• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    鄂西长阳跑马坪锰矿地球化学特征与沉积环境

    刘海 漆双林 范玖琳 郭威 陈爱章 张书杰

    刘海, 漆双林, 范玖琳, 郭威, 陈爱章, 张书杰, 2025. 鄂西长阳跑马坪锰矿地球化学特征与沉积环境. 地球科学, 50(1): 58-76. doi: 10.3799/dqkx.2024.008
    引用本文: 刘海, 漆双林, 范玖琳, 郭威, 陈爱章, 张书杰, 2025. 鄂西长阳跑马坪锰矿地球化学特征与沉积环境. 地球科学, 50(1): 58-76. doi: 10.3799/dqkx.2024.008
    Liu Hai, Qi Shuanglin, Fan Jiulin, Guo Wei, Chen Aizhang, Zhang Shujie, 2025. Geochemical Characteristics and Sedimentary Environment of Paomaping Manganese Deposit in Changyang, Western Hubei Province. Earth Science, 50(1): 58-76. doi: 10.3799/dqkx.2024.008
    Citation: Liu Hai, Qi Shuanglin, Fan Jiulin, Guo Wei, Chen Aizhang, Zhang Shujie, 2025. Geochemical Characteristics and Sedimentary Environment of Paomaping Manganese Deposit in Changyang, Western Hubei Province. Earth Science, 50(1): 58-76. doi: 10.3799/dqkx.2024.008

    鄂西长阳跑马坪锰矿地球化学特征与沉积环境

    doi: 10.3799/dqkx.2024.008
    基金项目: 

    湖北省国土资源科技攻关计划项目 ETZ2014A05

    湖北省科技发展专项项目 42000022205T000000150

    湖北省重点研发项目 2024BCB098

    湖北省地质联合基金重点项目 JCZRLH202501101

    详细信息
      作者简介:

      刘海(1988-), 男, 副研究员, 硕士, 主要从事地质矿产研究. ORCID:0009-0009-4653-1011. E-mail:512009804@qq.com

    • 中图分类号: P611

    Geochemical Characteristics and Sedimentary Environment of Paomaping Manganese Deposit in Changyang, Western Hubei Province

    • 摘要: 鄂西长阳背斜南华系锰矿为大塘坡式锰矿, 其成矿时代恰处于新元古代“雪球地球”事件中的间冰期.在Rodinia超大陆裂解的背景下, 大塘坡期气候环境转变、裂谷盆地作用以及锰矿成矿作用三者间存在成因上的联系.为了详细阐述古气候、沉积环境、锰质来源对大规模锰矿沉积成矿作用的控制, 恢复鄂西地区大塘坡式锰矿成矿过程, 选取鄂西长阳地区跑马坪锰矿作为研究对象, 对其地球化学特征开展了综合研究.测试结果显示碳酸锰矿石Mn/Fe比值较高, 沉积过程中Mn、Fe分离十分彻底, 氧化‒还原敏感元素V、U亏损, Mo富集, 揭示大塘坡期为氧化‒弱氧化的沉积环境.δU、Uau、Th/U、V/Cr、Co/Ni值也指示大塘坡期为氧化‒弱氧化沉积环境.长阳背斜碳酸锰矿石Al、Ti含量略高于湘黔渝地区, 说明扬子北缘锰矿石陆源碎屑含量高于扬子东南缘, 指示沉积水体深度相对较浅或者距离物源较近.CIA指数研究显示长阳背斜大塘坡期风化强度中等, 碳酸锰矿石、碳质泥页岩Al/(Al+Mn+Fe)比值较低, Eu正异常、LREE富集, Nb/Ta、Zr/Hf、Y/Ho比值以及碳酸锰矿石La/Yb-Ce/La、(Co+Ni+Cu)×10-Fe-Mn、Zr-Cr图解分析均认为锰质来源以深部热液来源为主, 陆源锰质为辅助来源, 且成矿期有明显的热水沉积作用.通过研究CIA指数以及Sr/Cu、Rb/Sr、Sr、Sr/Ba值认为长阳背斜大塘坡期为温暖湿润的气候环境.碳酸锰矿成矿与氧化还原环境、锰质来源、古气候、古盐度耦合明显.

       

    • 图  1  研究区大地构造位置及大塘坡组地层柱状图

      A、B.大地构造位置图;C.长阳背斜核部地质简图;D.ZK1401孔含锰岩系柱状图. 图A据胡蓉等(2016), 审图号:GS(2016)1555号.图B据王剑等(2012)修改;a.康滇古隆起;b.黔中古隆起;c.川中威远古隆起;d.神农架古隆起

      Fig.  1.  Tectonic setting of the Changyang area, western Hubei and stratigraphic column map of the Datangpo Formation

      图  2  ZK1401孔锰矿石照片以及显微结构特征

      A.条带状锰矿石;B.纹层状锰矿石;C.结核状锰矿石;D、E、F、G.条带状锰矿石镜下照片;H、I.草莓状黄铁矿镜下照片;J、K.自形、半自形黄铁矿镜下照片;L.鱼子状菱锰矿、草莓状黄铁矿镜下照片;M.菱锰矿包含他形黄铁矿镜下照片;N.菱锰矿包含自形黄铁矿镜下照片;O.条带状黄铁矿、菱锰矿镜下照片

      Fig.  2.  Structure photos and microstructure characteristics of manganese ore in ZK1401

      图  3  扬子地区碳酸锰矿及黑色页岩稀土配分模式和PAAS标准化微量元素蛛网图

      A.湖北古城锰矿碳酸锰矿矿石样品;B、G.湖北跑马坪锰矿ZK1401孔黑色页岩样品;C、H.湖北跑马坪锰矿ZK1401孔碳酸锰矿矿石样品;D.湖南古丈锰矿碳酸锰矿矿石样品;E.重庆秀山锰矿碳酸锰矿矿石样品;F.贵州杨立掌锰矿碳酸锰矿矿石样品;图A、D、E、F数据均张飞飞(2014)

