• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    南海西南次海盆陆缘演化与幕式扩张的岩浆‒构造‒地层记录

    杨天一 唐勇 任建业 巢鹏

    杨天一, 唐勇, 任建业, 巢鹏, 2025. 南海西南次海盆陆缘演化与幕式扩张的岩浆‒构造‒地层记录. 地球科学, 50(1): 195-216. doi: 10.3799/dqkx.2024.012
    引用本文: 杨天一, 唐勇, 任建业, 巢鹏, 2025. 南海西南次海盆陆缘演化与幕式扩张的岩浆‒构造‒地层记录. 地球科学, 50(1): 195-216. doi: 10.3799/dqkx.2024.012
    Yang Tianyi, Tang Yong, Ren Jianye, Chao Peng, 2025. Rift Evolution and Magmatic-Tectonic-Stratigraphic Records of Episodic Seafloor Spreading at Southwest Sub-Basin of South China Sea. Earth Science, 50(1): 195-216. doi: 10.3799/dqkx.2024.012
    Citation: Yang Tianyi, Tang Yong, Ren Jianye, Chao Peng, 2025. Rift Evolution and Magmatic-Tectonic-Stratigraphic Records of Episodic Seafloor Spreading at Southwest Sub-Basin of South China Sea. Earth Science, 50(1): 195-216. doi: 10.3799/dqkx.2024.012

    南海西南次海盆陆缘演化与幕式扩张的岩浆‒构造‒地层记录

    doi: 10.3799/dqkx.2024.012
    基金项目: 

    国家重点研发计划项目 2023YFC2808803

    国家重点研发计划项目 2023YFE0126100

    国家自然科学基金项目 41830537

    国家自然科学基金项目 42206074

    浙江省科技创新领军人才项目 2021R52058

    详细信息
      作者简介:

      杨天一(1998-),男,硕士研究生,主要从事大陆边缘构造演化等方面的研究.ORCID:0009-0001-4308-6479. E-mail:992309473@qq.com

      通讯作者:

      唐勇, ORCID:0000-0003-0896-4771. E-mail:tangyong@sio.org.cn

    • 中图分类号: P736

    Rift Evolution and Magmatic-Tectonic-Stratigraphic Records of Episodic Seafloor Spreading at Southwest Sub-Basin of South China Sea

    • 摘要: 目前对于边缘海背景下被动大陆边缘的形成演化机制仍存在争议,特别是对洋陆转换带的构造特征与形成过程的认识存在明显不足.为了深入探索边缘海背景下南海陆缘与洋陆转换带构造结构与形成演化特征,通过对横跨西南次海盆Ⅴ型尖端地震剖面的解释与研究,识别出莫霍面(Moho)、基底和海底3个一级陆缘界面,划分出细颈化域、超伸展域、原洋域等构造单元;进一步精细解释了共轭陆缘盆地充填层序和多期断裂系统,识别出破裂不整合界面Bi,将陆缘盆地同裂陷期层序(Tg-Bi)划分为S1-S5五个层序,建立了西南次海盆Ⅴ型尖端区域共轭陆缘的构造‒地层格架.构造‒地层格架中S3/S4层序之间的界面CBi、S4/S5之间的界面POBi分别与陆壳破裂和原洋洋壳Ⅰ的破裂对应,记录了西南次海盆共轭陆缘岩石圈伸展破裂过程中发生的重要构造事件.结合断裂活动性和盆地原型的分析,将西南次海盆共轭陆缘同裂陷期的演化划分为伸展、细颈化、超伸展和原洋洋壳四个阶段,建立了西南次海盆共轭陆缘演化模式.还建立了西南次海盆Ⅴ型尖端共轭陆缘地壳的“鳄鱼嘴”结构,识别出总宽度达231 km的两期原洋洋壳.结合外缘高地和同破裂层序(S4-S5)研究,提出两期原洋洋壳的发育与西南次海盆的两幕扩张过程相对应,由原洋洋壳构成了同期洋盆的洋陆转换带.揭示了西南次海盆张开过程中岩石圈的伸展破裂机制与洋脊传播过程中幕式扩张作用对陆缘构造、地层和岩浆作用的影响,对于深入研究南海岩石圈的伸展破裂过程、洋陆转换带的成因以及南海被动陆缘形成的动力学机制具有重要意义.

