00303.x
      Whitney, D. L., Teyssier, C., Fayon, A. K., et al., 2003. Tectonic Controls on Metamorphism, Partial Melting, and Intrusion: Timing and Duration of Regional Metamorphism and Magmatism in the Niğde Massif, Turkey. Tectonophysics, 376(1/2): 37-60. https://doi.org/10.1016/j.tecto.2003.08.009
      Wu, D., Wei, C. J., 2021. Metamorphic Evolution of Two Types of Garnet Amphibolite from the Qingyuan Terrane, North China Craton: Insights from Phase Equilibria Modelling and Zircon Dating. Precambrian Research, 355: 106091. https://doi.org/10.1016/j.precamres.2021.106091
      Xu, J., Xia, X. P., Yin, C. Q., et al., 2022. Geochronology and Geochemistry of the Granitoids in the Diancangshan-Ailaoshan Fold Belt: Implications on the Neoproterozoic Subduction and Crustal Melting along the Southwestern Yangtze Block, South China. Precambrian Research, 383: 106907. https://doi.org/10.1016/j.precamres.2022.106907
      Yakymchuk, C., 2021. Migmatites. In: Alderton, D., Elias, S. A., eds., Encyclopedia of Geology. Elsevier, Amsterdam, 492-501. https://doi.org/10.1016/b978-0-08-102908-4.00021-7
      Yang, L., Liu, X. C., Wang, J. M., et al., 2019. Is Himalayan Leucogranite a Product by In Situ Partial Melting of the Greater Himalayan Crystalline?A Comparative Study of Leucosome and Leucogranite from Nyalam, Southern Tibet. Lithos, 342: 542-556. https://doi.org/10.1016/j.lithos.2019.06.007
      Yang, X. Y., Zhang, J. J., Qi, G. W., et al., 2009. Structure and Deformation around the Gyirong Basin, North Himalaya, and Onset of the South Tibetan Detachment System. Science in China (Series D), 52(8): 1046-1058. https://doi.org/10.1007/s11430-009-0111-2
      Ye, Z. L., Wan, F., Jiang, N., et al., 2021. Dehydration Melting of Amphibolite at 1.5​GPa and 800-950​℃: Implications for the Mesozoic Potassium-Rich Adakite in the Eastern North China Craton. Geoscience Frontiers, 12(2): 896-906. https://doi.org/10.1016/j.gsf.2020.03.008
      Zeng, L. S., Asimow, P. D., Saleeby, J. B., 2005a. Coupling of Anatectic Reactions and Dissolution of Accessory Phases and the Sr and Nd Isotope Systematics of Anatectic Melts from a Metasedimentary Source. Geochimica et Cosmochimica Acta, 69(14): 3671-3682. https://doi.org/10.1016/j.gca.2005.02.035
      Zeng, L. S., Saleeby, J. B., Asimow, P., 2005b. Nd Isotope Disequilibrium during Crustal Anatexis: A Record from the Goat Ranch Migmatite Complex, Southern Sierra Nevada Batholith, California. Geology, 33(1): 53. https://doi.org/10.1130/g20831.1
      Zeng, L. S., Gao, L. E., 2017. Cenozoic Crustal Anatexis and the Leucogranites in the Himalayan Collisional Orogenic Belt. Acta Petrologica Sinica, 33(5): 1420-1444(in Chinese with English abstract).
      Zeng, L. S., Gao, L. E., Zhao, L. H., et al., 2021. The Role of Titanite in Shaping the Geochemistry of Amphibolite-Derived Melts. Lithos, 402-403: 106312. https://doi.org/10.1016/j.lithos.2021.106312