      Fig.  3.  REE pattern and trace element distribution diagrams of the manganese carbonate ores and black shales in Yangtze area

      图  4  跑马坪锰矿床大塘坡组样品地化元素判别图

      Fig.  4.  Discriminant diagram of geochemical elements of samples from Datangpo Formation in Paomaping manganese deposit

      图  5  跑马坪锰矿床大塘坡组锰矿热水成因判别图解

      A. La/Yb-Ce/La图解(据Høgdahl et al., 1968);B.(Cu+Ni+Co)×10-Fe-Mn图解(据Hein et al., 1994);C. Zr-Cr图解(据Marchig et al., 1982

      Fig.  5.  The discriminant diagrams of hot water genesis of Datangpo Formation in Paomaping manganese deposit

      图  6  跑马坪锰矿床成矿模式

      Fig.  6.  The metallogenic model of Paomaping manganese deposit

      表  1  跑马坪锰矿ZK1401孔大塘坡组含锰岩系样品主量元素测试结果(%)

      Table  1.   The contents (%) of major elements in the manganese-bearing rock series of drill ZK1401 Datangpo Formation in Paomaping manganese ore deposit

      样品编号 样品名称 Al2O3 CaO Fe2O3 K2O MgO MnO Na2O SiO2 S TiO2 P2O5 Total CIA Mn/Fe Al
      Mn+Fe+Al
      ZK1401-H1 灰绿色冰碛岩 12.07 3.51 5.11 2.60 2.01 1.00 1.09 66.38 0.03 0.65 0.08 94.53 65.32 0.22 0.59
      ZK1401-H2 黑色冰碛岩 13.58 2.15 4.70 3.60 1.60 0.72 0.92 65.68 1.53 0.61 0.19 95.28 66.20 0.17 0.65
      ZK1401-H3 黑色冰碛岩 13.40 3.39 7.98 3.72 1.42 1.11 0.82 55.11 5.03 0.61 0.27 92.86 66.55 0.15 0.52
      ZK1401-H4 黑色冰碛岩 6.08 17.35 5.71 1.31 1.10 4.68 0.36 39.28 2.57 0.31 0.69 79.44 70.00 0.91 0.30
      ZK1401-H5 黑色冰碛岩 14.07 3.35 3.32 3.94 1.65 0.98 0.77 63.71 0.84 0.64 0.69 93.96 67.39 0.33 0.71
      ZK1401-H6 黑色冰碛岩 13.84 2.82 3.17 3.88 1.71 1.06 0.72 65.97 0.4 0.62 0.12 94.31 68.83 0.37 0.71
      ZK1401-H7 碳质页岩 16.32 0.32 5.36 4.78 1.43 0.29 0.98 61.03 3.49 0.68 0.08 94.76 65.99 0.06 0.68
      ZK1401-H8 含锰泥岩 9.35 7.98 4.85 2.68 1.66 11.57 0.63 39.8 2.90 0.42 0.84 82.68 62.23 2.64 0.29
      ZK1401-H9 碳酸锰矿石 7.86 5.52 4.93 2.21 1.85 18.04 0.54 34.58 2.33 0.43 0.39 78.68 65.31 4.05 0.19
      ZK1401-H10 碳酸锰矿石 10.38 3.32 5.69 2.97 1.68 14.34 0.72 39.32 3.36 0.55 0.35 82.68 64.99 2.79 0.27
      ZK1401-H11 碳质页岩 15.90 1.07 6.52 4.64 1.37 0.33 0.99 57.32 4.61 0.69 0.62 94.06 65.72 0.06 0.64
      ZK1401-H12 碳质页岩 13.33 1.70 5.44 3.80 1.44 6.55 0.97 51.12 3.66 0.70 0.29 89.00 64.57 1.33 0.44
      ZK1401-H13 碳质页岩 15.84 0.54 7.36 4.55 1.32 0.50 1.08 57.41 5.38 0.72 0.21 94.91 65.10 0.08 0.60
      ZK1401-H14 碳酸锰矿石 7.04 6.52 4.07 2.00 1.84 21.49 0.53 29.86 2.40 0.35 1.25 77.35 64.27 5.84 0.16
      ZK1401-H15 含锰泥岩 11.64 2.29 5.59 3.29 1.48 10.12 0.86 45.96 3.97 0.56 0.27 86.03 64.52 2.00 0.34
      ZK1401-H16 含锰泥岩 10.94 4.70 4.18 3.10 1.49 11.62 0.82 42.84 2.73 0.54 1.72 84.68 64.35 3.08 0.33
      ZK1401-H17 碳质页岩 13.98 1.46 7.56 3.86 1.20 3.36 1.15 52.76 5.80 0.66 0.29 92.08 63.68 0.49 0.48
      ZK1401-H18 碳质页岩 14.86 1.20 5.48 4.13 1.21 2.17 1.12 57.18 3.86 0.73 0.16 92.10 64.53 0.44 0.59
      ZK1401-H19 含锰泥岩 12.10 2.76 5.74 3.38 1.31 7.95 0.91 48.32 4.15 0.60 0.28 87.50 64.49 1.53 0.39
      ZK1401-H20 碳酸锰矿石 6.27 6.63 3.81 1.79 2.06 23.12 0.41 26.97 2.19 0.34 0.34 73.93 65.58 6.71 0.14
      ZK1401-H21 碳酸锰矿石 10.26 4.40 5.17 2.90 1.61 13.05 0.68 40.34 3.66 0.52 1.12 83.71 65.58 2.79 0.28
      ZK1401-H22 碳酸锰矿石 9.45 4.90 5.27 2.65 1.57 13.12 0.65 40.11 3.94 0.49 0.32 82.47 65.33 2.75 0.27
      ZK1401-H23 碳质页岩 10.97 3.84 5.34 3.04 1.06 5.47 0.61 54.65 4.10 0.57 0.13 89.78 67.40 1.13 0.42
      ZK1401-H24 碳质页岩 11.71 2.29 6.62 3.35 0.77 1.04 0.51 59.77 5.55 0.59 0.11 92.31 68.79 0.17 0.53
      ZK1401-H25 灰绿色冰碛岩 11.28 4.25 4.65 3.14 0.68 0.85 0.50 64.39 3.06 0.59 0.15 93.54 69.07 0.20 0.60
      ZK1401-H26 灰绿色冰碛岩 13.98 2.14 4.77 3.63 0.92 0.40 0.93 66.79 1.95 0.60 0.34 96.45 66.64 0.09 0.67
      注:CIA=100×n(Al2O3)/{n(Al2O3)+n(CaO*)+n(K2O)+n(Na2O)}, 其中n(CaO*)为硅酸盐矿物中的Ca(McLennan, 1993).
      下载: 导出CSV