       

    • 图  1  研究区域海底地形图及地震测线位置(图中红色线条)

      Fig.  1.  Map of the study area located in SW Sub-basin of the SCS (the locations of seismic lines N9 and N10 displayed in red lines in map)

      图  2  N9测线地震剖面

      a.时间剖面; b.解释剖面和Wheeler图; c.时深转换剖面

      Fig.  2.  Reflection seismic line N9 (for location see Fig.1)

      图  3  N10测线地震剖面

      a. 时间剖面; b. 解释剖面和Wheeler图; c. 时深转换剖面

      Fig.  3.  Reflection seismic line N10

      图  4  N9测线北侧陆缘尖端时间剖面(a)与剖面解释及Wheeler图(b)(剖面位置见图 2)

      Fig.  4.  Time migrated seismic profile (a) and interpretation of time migrated seismic profile with Wheeler diagram (b) of northern part of line N9 (for location see Fig.2)

      图  5  N9南侧陆缘尖端时间剖面(a)与剖面解释及Wheeler图(b)(剖面位置见图 2)

      Fig.  5.  Time migrated seismic profile (a) and interpretation of time migrated seismic profile with Wheeler diagram (b) of southern part of line N9 (for location see Fig.2)

      图  6  N10北侧陆缘尖端时间剖面(a)与剖面解释及Wheeler图(b)(剖面位置见图 3)

      Fig.  6.  Time migrated seismic (a) and interpretation of time migrated seismic profile with Wheeler diagram (b) of northern part of line N10 (for location see Fig.3)

      图  7  南海西南次海盆“Ⅴ”型尖端各构造域分布平面图

      a.地形图;b.磁异常图(磁条带解释参考Briais et al.,1993);c.布格重力异常图;d.测线与各构造域图.参考测线中1来自Franke et al.2014);2、10、16、12来自SIO;3、7来自Luo et al.2021);4来自Zhang et al.2020);5、14来自Ding et al.2016);6、8、14来自Song et al.2019);9、15、11、17来自Chang et al.2022

      Fig.  7.  The distribution of tectonic domains of Ⅴ-shaped tip of SW sub-basin of the SCS

      图  8  西南次海盆Ⅴ型尖端原洋域发育演化示意图(演化顺序为a至c)

      Fig.  8.  The proto-oceanic domain evolution of Ⅴ-shaped tip of SW sub-basin of the SCS (the evolution sequence is from a to c)

      图  9  南海与西南次海盆构造演化时间格架

      Fig.  9.  Time frame for the evolution of SCS and SW sub-basin of SCS

      图  10  南海西南次海盆Ⅴ型尖端共轭陆缘演化模式(演化顺序为从a至g)

      Fig.  10.  The conjugate rift margin evolution model of Ⅴ-shaped tip of SW sub-basin of the SCS (the evolution sequence is from a to g)

