Development Mechanism of Composite Igneous Rock Buried-Hill Reservoir in Huizhou Sag, the Pearl River Mouth Basin
-
摘要: 珠江口盆地惠州凹陷复合岩浆岩潜山经历燕山期-喜山期多期构造演化成山过程,发育裂缝-溶蚀型储层,为了解潜山储层发育机制,利用锆石U-Pb定年、铸体薄片观察对惠州26-6潜山储层裂缝成因和期次及成岩演化过程开展了精细研究,明确了惠州26-6复合岩浆岩潜山储层发育机制.惠州26-6潜山岩性为花岗岩、闪长岩、玄武安山岩,至少经历6期构造-岩浆活动. 花岗岩发生碎裂岩化,闪长岩与玄武安山岩出现片岩化. 166~145 Ma玄武质火山岩喷发;145~134 Ma受燕山中期构造运动影响发生区域变质作用导致片岩化、片麻岩化,形成早期裂缝;~134 Ma、120~110 Ma伴随伸展作用有两期酸性岩浆侵入玄武质火山岩,发育花岗岩岩脉、硅质岩脉和碳酸盐岩脉,火山通道处发生阳起石化,伴随绿帘石化和绿泥石化;110~100 Ma之间发育一期张裂隙,102~87 Ma有岩浆热液上涌,裂缝中半充填白云石、浊沸石等;受晚白垩世构造转换作用影响区域大规模隆升,风化作用强烈,风化裂缝和溶蚀缝发育;裂陷期受珠琼一幕和珠琼二幕运动影响,有两期岩浆热液活动,裂缝中充填绿泥石、浊沸石等;南海运动和新构造运动时期产生微裂缝沟通烃源岩,有机酸进入对储层进一步溶蚀改造,裂缝未充填或半充填,13~5 Ma油气大规模充注,油气成藏. 该研究为综合评价研究区储层特征、明确天然气富集规律提供了依据.Abstract: The composite igneous rock buried hill in Huizhou Sag of the Pearl River Mouth Basin, experienced multi-stage tectonic evolution from Yanshanian to Himalayan, and developed fracture dissolution type reservoirs. In order to clarify the mechanism of buried hill reservoirs, the author conducted a detailed study on the fracture cause, phase and diagenetic evolution of Huizhou 26-6 buried-hill reservoir with zircon U-Pb dating and casting thin section observation. Huizhou 26-6 buried-hill is composed of granite, diorite and basaltic andesite, which have undergone at least six stages of tectonic magmatic activity.Granites suffered cataclastic, diorite and basaltic andesite are schistotized. At 166 to 145 Ma, basaltic volcanic rocks erupted. At 145 to 134 Ma, regional metamorphism occurred under the influence of the mid-Yanshan tectonic movement, resulting in gneissic and gneissic mineralization of basaltic volcanic rocksand early fractures. At ~134 Ma and 120 to 110 Ma, acidic magma invaded of basaltic volcanic rocks in two stages with extension, and granite, siliceous and carbonate veins developed. Actinization, epidotization and chlorite occurred at the volcanic passage.A first phase of tensile fissure developed between 110 and 100 Ma, and magmatic hydrothermal upwelling between 102 and 87 Ma, and the fissure was half-filled with dolomite and turbidite. Large scale uplift of the area affected by Late Cretaceous tectonic transfor Mation, strong weathering, and developed weathering cracks and dissolution cracks; During the rifting period, there were two periods of Mag Matic hydrother Mal activity influenced by the movements of the first and second episodes of Zhuqiong, and the cracks were filled with chlorite and turbidite; During the South China Sea Movement and neotectonics, micro fractures were generated to connect Source rock. Organic acids entered the reservoir for further dissolution and transfor Mation. The fractures were not filled or half filled. Large scale oil and gas filling and accumulation took place at 5 to 13 Ma. This study provides a basis for comprehensive evaluation of reservoir characteristics and clarification of natural gas enrichment patterns in the study area.