      表  2  跑马坪锰矿ZK1401孔大塘坡组含锰岩系样品微量元素测试结果(10‒6

      Table  2.   The contents (10‒6) of trace elements in the manganese-bearing rock series of drill ZK1401 Datangpo Formation in Paomaping manganese ore deposit

      样品编号(样品名称同上) Mo Cu Rb Sr Ba Zr V Cr Co Ni Th U δU Uau Th/U V/Cr Ni/Co Sr/Cu Rb/Sr Sr/Ba
      ZK1401-H1 0.72 34.0 70.9 97.7 650 97.5 79 95 9.4 32.0 7.37 1.0 0.58 ‒1.46 7.37 0.83 3.40 2.87 0.73 0.15
      ZK1401-H2 3.36 29.4 93.4 95.6 630 143.0 60 46 23.3 32.5 9.01 1.7 0.72 ‒1.30 5.30 1.30 1.39 3.25 0.98 0.15
      ZK1401-H3 3.20 66.6 95.2 101.0 580 129.5 67 61 45.9 51.0 9.06 2.0 0.80 ‒1.02 4.53 1.10 1.11 1.52 0.94 0.17
      ZK1401-H4 1.80 43.3 38.9 236.0 230 69.1 43 37 55.4 33.3 5.97 1.4 0.83 ‒0.59 4.26 1.16 0.60 5.45 0.16 1.03
      ZK1401-H5 1.88 25.7 99.7 115.5 680 145.0 69 49 18.2 30.2 8.61 1.7 0.74 ‒1.17 5.06 1.41 1.66 4.49 0.86 0.17
      ZK1401-H6 0.23 22.7 100.0 108.0 740 139.5 64 46 13.2 24.2 8.59 1.2 0.59 ‒1.66 7.16 1.39 1.83 4.76 0.93 0.15
      ZK1401-H7 2.06 57.9 113.0 76.6 770 168.5 72 75 38.8 54.7 9.76 2.3 0.83 ‒0.95 4.24 0.96 1.41 1.32 1.48 0.10
      ZK1401-H8 1.41 41.5 64.2 203.0 470 100.5 50 44 43.4 40.8 6.26 1.5 0.84 ‒0.59 4.17 1.14 0.94 4.89 0.32 0.43
      ZK1401-H9 2.24 46.2 60.4 177.0 390 89.7 51 43 69.6 37.3 7.83 1.6 0.76 ‒1.01 4.89 1.19 0.54 3.83 0.34 0.45
      ZK1401-H10 2.81 68.3 75.2 146.0 520 107.5 59 52 96.4 54.0 10.85 2.4 0.80 ‒1.22 4.52 1.13 0.56 2.14 0.52 0.28
      ZK1401-H11 2.07 82.0 107.0 102.0 680 150.5 67 75 32.3 72.0 9.41 2.3 0.85 ‒0.84 4.09 0.89 2.23 1.24 1.05 0.15
      ZK1401-H12 4.45 112.5 94.5 112.0 590 137.5 73 68 97.2 69.2 13.30 2.7 0.76 ‒1.73 4.93 1.07 0.71 1.00 0.84 0.19
      ZK1401-H13 2.51 89.1 109.0 86.1 710 145 68 75 45.4 71.1 10.75 2.5 0.82 ‒1.08 4.30 0.91 1.57 0.97 1.27 0.12
      ZK1401-H14 1.57 44.4 52.2 193.0 400 79.5 44 38 44.7 35.4 6.28 1.6 0.87 ‒0.49 3.93 1.16 0.79 4.35 0.27 0.48
      ZK1401-H15 2.43 76.7 79.8 112.5 540 113.5 61 62 52.4 57.4 8.94 2.0 0.80 ‒0.98 4.47 0.98 1.10 1.47 0.71 0.21
      ZK1401-H16 2.01 55.5 77.9 143.0 520 117.0 59 56 48.6 45.8 9.08 1.9 0.77 ‒1.13 4.78 1.05 0.94 2.58 0.54 0.28
      ZK1401-H17 3.23 91.7 94.4 93.5 610 138.0 66 73 53.5 78.3 10.65 2.4 0.81 ‒1.15 4.44 0.90 1.46 1.02 1.01 0.15
      ZK1401-H18 4.74 92.2 102.5 85.1 670 126.0 64 70 89.9 81.3 13.75 3.0 0.79 ‒1.58 4.58 0.91 0.90 0.92 1.20 0.13
      ZK1401-H19 4.23 123.5 81.1 113.0 590 119.5 68 75 79.8 82.0 10.90 2.9 0.89 ‒0.73 3.76 0.91 1.03 0.91 0.72 0.19
      ZK1401-H20 5.54 59.8 48.0 173.0 380 82.6 55 37 56.2 47.7 8.13 2.5 0.96 ‒1.69 1.85 1.49 0.85 2.89 0.28 0.46
      ZK1401-H21 3.74 77.6 69.9 148.0 510 111.0 70 60 64.1 59.5 9.72 2.9 0.94 ‒0.34 3.35 1.17 0.93 1.91 0.47 0.29
      ZK1401-H22 19.70 119.5 64.1 127.5 450 113.5 108 61 41.5 74.7 10.25 3.3 0.98 ‒0.12 3.11 2.36 1.80 1.07 0.50 0.28
      ZK1401-H23 53.40 119.5 72.0 95.4 470 117.0 152 59 36.2 86.4 9.18 2.8 0.96 ‒0.26 3.28 2.58 2.39 0.80 0.75 0.20
      ZK1401-H24 74.30 134.5 78.3 70.3 480 131.5 187 64 32.9 96.1 11.25 2.3 0.76 ‒1.45 4.89 2.92 2.92 0.52 1.11 0.15
      ZK1401-H25 44.70 80.9 68.6 85.4 490 105.0 122 48 25 67.8 9.00 2.2 0.85 ‒0.80 4.09 2.54 2.71 1.06 0.80 0.17
      ZK1401-H26 1.45 23.9 83.7 95.5 710 119.5 65 29 9.7 17.2 8.48 1.8 0.78 ‒1.03 4.71 2.24 1.77 4.00 0.88 0.13
      注:δU=2U/(U+Th/3), Uau=Uto-Th/3(Uto表示总U).
      下载: 导出CSV