    • Briais, A., Patriat, P., Tapponnier, P., 1993. Updated Interpretation of Magnetic Anomalies and Seafloor Spreading Stages in the South China Sea: Implications for the Tertiary Tectonics of Southeast Asia. Journal of Geophysical Research: Solid Earth, 98(B4): 6299-6328. https://doi.org/10.1029/92jb02280
      Chang, S. P., Pubellier, M., Delescluse, M., et al., 2022. Crustal Architecture and Evolution of the Southwestern South China Sea: Implications to Continental Breakup. Marine and Petroleum Geology, 136: 105450. https://doi.org/10.1016/j.marpetgeo.2021.105450
      Chao, P., Manatschal, G., Chenin, P., et al., 2021. The Tectono-Stratigraphic and Magmatic Evolution of Conjugate Rifted Margins: Insights from the NW South China Sea. Journal of Geodynamics, 148: 101877. https://doi.org/10.1016/j.jog.2021.101877
      Chao, P., Manatschal, G., Zhang, C. M., et al., 2023. The Transition from Continental to Lithospheric Breakup Recorded in Proto-Oceanic Crust: Insights from the NW South China Sea. GSA Bulletin, 135(3-4): 886-902. https://doi.org/10.1130/b36371.1
      Chenin, P., Schmalholz, S. M., Manatschal, G., et al., 2018. Necking of the Lithosphere: A Reappraisal of Basic Concepts with Thermo-Mechanical Numerical Modeling. Journal of Geophysical Research: Solid Earth, 123(6): 5279-5299. https://doi.org/10.1029/2017jb014155
      Ding, W. W., 2021. Continental Margin Dynamics of South China Sea: From Continental Break-up to Seafloor Spreading. Earth Science, 46(3): 790-800 (in Chinese with English abstract).
      Ding, W. W., Franke, D., Li, J. B., et al., 2013. Seismic Stratigraphy and Tectonic Structure from a Composite Multi-Channel Seismic Profile across the Entire Dangerous Grounds, South China Sea. Tectonophysics, 582: 162-176. https://doi.org/10.1016/j.tecto.2012.09.026
      Ding, W. W., Li, J. B., 2016. Conjugate Margin Pattern of the Southwest Sub-Basin, South China Sea: Insights from Deformation Structures in the Continent-Ocean Transition Zone. Geological Journal, 51(S1): 524-534. https://doi.org/10.1002/gj.2733
      Ding, W. W., Li, J. B., Clift, P. D., 2016. Spreading Dynamics and Sedimentary Process of the Southwest Sub-Basin, South China Sea: Constraints from Multi-Channel Seismic Data and IODP Expedition 349. Journal of Asian Earth Sciences, 115: 97-113. https://doi.org/10.1016/j.jseaes.2015.09.013
      Ding, W. W., Sun, Z., Mohn, G., et al., 2020. Lateral Evolution of the Rift-to-Drift Transition in the South China Sea: Evidence from Multi-Channel Seismic Data and IODP Expeditions 367 & 368 Drilling Results. Earth and Planetary Science Letters, 531: 115932. https://doi.org/10.1016/j.epsl.2019.115932
      Franke, D., Savva, D., Pubellier, M., et al., 2014. The Final Rifting Evolution in the South China Sea. Marine and Petroleum Geology, 58: 704-720. https://doi.org/10.1016/j.marpetgeo.2013.11.020
      Gao, H. F., Chen, L., 2006. An Analysis of Structural Framework and Formation Mechanism of Zhongjiannan Basin in the West of South China Sea. Oil & Gas Geology, 27(4): 512-516 (in Chinese with English abstract). doi: 10.3321/j.issn:0253-9985.2006.04.011
      Gillard, M., Autin, J., Manatschal, G., et al., 2015. Tectonomagmatic Evolution of the Final Stages of Rifting along the Deep Conjugate Australian-Antarctic Magma-Poor Rifted Margins: Constraints from Seismic Observations. Tectonics, 34(4): 753-783. https://doi.org/10.1002/2015tc003850
      Hall, R., 2000. Cenozoic Plate Tectonic Reconstructions of SE Asia. Geological Society, London, Special Publications, 126(1): 11-23. https://doi.org/10.1144/gsl.sp.1997.126.01.03
      Hall, R., Spakman, W., 2015. Mantle Structure and Tectonic History of SE Asia. Tectonophysics, 658: 14-45. https://doi.org/10.1016/j.tecto.2015.07.003