      Zeng, L. S., Liu, J., Gao, L. E., et al., 2009. Early Oligocene Anatexis in the Yardoi Gneiss Dome, Southern Tibet and Geological Implications. Science Bulletin, 54(3): 373-381(in Chinese).
      Zhang, Z. M., Ding, H. X., Dong, X., et al., 2020. Partial Melting of Subduction Zones. Acta Petrologica Sinica, 36(9): 2589-2615(in Chinese with English abstract). doi: 10.18654/1000-0569/2020.09.01
      Zhang, Z. M., Kang, D. Y., Ding, H. X., et al., 2018. Partial Melting of Himalayan Orogen and Formation Mechanism of Leucogranites. Earth Science, 43(1): 82-98(in Chinese with English abstract).
      Zheng, Y. F., 2021. Convergent Plate Boundaries and Accretionary Wedges. Encyclopedia of Geology. Elsevier, Amsterdam, 770-787. https://doi.org/10.1016/b978-0-08-102908-4.00042-4
      Zheng, Y. F., Chen, R. X., 2017. Regional Metamorphism at Extreme Conditions: Implications for Orogeny at Convergent Plate Margins. Journal of Asian Earth Sciences, 145: 46-73. https://doi.org/10.1016/j.jseaes.2017.03.009
      Zheng, Y. F., Gao, P., 2021. The Production of Granitic Magmas through Crustal Anatexis at Convergent Plate Boundaries. Lithos, 402/403: 106232. https://doi.org/10.1016/j.lithos.2021.106232
      高利娥, 曾令森, 胡古月, 2010. 藏南确当地区高Sr/Y比值二云母花岗岩的形成机制及其构造动力学意义. 地质通报, 29(2): 214-226. doi: 10.3969/j.issn.1671-2552.2010.02.005
      高利娥, 曾令森, 刘静, 等, 2009. 藏南也拉香波早渐新世富钠过铝质淡色花岗岩的成因机制及其构造动力学意义. 岩石学报, 25(9): 2289-2302. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200909021.htm
      高利娥, 曾令森, 王莉, 等, 2016. 喜马拉雅碰撞造山带不同类型部分熔融作用的时限及其构造动力学意义. 地质学报, 90(11): 3039-3059. doi: 10.3969/j.issn.0001-5717.2016.11.006
      雷凯, 2020. 高喜马拉雅淡色花岗岩成因及其动力学意义(硕士学位论文). 西安: 长安大学.
      雷凯, 王选策, 庞崇进, 等, 2022. 大陆地壳深熔作用中自由水的贡献: 以高喜马拉雅淡色花岗岩为例. 地球化学, 51(1): 83-97. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX202201008.htm
      李洪梁, 杨东旭, 田尤, 等, 2023. 北澜沧江结合带晚白垩世花岗岩成因及其地球动力学意义. 地球科学, 48(4): 1330-1350. doi: 10.3799/dqkx.2022.466
      刘彬, 徐雨, 马昌前, 等, 2023. 北羌塘宁多地区三叠纪过铝质花岗岩的成因及其地球动力学背景. 地球科学, 48(9): 3296-3311. doi: 10.3799/dqkx.2022.191
      魏春景, 王伟, 2007. 高级变质岩中深熔作用的相平衡研究. 地学前缘, 14(1): 125-134. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200701011.htm
      曾令森, 高利娥, 2017. 喜马拉雅碰撞造山带新生代地壳深熔作用与淡色花岗岩. 岩石学报, 33(5): 1420-1444. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201705004.htm
      曾令森, 刘静, 高利娥, 等, 2009. 藏南也拉香波穹隆早渐新世地壳深熔作用及其地质意义. 科学通报, 54(3): 373-381. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200903019.htm
      张泽明, 丁慧霞, 董昕, 等, 2020. 俯冲带部分熔融. 岩石学报, 36(9): 2589-2615. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202009002.htm
      张泽明, 康东艳, 丁慧霞, 等, 2018. 喜马拉雅造山带的部分熔融与淡色花岗岩成因机制. 地球科学, 43(1): 82-98. doi: 10.3799/dqkx.2018.005
    • 加载中
    图(17)
    计量
    • 文章访问数:  1447
    • HTML全文浏览量:  235
    • PDF下载量:  222
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-11-09
    • 网络出版日期:  2024-07-11
    • 刊出日期:  2024-06-25

    目录

      /

      返回文章
      返回