      表  3  跑马坪锰矿ZK1401孔大塘坡组含锰岩系样品稀土元素测试结果(10‒6

      Table  3.   The contents (10‒6) of rare earth elements in the manganese-bearing rock series of drill ZK1401 Datangpo Formation in Paomaping manganese ore deposit

      样品编号(样品名称同上) La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu ∑REE LREE Ce/Ce* Eu/Eu*
      HREE
      ZK1401-H1 31.9 62.6 7.36 25.6 5.36 1.04 4.15 0.68 3.84 0.87 2.58 0.41 2.44 0.38 149.21 8.72 0.86 1.03
      ZK1401-H2 46.7 96.2 11.90 41.7 7.93 1.57 5.80 1.01 5.77 1.17 3.21 0.50 3.46 0.53 227.45 9.60 0.82 1.05
      ZK1401-H3 44.9 91.6 10.95 40.6 8.82 1.87 7.51 1.09 6.24 1.28 3.20 0.53 2.87 0.48 221.94 8.57 0.90 1.13
      ZK1401-H4 39.3 103.5 13.05 55.7 14.70 3.65 13.10 2.04 11.10 2.18 5.20 0.70 3.98 0.65 268.85 5.90 0.99 1.28
      ZK1401-H5 44.2 94.0 11.65 45.7 10.75 2.24 10.05 1.42 8.23 1.63 4.01 0.58 2.96 0.53 237.95 7.09 0.91 1.09
      ZK1401-H6 31.8 60.6 7.05 24.2 4.52 0.93 3.93 0.62 4.15 0.92 2.78 0.40 2.68 0.46 145.04 8.10 0.86 1.06
      ZK1401-H7 39.2 77.0 8.85 28.4 5.12 0.80 4.03 0.81 5.32 1.22 3.75 0.64 3.62 0.54 179.30 8.00 0.83 0.77
      ZK1401-H8 31.8 81.2 9.35 39.3 10.10 2.67 11.15 1.78 10.60 2.23 5.93 0.86 4.89 0.65 212.51 4.58 1.06 1.25
      ZK1401-H9 66.1 173.8 17.75 68.1 15.60 3.61 14.75 2.43 14.55 3.16 8.23 1.14 6.70 0.93 396.85 6.65 1.09 1.15
      ZK1401-H10 75.3 181.0 19.00 70.3 12.80 3.02 11.55 2.02 11.40 2.49 7.02 1.01 5.85 0.91 403.67 8.55 1.02 1.16
      ZK1401-H11 39.0 78.0 9.10 31.5 5.97 1.25 5.32 0.83 5.37 1.21 3.26 0.48 2.73 0.47 184.49 8.38 0.87 1.08
      ZK1401-H12 71.6 177.0 19.90 73.9 15.80 2.51 12.40 1.97 11.35 2.32 6.37 0.95 5.74 0.79 402.60 8.61 0.96 0.85
      ZK1401-H13 47.9 95.6 10.70 36.4 5.95 0.96 4.96 0.81 4.82 1.09 3.53 0.50 3.08 0.47 216.77 10.25 0.89 0.84
      ZK1401-H14 38.8 97.0 11.85 49.4 11.35 3.09 13.05 2.17 14.00 2.89 7.49 0.97 5.19 0.73 257.98 4.55 0.99 1.25
      ZK1401-H15 52.0 105.0 11.70 40.1 7.28 1.60 7.15 1.33 8.27 1.77 4.93 0.75 4.26 0.57 246.71 7.50 0.90 1.02
      ZK1401-H16 46.3 102.5 12.25 45.5 10.95 2.79 10.60 1.65 11.00 2.16 5.88 0.84 4.73 0.67 257.82 5.87 0.90 1.28
      ZK1401-H17 49.2 96.1 10.70 37.5 7.50 1.45 6.69 1.09 6.28 1.38 3.70 0.52 3.38 0.47 225.96 8.61 0.92 0.98
      ZK1401-H18 77.8 161.3 17.55 61.8 9.45 1.66 6.92 0.96 6.12 1.26 3.95 0.55 3.67 0.56 353.55 13.74 0.94 0.99
      ZK1401-H19 73.9 159.0 18.35 66.5 12.95 2.32 10.80 1.93 11.55 2.51 7.18 1.02 5.60 0.79 374.40 8.05 0.91 0.90
      ZK1401-H20 55.8 139.8 15.10 58.7 14.20 3.18 14.65 2.60 16.75 3.55 9.84 1.36 7.38 1.08 343.99 5.01 1.04 1.04
      ZK1401-H21 46.9 112.0 13.10 50.6 12.40 3.07 13.00 2.24 13.10 2.71 7.32 1.02 5.42 0.78 283.66 5.22 0.95 1.16
      ZK1401-H22 37.3 93.8 9.73 37.6 9.40 2.04 8.93 1.43 8.80 1.91 5.36 0.83 4.83 0.62 222.58 5.80 1.08 1.08
      ZK1401-H23 35.9 77.0 8.40 30.5 6.34 1.23 6.01 0.93 5.55 1.17 3.22 0.46 3.22 0.51 180.44 7.56 0.96 0.98
      ZK1401-H24 26.4 53.3 5.97 21.8 4.25 0.91 3.90 0.67 4.46 1.05 3.13 0.53 3.32 0.47 130.16 6.42 0.94 1.05
      ZK1401-H25 26.5 51.7 5.83 21.1 4.00 1.11 3.96 0.62 3.39 0.91 2.36 0.37 2.55 0.42 124.82 7.56 0.93 1.38
      ZK1401-H26 35.7 68.0 8.14 31.4 6.88 1.55 6.66 1.04 5.47 1.18 2.96 0.46 2.77 0.48 172.69 7.22 0.93 1.13
      下载: 导出CSV
    • Algeo, T. J., 2004. Can Marine Anoxic Events Draw down the Trace Element Inventory of Seawater? Geology, 32(12): 1057. https://doi.org/10.1130/G20896.1
      Bao, X. J., 2020. Crclostratigraphic Study in Late Proterozoic Ice-Free Climate (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      Cao, L., Hu, S. J., Duan, Q. F., et al., 2019. Stable Isotopes Characteristics of Changyang Manganese Deposit in Western Hubei Province and Its Geological Implications. Geology and Mineral Resources of South China, 35(2): 226-237 (in Chinese with English abstract). doi: 10.3969/j.issn.1007-3701.2019.02.008
      Cao, M. L., Chen, J. P., 2022. Analysis of the Deposition Process of Datangpo Manganese Mine from the Perspective of Sequence Stratigraphy—Taking Minle Manganese Mine in Northwest Hunan as an Example. Acta Sedimentologica Sinica, 40(4): 1083-1094 (in Chinese with English abstract).