-
图 3 HZ26-6潜山岩性和储集空间类型显微照片
a.H1井,4 027 m,细-微粒斜长角闪片岩;b.H1井,4 027 m,细-微粒斜长角闪片岩;c. H1井,3 796 m,阳起石片岩,岩石经历过碎裂岩化变形,见葡萄石(Prh)+绿泥石细脉;d.H3井,4 219 m,片岩,裂缝发育;e. H1井,3 713 m,片麻状细粒闪长岩;f. H3井,4 277 m,片麻状细-微粒闪长岩;g. H3井,4 395 m,碎裂花岗岩,见剪切缝,;h. H3井,4 395 m,碎裂花岗岩,见张裂缝;i. H1井,4 235 m,中粒黑云母二长花岗质碎斑岩;j.H7井,4 251 m,辉绿玢岩;k.H1井,3 796 m,阳起石片岩,浊沸石充填并溶蚀;l. H3井,4 119 m,花岗岩,溶蚀缝中充填有机质
Fig. 3. Microscopic photos of lithology and reservoir space types of HZ26-6 buried hill
图 10 惠州26-6潜山Ⅰ~Ⅲ期岩浆活动裂缝发育微观特征
a. H1井,3 713 m,片麻状细粒闪长岩,早期裂隙带发育碎粉岩,晚期裂隙内贯入花岗细晶岩脉,单偏光;b. 与a同视域,正交光;c. H1,3 812 m,含方解石正长岩脉的阳起石片岩,单偏光;d. H1,3 812 m,与c同视域,正交光;e. H3,4 072 m,花岗质构造角砾岩,单偏光;f. H3,4 072 m,与e同视域,正交光;g. H3,4 185 m,含花岗岩脉的浅闪石片岩,单偏光;h. H3,4 185 m,与g同视域,正交光
Fig. 10. Microscopic characteristics of I~III stage magmatic activity fracture development in Huizhou 26-6 buried hill
图 12 惠州26-6潜山构造喜山期裂缝发育微观特征
a. H7井,4 172 m,碎裂花岗岩,裂缝中充填白云石与浊沸石,单偏光;b. H7井,4 172 m,与a同视域,正交光;c. H7井,4 172 m,a视域向右延伸的裂缝微观特征,在早期裂缝基础上发育溶蚀缝,溶蚀缝中先后充填绿泥石、浊沸石、黄铁矿,单偏光;d. H7井,4 172 m,与c同视域,正交光;e. H7井,4 172 m,未充填溶蚀缝中见有机质,单偏光;f. H3井,4 298.5 m,未充填溶蚀缝和溶蚀孔中见有机质,单偏光;g. H3,4 078.4 m,花岗岩,早期裂缝中充填方解石与浊沸石,晚期裂缝开启早期裂缝,晚期裂缝附近见溶蚀作用,单偏光;h. H3,4 078.4 m,与g同视域,正交光
Fig. 12. Microscopic characteristics of fracture development in Himalayan period of Huizhou 26-6 buried hill structure
表 1 惠州26-6潜山各井锆石定年年龄
Table 1. Zircon dating age of each well in Huizhou 26-6 buried hill
序号 井号 深度(m) 岩性 锆石定年峰值年龄(Ma) Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ 166~145 140~125 120~110 102~87 ~65 42~35 1 H1 3 747~3 757 阳起石片岩 153.3
(n=21)116
(n=26)96~99
(n=2)2 H1 3 847~3 857 角闪片岩(原岩玄武岩) 154.3
(n=15)116
(n=11)98~102
(n=3)3 H1 4 047~4 057 角闪岩(原岩玄武岩) 162.7
(n=29)140~127
(n=5)4 H1 4 097~4 107 片岩(原岩基性火山岩) 163.8
(n=69)132~134
(n=2)5 H1 4 187~4 197 角闪片岩(原岩基性火山岩) 155.4
(n=93)126~135
(n=5)116~117
(n=2)6 H1 4 237~4 247 花岗岩 133.8
(n=84)7 H3 4 070~4 080 花岗质构造角砾岩 110
(n=85)95
(n=1)8 H3 4 180~4 190 片岩(原岩基性火山岩) 145
(n=72)9 H3 4 395~4 405 花岗岩 113.4
(n=68)87~96
(n=2)63
(n=1)10 H4 4 027~4 067 蚀变闪长岩 115
(n=56)38~42
(n=2)11 H4 4 145~4 180 角闪片岩(原岩基性火山岩) 115
(n=48)12 H4 4 260~4 290 角闪片岩 151
(n=12)115
(n=56)35
(n=1)13 H4 4 345~4 350 花岗岩 113
(n=55)14 H7 4 085~4 095 碎裂花岗岩 111.4
(n=101)15 H7 4 330~4 340 花岗岩 113.2
(n=97)注:Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ、Ⅵ指岩浆活动期次;n指对应年龄峰值的锆石数量 -
Deng, J., Zhou, M. S., Li, X. J., et al., 2022. Identification of Lithology and Comprehensive Evaluation of Fracture Logging in Metamorphic Rock Buried Hills. Proceedings of the 2022 Geophysical Exploration Technology Symposium of the Chinese Petroleum Society, 1730-1733(in Chinese). Gao, Y. D., Zhang, X. T., Zhang, L. L., et al., 2022. Geological Characteristics and Tectonic Settings of Mesozoic Continental Margin Magmatic Arc in Pearl River Mouth Basin. Earth