      Huang, C. J., 2005. Deep Crustal Structure of Baiyun Sag, Northern South China Sea Revealed from Deep Seismic Reflection Profile. Chinese Science Bulletin, 50(11): 1131. https://doi.org/10.1360/04wd0207
      Ji, S. C., Li, L., Xu, Z. Q., 2021. Dislocation Creep and Flow Strength of the Earth's Crust. Acta Geologica Sinica, 95(1): 159-181 (in Chinese with English abstract).
      Larsen, H. C., Mohn, G., Nirrengarten, M., et al., 2018. Rapid Transition from Continental Breakup to Igneous Oceanic Crust in the South China Sea. Nature Geoscience, 11(10): 782-789. https://doi.org/10.1038/s41561-018-0198-1
      Lavier, L. L., Manatschal, G., 2006. A Mechanism to Thin the Continental Lithosphere at Magma-Poor Margins. Nature, 440(7082): 324-328. https://doi.org/10.1038/nature04608
      Lee, T. Y., Lawver, L. A., 1994. Cenozoic Plate Reconstruction of the South China Sea Region. Tectonophysics, 235(1-2): 149-180. https://doi.org/10.1016/0040-1951(94)90022-1
      Lei, C., Ren, J. Y., Pang, X., et al., 2018. Continental Rifting and Sediment Infill in the Distal Part of the Northern South China Sea in the Western Pacific Region: Challenge on the Present-Day Models for the Passive Margins. Marine and Petroleum Geology, 93: 166-181. https://doi.org/10.1016/j.marpetgeo.2018.02.020
      Lei, C., Alves, T. M., Ren, J. Y., et al., 2020. Rift Structure and Sediment Infill of Hyperextended Continental Crust: Insights from 3D Seismic and Well Data (Xisha Trough, South China Sea). Journal of Geophysical Research: Solid Earth, 125(5): e2019JB018610. https://doi.org/10.1029/2019JB018610
      Li, J. B., Ding, W. W., Gao, J. Y., et al., 2011. Cenozoic Evolution Model of the Sea-Floor Spreading in South China Sea: New Constraints from High Resolution Geophysical Data. Chinese Journal of Geophysics, 54(12): 3004-3015 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5733.2011.12.003
      Li, J. B., Ding, W. W., Wu, Z. Y., et al., 2012. The Propagation of Seafloor Spreading in the Southwestern Subbasin, South China Sea. Chinese Science Bulletin, 57(24): 3182-3191. https://doi.org/10.1007/s11434-012-5329-2
      Luo, P., Manatschal, G., Ren, J. Y., et al., 2021. Tectono -Magmatic and Stratigraphic Evolution of Final Rifting and Breakup: Evidence from the Tip of the Southwestern Propagator in the South China Sea. Marine and Petroleum Geology, 129: 105079. https://doi.org/10.1016/j.marpetgeo.2021.105079
      Masini, E., Manatschal, G., Mohn, G., 2013. The Alpine Tethys Rifted Margins: Reconciling Old and New Ideas to Understand the Stratigraphic Architecture of Magma-Poor Rifted Margins. Sedimentology, 60(1): 174-196. https://doi.org/10.1111/sed.12017
      Morley, C. K., 2016. Major Unconformities/Termination of Extension Events and Associated Surfaces in the South China Seas: Review and Implications for Tectonic Development. Journal of Asian Earth Sciences, 120: 62-86. https://doi.org/10.1016/j.jseaes.2016.01.013
      Nirrengarten, M., Mohn, G., Kusznir, N. J., et al., 2020. Extension Modes and Breakup Processes of the Southeast China-Northwest Palawan Conjugate Rifted Margins. Marine and Petroleum Geology, 113: 104123. https://doi.org/10.1016/j.marpetgeo.2019.104123
      Pang, X., Chen, C. M., Peng, D. J., et al., 2007. Sequence Stratigraphy of Deep-Water Fan System of Pearl River, South China Sea. Earth Science Frontiers, 14(1): 220-229. https://doi.org/10.1016/s1872-5791(07)60010-4
      Pang, X., Ren, J. Y., Zheng, J. Y., et al., 2018. Petroleum Geology Controlled by Extensive Detachment Thinning of Continental Margin Crust: A Case Study of Baiyun Sag in the Deep-Water Area of Northern South China Sea. Petroleum Exploration and Development, 45(1): 29-42. https://doi.org/10.1016/s1876-3804(18)30003-x
      Penrose, C. P., 1972. Penrose Field Conference on Ophiolites. Geotimes, 17: 24-25.