      Chetty, D., Gutzmer, J., 2012. REE Redistribution during Hydrothermal Alteration of Ores of the Kalahari Manganese Deposit. Ore Geology Reviews, 47: 126-135. https://doi.org/10.1016/j.oregeorev.2011.06.001
      Crusius, J., Thomson, J., 2000. Comparative Behavior of Authigenic Re, U, and Mo during Reoxidation and Subsequent Long-Term Burial in Marine Sediments. Geochimica et Cosmochimica Acta, 64(13): 2233-2242. https://doi.org/10.1016/S0016-7037(99)00433-0
      Douville, E., Bienvenu, P., Charlou, J. L., et al., 1999. Yttrium and Rare Earth Elements in Fluids from Various Deep-Sea Hydrothermal Systems. Geochimica et Cosmochimica Acta, 63(5): 627-643. https://doi.org/10.1016/S0016-7037(99)00024-1
      Feng, L. J., Chu, X. L., Zhang, Q. R., et al., 2003. CIA (Chemical Index of Alteration) and Its Applications in the Neoproterozoic Clastic Rocks. Earth Science Frontiers, 10(4): 539-544 (in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.2003.04.019
      Fio, K., Spangenberg, J. E., Vlahović, I., et al., 2010. Stable Isotope and Trace Element Stratigraphy across the Permian-Triassic Transition: A Redefinition of the Boundary in the Velebit Mountain, Croatia. Chemical Geology, 278(1-2): 38-57. https://doi.org/10.1016/j.chemgeo.2010.09.001
      Fu, Y., Guo, C., 2021. Metallogenesis and Mineralization Backgrounds of Neoproterozoic Cryogenian Manganese Deposits in Nanhua Basin. Geological Review, 67(4): 973-991 (in Chinese with English abstract).
      Guo, Y., Li, Y. S., Ling, Y., et al., 2018. The Sedimentary Geochemical Characteristics and Metallogenic Mechanism of Manganese-Bearing Rock Series in Southeastern Chongqing, China. Acta Geologica Sinica, 92(11): 2331-2348 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2018.11.009
      He, M. C., Ding, Z. J., Wang, X., et al., 2023. Geochemical Characteristics of Niutitang Formation in Zoumazhen Area, Hefeng, Hubei Province: Provenance, Paleoweathering, Sedimentary Environment and Tectonic Setting. Earth Science, 48(9): 3280-3295 (in Chinese with English abstract).
      Hein, J. R., Hsueh-Wen, Y., Gunn, S. H., et al., 1994. Composition and Origin of Hydrothermal Ironstones from Central Pacific Seamounts. Geochimica et Cosmochimica Acta, 58(1): 179-189. https://doi.org/10.1016/0016-7037(94)90455-3
      Høgdahl, O. T., Melsom, S., Bowen, V. T., 1968. Neutron Activation Analysis of Lanthanide Elements in Sea Water. Advances in Chemistry, 73(73): 308-325. https://doi.org/10.1021/ba-1968-0073.ch019
      Hu, J. J., Ma, Y. S., Wang, Z. X., et al., 2017. Palaeoenvironment and Palaeoclimate of the Middle to Late Jurassic Revealed by Geochemical Records in Northern Margin of Qaidam Basin. Journal of Palaeogeography (Chinese Edition), 19(3): 480-490 (in Chinese with English abstract).
      Hu, R., Li, S. Q., Wang, W., et al., 2016. Source Characteristics of Tillite the Nantuo Formation in Three Gorges, Northern Yangtze Block: Evidences from Zircon Ages and Geochemical Composition. Earth Science, 41(10): 1630-1654 (in Chinese with English abstract).
      Ji, Z. L., Liu, X. F., 2023. New Insights into the Cryogenian Nantuo Formation in the East Yangtze Gorges Area. Acta Geologica Sinica, 97(6): 1753-1765 (in Chinese with English abstract).
      Jiang, W. J., Qin, M. K., Fan, H. H., et al., 2023. Paleoclimate Evolution and Uranium Mineralization during the Deposition of Uranium-Bearing Rocks in the Southwest of Songliao Basin. Earth Science, 48(3): 1232-1245 (in Chinese with English abstract).
      Li, F. J., Lei, Y. L., Gong, G. L., et al., 2019. Geochemical Characteristics and Sedimentary Environment Analysis from Datangpo Formation in Neoproterozoic Nanhua System, Southwestern Hunan Province—An Example from Zhaodong Manganese Ore Deposits in Jingzhou County, Hunan Province, China. Earth Science, 44(10): 3484-3494 (in Chinese with English abstract).