Science, 47(7): 2317-2327. https://doi.org/10.3799/dqkx.2021.247(in Chinese with English abstract). Jiang, X. Y., Song, T., Zhou, X. Y., et al., 2022. Fracture Prediction of Granite Buried-Hill Reservoir Using Scattering Imaging Data. Proceedings of the 2022 Geophysical Exploration Technology Symposium of the Chinese Petroleum Society, 1012-1014(in Chinese). Li, H. M., Wang, P. J., Xu, S. L., et al., 2022. Reservoir Characteristics and Controlling Factors of Prepaleogene Granitic Buried-Hill in Songnan Low Uplift, Qiongdongnan Basin. World Geology, 2022(8): 568-582(in Chinese with English abstract). Li, N., Zheng, Q. W., Chen, L., et al., 2022. Analysis of Main Controlling Factors and Effectiveness of Fractured Reservoirs in Weathering Crust of Bedrock Buried Hill in Dongping Area, Journal of Yangtze University (Natural Science Edition), 19(6): 40-47(in Chinese with English abstract). Li, X. J., Zhang, R. Y., 2022. New Technology for Logging Evaluation of Fractured Formations. Proceedings of the 2022 Geophysical Exploration Technology Symposium of the Chinese Petroleum Society, 1734-1737(in Chinese). Li, X. Y., Qin, R. B., 2023. Method of Fracture Characterization and Productivity Prediction of 19-6 Buried-Hill Fractured Reservoirs, Bohai Bay Basin. Earth Science, 48(2): 475-487(in Chinese with English abstract). Liu, Z. B., Cheng, Q., Lü, Z. B., et al., 2022. Reservoir Characteristics and Development Model of Archean Metamorphic Buried Hill in Jinzhou South Oilfield, Bohai Sea. Journal of Jilin University (Earth Science Edition), 52(3): 829-839 (in Chinese with English abstract). Mao, M., Yuan, S. B., Zhang, L. G., et al., 2022. The Relationship between Mineral Composition Characteristics and Porosity of Altered Diorite Buried Hill Reservoir. Unconventional Oil & Gas, 9(6): 14-19, 33 (in Chinese with English abstract). Shi, H. S., Gao, Y. D., Liu, J., et al., 2022. Characteristics of Hydrocarbon Source-Migration-Accumulation in Huizhou 26 Sag and Implications of the Major Huizhou 26-6 Discovery in Pearl River Mouth Basin. Oil & Gas Geology, 43(4): 15(in Chinese with English abstract). Tang, L. S., Fan, C. W., Zhang, Y., et al., 2023. Development, Evolution and Reservoir Control of Granite Buried Hill in Qiongdongnan Basin. Marine Geology Frontiers, 39(3): 81-90(in Chinese) Wei, X. D., Dou, L. R., Xia, Y. L., et al., 2022. The Integration of Geomorphic Parameters, Amplitude and Frequency Attributes and Its Application in the Prediction of Buried Hill Weathering Crust Reservoir: a Case Study of R-P Block in Bongor Basin. Proceedings of the 2022 Geophysical Exploration Technology Symposium of the Chinese Petroleum Society, 1391-1394 (in Chinese). Wiedenbeck, M., Allé, P., Corfu, F., et al., 1995. Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and Ree Analyses. Geostandards Newsletter, 19(1): 1-23. https://doi.org/10.1111/j.1751-908x.1995.tb00147.x Wu, T. T., Zhang, L. L., Wu, Z., et al., 2022. Characteristics and Dynamic Background of Pre-Existing Fractures in Pre-Cenozoic of Pearl River Mouth Basin: Cases of Huizhou Sag and Panyu 4 Depression. Marine Geology Frontiers, 38(6): 54-62(in Chinese with English abstract). Wu, Y. B., Zheng, Y. F., 2004. Zircon Genetic Mineralogy and Its Constraints on U-Pb Age Interpretation. Chinese Science Bulletin, 49: 1589-1604(in Chinese). doi: 10.1360/csb2004-49-16-1589 Yang, D. S., Liu, Z. F., Wu, B., et al., 2022. Tectonic Evolution and Its Control on Hydrocarbon Accumulation of Buried Hill in the South Section of Liaodong Bulge, Bohai Sea. China Petroleum Exploration, 27(3): 78-87 (in Chinese with English abstract). Yi, J., Li, H. Y., Shan, X. L., et al., 2022. Division and Identification of Vertical Reservoir Units in Archaeozoic Metamorphic Buried Hill of Bozhong Sag, Bohai Bay Basin, East China. Petroleum Exploration and Development, 49(6): 1107-1118(in Chinese with English abstract). Zhang, M., Wu, Z. P., Wang, Y. S., et al., 2023. Development Law and Genetic Types of Buried-Hills in the Jiyang Depression, Bohai Bay Basin. Earth Science, 48(2): 488-502(in Chinese with English abstract). 邓健, 周明顺, 李晓娇, 等, 2022. 变质岩潜山岩性识别及裂缝测井综合评价. 中国石油学会2022年物探技术研讨会论文集, 1730-1733. 高阳东, 张向涛, 张丽丽, 等, 2022. 珠江口盆地中生代陆缘岩浆弧地质特征及构造背景. 地球科学, 47(7): 2317-2327. doi: 10.3799/dqkx.2021.247 姜晓宇, 宋涛, 周晓越, 等, 2022. 利用散射成像数据预测花岗岩潜山油藏裂缝. 中国石油学会2022年物探技术研讨会论文集, 1012-1014. 李鸿明, 王璞珺, 徐守立, 等, 2022. 琼东南盆地松南低凸起前古近系花岗岩潜山储层特征与控制因素. 世界地质, 2022(8): 568-582. 李娜, 郑庆伟, 陈莉, 等, 2022. 东坪地区基岩潜山风化壳裂缝性储层的主控因素及有效性分析. 长江大学学报(自然科学版), 19(6): 40-47. 李晓娇, 张睿荫, 2022. 裂缝性地层测井评价新技术. 中国石油学会2022年物探技术研讨会论文集, 1734-1737. 李雄炎, 秦瑞宝, 2023. 渤海湾盆地渤中19-6气田潜山储层裂缝表征与产能预测方法. 地球科学, 48(2): 475-487. doi: 10.3799/dqkx.2022.299 刘宗宾, 程奇, 吕坐彬, 等, 2022. 渤海海域锦州南油田太古宇变质岩潜山储层特征及其发育模式. 吉林大学学报(地球科学版), 52(3): 829-839. 毛敏, 袁胜斌, 张立刚, 等, 2022. 蚀变闪长岩潜山储层矿物组分特征与孔隙度的关系. 非常规油气, 9(6): 14-19, 33. 施和生, 高阳东, 刘军, 等, 2022. 珠江口盆地惠州26洼"源-汇-聚"特征与惠州26-6大油气田发现启示. 石油与天然气地质, 43(4): 15. 唐历山, 范彩伟, 张焱, 等, 2023. 琼东南盆地花岗岩潜山发育演化及控藏作用. 海洋地质前沿, 39(3): 81-90. 魏小东, 窦立荣, 夏亚良, 等, 2022. 地貌形态参数、振幅和频率属性融合及在潜山风化壳储层预测中的应用——以Bongor盆地R-P区块为例. 中国石油学会2022年物探技术研讨会论文集, 1391-1394. 吴婷婷, 张丽丽, 吴哲, 等, 2022. 珠江口盆地前新生代先存断裂特征及动力背景: 以惠州凹陷和番禺4洼为例. 海洋地质前沿, 38(6): 54-62. 吴元保, 郑永飞, 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49: 1589-1604. 杨东升, 刘志峰, 吴斌, 等, 2022. 渤海海域辽东凸起南段潜山构造演化及其对油气成藏的控制. 中国石油勘探, 27(3): 78-87. 衣健, 李慧勇, 单玄龙, 等, 2022. 渤海湾盆地渤中凹陷太古宇变质岩潜山储集层垂向结构单元划分与识别. 石油勘探与开发, 49(6): 1107-1118. 张勐, 吴智平, 王永诗, 等, 2023. 渤海湾盆地济阳坳陷潜山发育规律及成因类型划分. 地球科学, 48(2): 488-502. doi: 10.3799/dqkx.2022.296 -