      Li, M. L., Tian, J. C., Fang, X. L., et al., 2019. Mudstones from the Topmost Part of the Datangpo Formation in the Zouma Area, Western Hubei: LA-ICP-MS Zircon U-Pb Dating and Its Geological Implications. Sedimentary Geology and Tethyan Geology, 39(1): 22-31 (in Chinese with English abstract). doi: 10.3969/j.issn.1009-3850.2019.01.003
      Li, M. L., Yang, B. Y., Zheng, D. S., et al., 2021. Study on the Paleoclimate during the Datangpo Interglacial Stage of the Nanhua Period in the Zouma Area, Western Hubei Province. Geological Review, 67(1): 39-55 (in Chinese with English abstract).
      Liu, P. J., Li, X. H., Chen, S. M., et al., 2015. New SIMS U-Pb Zircon Age and Its Constraint on the Beginning of the Nantuo Glaciation. Science Bulletin, 60(10): 958-963. https://doi.org/10.1007/s11434-015-0790-3
      Liu, X. F., Hu, Z. R., Zeng, L. X., et al., 1983. Origin and Characteristics of Sedimentary Facies of Sinian Manganese Deposits in Guizhou. Acta Sedimentologica Sinica, 1(4): 106-116, 138-139 (in Chinese with English abstract).
      Ma, Y., Hu, Z. X., 2021. Regional Geology of China: Hubei. Geological Publishing House, Beijing (in Chinese).
      Ma, Z. X., Luo, L., Liu, X. T., et al., 2016. Palaeoenvironment of the Datangpo Formation of Nanhua System in Xiaochayuan Manganese Deposit in Xiushan Area of Chongqing. Journal of Palaeogeography (Chinese Edition), 18(3): 473-486 (in Chinese with English abstract).
      Marchig, V., Gundlach, H., Möller, P., et al., 1982. Some Geochemical Indicators for Discrimination between Diagenetic and Hydrothermal Metalliferous Sediments. Marine Geology, 50(3): 241-256. https://doi.org/10.1016/0025-3227(82)90141-4
      McLennan, S. M., 1993. Weathering and Global Denudation. The Journal of Geology, 101(2): 295-303. https://doi.org/10.1086/648222
      Nagarajan, R., Madhavaraju, J., Nagendra, R., et al., 2007. Geochemistry of Neoproterozoic Shales of the Rabanpalli Formation, Bhima Basin, Northern Karnataka, Southern India: Implications for Provenance and Paleoredox Conditions. Revista Mexicana de Ciencias Geológicas, 24(2): 150-160.
      Och, L. M., Shields-Zhou, G. A., 2012. The Neoproterozoic Oxygenation Event: Environmental Perturbations and Biogeochemical Cycling. Earth-Science Reviews, 110(1-4): 26-57. https://doi.org/10.1016/j.earscirev.2011.09.004
      Polgári, M., Gyollai, I., Fintor, K., et al., 2019. Microbially Mediated Ore-Forming Processes and Cell Mineralization. Frontiers in Microbiology, 10: 2731. doi: 10.3389/fmicb.2019.02731
      Qi, L., Yu, W. C., Du, Y. S., et al., 2015. Paleoclimate Evolution of the Cryogenian Tiesi'ao Formation Datangpo Formation in Eastern Guizhou Province: Evidence from the Chemical Index of Alteration. Geological Science and Technology Information, 34(6): 47-57 (in Chinese with English abstract).
      Schröder, S., Grotzinger, J. P., 2007. Evidence for Anoxia at the Ediacaran-Cambrian Boundary: The Record of Redox-Sensitive Trace Elements and Rare Earth Elements in Oman. Journal of the Geological Society, 164(1): 175-187. https://doi.org/10.1144/0016-76492005-022
      Tan, M. T., Lu, Z. X., Zhang, Y., 2009. Preliminary Analysis on Genesis of Manganese Deposit in Datangpo Formation, Western Hubei Province. Resources Environment & Engineering, 23(2): 108-113 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-1211.2009.02.005
      Tang, S. Y., 1990. Isotope Geological Study of Manganese Deposit in Minle Area, Hunan Province. Acta Sedimentologica Sinica, 8(4): 77-84 (in Chinese with English abstract).
      Tribovillard, N., Algeo, T. J., Lyons, T., et al., 2006. Trace Metals as Paleoredox and Paleoproductivity Proxies: An Update. Chemical Geology, 232(1-2): 12-32. https://doi.org/10.1016/j.chemgeo.2006.02.012
      Wang, J., Duan, T. Z., Xie, Y., et al., 2012. The Tectonic Evolution and Its Oil and Gas Prospect of Southeast Margin of Yangtze Block. Geological Bulletin of China, 31(11): 1739-1749 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2012.11.001
      Wang, J., Li, F. J., Zhang, X. H., et al., 2023. Genetic Analysis of "Datangpo Type" Manganese Deposit in Qianyang Basin, Southwest Hunan: A Case Study of Jingzhou, Hunan Province. Geology in China, 50(1): 249-263 (in Chinese with English abstract).
      Wu, C. D., Yang C. Y., Chen Q. Y., 1999. The Origin and Geochemical Characteristics of Upper Sinain-Lower Cambrian Black Shales in Western Hunan. Acta Petrologica et Mineralogica, 18(1): 26-39 (in Chinese with English abstract).
      Xu, Q., Jiang, T., Hou, L. C., et al., 2021. Detrital Zircon Compositions of U-Pb Ages and Hf Isotope for Sandstone of Liantuo Formation from Three Gorges Area, Yangtze Block and Its Geological Significance. Earth Science, 46(4): 1217-1230 (in Chinese with English abstract).
      Yang, R. D., Gao, J. B., Xu, H., et al., 2022. Ore-Forming Source Analysis of Huge Manganese Deposits in the Neoproterozoic Datangpo Stage, Guizhou Province, China. Acta Geologica Sinica, 96(5): 1815-1826 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2022.05.019
      Yang, S. X., Pang, K. T., 2006. Mineralization Model for the Manganese Deposits in Northwestern Hunan: An Example from Minle Manganese Deposit in Huayuan, Hunan. Sedimentary Geology and Tethyan Geology, 26(2): 72-80 (in Chinese with English abstract). doi: 10.3969/j.issn.1009-3850.2006.02.015
      Young, G. M., Nesbitt, H. W., 1999. Paleoclimatology and Provenance of the Glaciogenic Gowganda Formation (Paleoproterozoic), Ontario, Canada: A Chemostratigraphic Approach. Geological Society of America Bulletin, 111(2): 264-274. https://doi.org/10.1130/0016-7606(1999)1110264: papotg>2.3.co;2 doi: 10.1130/0016-7606(1999)1110264:papotg>2.3.co;2
      Yu, W. C., Algeo, T. J., Du, Y. S., et al., 2016. Genesis of Cryogenian Datangpo Manganese Deposit: Hydrothermal Influence and Episodic Post-Glacial Ventilation of Nanhua Basin, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 459: 321-337. https://doi.org/10.1016/j.palaeo.2016.05.023
      Yu, W. C., Du, Y. S., Zhou, Q., et al., 2016. LA-ICP-MS Zircon U-Pb Dating from the Nanhuan Datangpo Formation in Songtao Area, East Guizhou and Its Geological Significance. Geological Review, 62(3): 539-549 (in Chinese with English abstract).
      Yu, W. C., Polgári, M., Gyollai, I., et al., 2019. Microbial Metallogenesis of Cryogenian Manganese Ore Deposits in South China. Precambrian Research, 322: 122-135. https://doi.org/10.1016/j.precamres.2019.01.004
      Zhang, F. F., 2014. Formation Mechanism of Manganese-bearing Formation in Nanhua System in South China and Redox State of Ocean during Nanhua Interglacial Period (Dissertation). Chinese Academy of Geological Sciences, Beijing (in Chinese with English abstract).
      Zhang, F. F., Yan, B., Guo, Y. L., et al., 2013. Precipitation Form of Manganese Ore Deposits in Gucheng, Hubei Province, and Its Paleoenvironment Implication. Acta Geologica Sinica, 87(2): 245-258 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2013.02.009
      Zhang, G. C., 2020. Sedimentary Facies and Lithofacies Palaeogeography of Nanhua Datangpo Formation in the Northern Margin of Yangtze River (Dissertation). Chengdu University of Technology, Chengdu (in Chinese with English abstract).
      Zhang, M. L., Guo, W., Shen, J., et al., 2017. New Progress on Geochemical Indicators of Ancient Oceanic Redox Condition. Geological Science and Technology Information, 36(4): 95-106 (in Chinese with English abstract).
      Zhang, T. F., Sun, L. X., Zhang, Y., et al., 2016. Geochemical Characteristics of the Jurassic Yan'an and Zhiluo Formations in the Northern Margin of Ordos Basin and Their Paleoenvironmental Implications. Acta Geologica Sinica, 90(12): 3454-3472 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2016.12.013
      Zheng, H. F., Song, H. X., Yang, Z. R., et al., 2019. Element Geochemical Characteristics of Datangpo Formation of Nanhua System in Shennongjia Area of Hubei, China. Journal of Earth Sciences and Environment, 41(3): 316-326 (in Chinese with English abstract).
      Zhou, Q., Du, Y. S., Yuan, L. J., et al., 2017. Exploration Models of Ancient Natural Gas Seep Sedimentary-Type Manganese Ore Deposit: A Case Study of the Nanhua Period "Datangpo" Type Manganese Ore in the Conjunction Area of Guizhou, Hunan and Chongqing. Acta Geologica Sinica, 91(10): 2285-2298 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2017.10.010
      Zhu, X. K., Peng, Q. Y., Zhang, R. B., et al., 2013. Geological and Geochemical Characteristics of the Daotuo Super-Large Manganese Ore Deposit at Songtao County in Guizhou Province. Acta Geologica Sinica, 87(9): 1335-1348 (in Chinese with English abstract).
      包秀娟, 2020. 元古代晚期无冰期气候条件下的旋回地层研究(博士学位论文). 北京: 中国地质大学.
      曹亮, 胡尚军, 段其发, 等, 2019. 鄂西长阳锰矿稳定同位素特征及其地质意义. 华南地质与矿产, 35(2): 226-237. doi: 10.3969/j.issn.1007-3701.2019.02.008
      曹默雷, 陈建平, 2022. 由层序地层学角度分析大塘坡式锰矿沉积过程——以湘西北民乐锰矿为例. 沉积学报, 40(4): 1083-1094.
      冯连君, 储雪蕾, 张启锐, 等, 2003. 化学蚀变指数(CIA)及其在新元古代碎屑岩中的应用. 地学前缘, 10(4): 539-544. doi: 10.3321/j.issn:1005-2321.2003.04.019
      付勇, 郭川, 2021. 南华盆地新元古代成冰纪成锰作用及其成矿背景. 地质论评, 67(4): 973-991.
      郭宇, 李余生, 凌云, 等, 2018. 渝东南地区含锰岩系沉积地球化学特征及成因机制. 地质学报, 92(11): 2331-2348. doi: 10.3969/j.issn.0001-5717.2018.11.009
      何谋惷, 丁振举, 王翔, 等, 2023. 湖北鹤峰走马镇地区牛蹄塘组岩石地球化学特征: 物源、古风化、沉积环境和构造背景. 地球科学, 48(9): 3280-3295.
      胡俊杰, 马寅生, 王宗秀, 等, 2017. 地球化学记录揭示的柴达木盆地北缘地区中‒晚侏罗世古环境与古气候. 古地理学报, 19(3): 480-490.
      胡蓉, 李双庆, 王伟, 等, 2016. 扬子北部三峡地区南沱组冰碛岩的物源特征: 锆石年龄和地球化学证据. 地球科学, 41(10): 1630-1654. doi: 10.3799/dqkx.2016.121
      季泽龙, 刘晓峰, 2023. 峡东地区成冰系南沱组新认识. 地质学报, 97(6): 1753-1765.
      江文剑, 秦明宽, 范洪海, 等, 2023. 松辽盆地西南部含铀岩系沉积时的古气候演变及其与铀成矿关系. 地球科学, 48(3): 1232-1245. doi: 10.3799/dqkx.2022.388
      李凤杰, 雷玉龙, 龚光林, 等, 2019. 湘西南南华系大塘坡组锰矿地球化学特征与沉积环境分析: 以湖南靖州照洞锰矿床为例. 地球科学, 44(10): 3484-3494. doi: 10.3799/dqkx.2019.075
      李明龙, 田景春, 方喜林, 等, 2019. 鄂西走马地区大塘坡组顶部泥岩碎屑锆石LA-ICP-MS U-Pb年龄及其地质意义. 沉积与特提斯地质, 39(1): 22-31. doi: 10.3969/j.issn.1009-3850.2019.01.003
      李明龙, 杨波涌, 郑德顺, 等, 2021. 鄂西走马地区南华纪大塘坡间冰期古气候研究. 地质论评, 67(1): 39-55.
      刘巽锋, 胡肇荣, 曾励训, 等, 1983. 贵州震旦纪锰矿沉积相特征及其成因探讨. 沉积学报, 1(4): 106-116, 138-139.
      马元, 胡正祥, 2021. 中国区域地质志•湖北志. 北京: 地质出版社.
      马志鑫, 罗亮, 刘喜停, 等, 2016. 重庆秀山小茶园锰矿南华系大塘坡组古环境. 古地理学报, 18(3): 473-486.
      齐靓, 余文超, 杜远生, 等, 2015. 黔东南华纪铁丝坳期‒大塘坡期古气候的演变: 来自CIA的证据. 地质科技情报, 34(6): 47-57.
      谭满堂, 鲁志雄, 张嫣, 2009. 鄂西地区南华系大塘坡期锰矿成因浅析——以长阳古城锰矿为例. 资源环境与工程, 23(2): 108-113. doi: 10.3969/j.issn.1671-1211.2009.02.005
      唐世瑜, 1990. 湖南花垣民乐震旦系锰矿床同位素地质研究. 沉积学报, 8(4): 77-84.
      王佳, 李凤杰, 张玺华, 等, 2023. 湘西南黔阳盆地"大塘坡式"锰矿成因分析: 以湖南靖州地区为例. 中国地质, 50(1): 249-263.
      王剑, 段太忠, 谢渊, 等, 2012. 扬子地块东南缘大地构造演化及其油气地质意义. 地质通报, 31(11): 1739-1749. doi: 10.3969/j.issn.1671-2552.2012.11.001
      吴朝东, 杨承运, 陈其英, 1999. 湘西黑色岩系地球化学特征和成因意义. 岩石矿物学杂志, 18(1): 26-39.
      徐琼, 江拓, 侯林春, 等, 2021. 扬子陆块三峡地区莲沱组砂岩中碎屑锆石U⁃Pb年龄、Hf同位素组成及其地质意义. 地球科学, 46(4): 1217-1230. doi: 10.3799/dqkx.2020.168
      杨瑞东, 高军波, 徐海, 等, 2022. 贵州新元古代大塘坡期巨量锰矿成矿物质来源分析. 地质学报, 96(5): 1815-1826. doi: 10.3969/j.issn.0001-5717.2022.05.019
      杨绍祥, 劳可通, 2006. 湘西北锰矿床成矿模式研究——以湖南花垣民乐锰矿床为例. 沉积与特提斯地质, 26(2): 72-80.
      余文超, 杜远生, 周琦, 等, 2016. 黔东松桃地区大塘坡组LA⁃ICP⁃MS锆石U⁃Pb年龄及其地质意义. 地质论评, 62(3): 539-549.
      张飞飞, 2014. 华南南华系含锰建造的形成机制与南华纪间冰期海洋的氧化还原状态(硕士学位论文). 北京: 中国地质科学院.
      张飞飞, 闫斌, 郭跃玲, 等, 2013. 湖北古城锰矿的沉淀形式及其古环境意义. 地质学报, 87(2): 245-258.
      张高冲, 2020. 扬子北缘南华系大塘坡组沉积相与岩相古地理(硕士学位论文). 成都: 成都理工大学.
      张明亮, 郭伟, 沈俊, 等, 2017. 古海洋氧化还原地球化学指标研究新进展. 地质科技情报, 36(4): 95-106.
      张天福, 孙立新, 张云, 等, 2016. 鄂尔多斯盆地北缘侏罗纪延安组、直罗组泥岩微量、稀土元素地球化学特征及其古沉积环境意义. 地质学报, 90(12): 3454-3472.
      郑海峰, 宋换新, 杨振瑞, 等, 2019. 湖北神农架地区南华系大塘坡组元素地球化学特征. 地球科学与环境学报, 41(3): 316-326.
      周琦, 杜远生, 袁良军, 等, 2017. 古天然气渗漏沉积型锰矿床找矿模型——以黔湘渝毗邻区南华纪"大塘坡式"锰矿为例. 地质学报, 91(10): 2285-2298.
      朱祥坤, 彭乾云, 张仁彪, 等, 2013. 贵州省松桃县道坨超大型锰矿床地质地球化学特征. 地质学报, 87(9): 1335-1348.
    • 加载中
    图(6) / 表(3)
    计量
    • 文章访问数:  253
    • HTML全文浏览量:  145
    • PDF下载量:  42
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-09-18
    • 网络出版日期:  2025-02-10
    • 刊出日期:  2025-01-25

    目录

      /

      返回文章
      返回