      Peron-Pinvidic, G., Manatschal, G., Osmundsen, P. T., 2013. Structural Comparison of Archetypal Atlantic Rifted Margins: A Review of Observations and Concepts. Marine and Petroleum Geology, 43: 21-47. https://doi.org/10.1016/j.marpetgeo.2013.02.002
      Pubellier, M., Meresse, F., 2013. Phanerozoic Growth of Asia: Geodynamic Processes and Evolution. Journal of Asian Earth Sciences, 72: 118-128. https://doi.org/10.1016/j.jseaes.2012.06.013
      Ren, J. Y., Luo, P., Gao, Y. Y., et al., 2022. Structural, Sedimentary and Magmatic Records during Continental Breakup at Southwest Sub-Basin of South China Sea. Earth Science, 47(7): 2287-2302 (in Chinese with English abstract).
      Sapin, F., Ringenbach, J. C., Clerc, C., 2021. Rifted Margins Classification and Forcing Parameters. Scientific Reports, 11: 1-17. https://doi.org/10.1038/S41598-021-87648-3
      Sibuet, J. C., Yeh, Y. C., Lee, C. S., 2016. Geodynamics of the South China Sea. Tectonophysics, 692: 98-119. https://doi.org/10.1016/j.tecto.2016.02.022
      Song, T. R., Li, C. F., Wu, S. G., et al., 2019. Extensional Styles of the Conjugate Rifted Margins of the South China Sea. Journal of Asian Earth Sciences, 177: 117-128. https://doi.org/10.1016/j.jseaes.2019.03.008
      Sutra, E., Manatschal, G., Mohn, G., et al., 2013. Quantification and Restoration of Extensional Deformation along the Western Iberia and Newfoundland Rifted Margins. Geochemistry, Geophysics, Geosystems, 14(8): 2575-2597. https://doi.org/10.1002/ggge.20135
      Taylor, B., Hayes, D. E., 1983. Origin and History of the South China Sea Basin. Geophysical Monograph Series. American Geophysical Union, Washington, D. C., 23-56. https://doi.org/10.1029/gm027p0023
      Tugend, J., Gillard, M., Manatschal, G., et al., 2020. Reappraisal of the Magma-Rich versus Magma-Poor Rifted Margin Archetypes. Geological Society, London, Special Publications, 476(1): 23-47. https://doi.org/10.1144/sp476.9
      Tugend, J., Manatschal, G., Kusznir, N. J., et al., 2014. Formation and Deformation of Hyperextended Rift Systems: Insights from Rift Domain Mapping in the Bay of Biscay-Pyrenees. Tectonics, 33(7): 1239-1276. https://doi.org/10.1002/2014TC003529
      Warner, M. R., 1987. Seismic Reflections from the Moho: The Effect of Isostasy. Geophysical Journal International, 88(2): 425-435. https://doi.org/10.1111/j.1365-246x.1987.tb06651.x
      Xie, X. N., Ren, J. Y., Pang, X., et al., 2019. Stratigraphic Architectures and Associated Unconformities of Pearl River Mouth Basin during Rifting and Lithospheric Breakup of the South China Sea. Marine Geophysical Research, 40(2): 129-144. https://doi.org/10.1007/s11001-019-09378-6
      Xie, X. N., Zhao, S., Ren, J. Y., et al., 2022. Marginal Sea Closure Process and Genetic Mechanism of South China Sea during Post-Spreading Period. Earth Science, 47(10): 3524-3542 (in Chinese with English abstract).
      Zhang, J., Wu, Z. C., Shen, Z. Y., et al., 2020. Seismic Evidence for the Crustal Deformation and Kinematic Evolution of the Nansha Block, South China Sea. Journal of Asian Earth Sciences, 203: 104536. https://doi.org.10.1016/j.jseaes.2020.104536
      Zhao, W., Fang, N. Q., Zhan, H. M., et al., 2013. Cenozoic Tectonic Migration in the Northern Sourth China Sea. Marine Geology Frontiers, 29(4): 1-6 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDT201304003.htm
      Zhu, R. W., Liu, H. L., Yao, Y. J., et al., 2020. Cenozoic Tectonic Subsidence of the Continental Margins of Southwest Sub-Basin, South China Sea and Its Evolution. Marine Geology & Quaternary Geology, 40(6): 82-92 (in Chinese with English abstract).
      丁巍伟, 2021. 南海大陆边缘动力学: 从陆缘破裂到海底扩张. 地球科学, 46(3): 790-800. doi: 10.3799/dqkx.2020.303
      高红芳, 陈玲, 2006. 南海西部中建南盆地构造格架及形成机制分析. 石油与天然气地质, 27(4): 512-516. doi: 10.3321/j.issn:0253-9985.2006.04.011
      嵇少丞, 黎乐, 许志琴, 2021. 岩石圈的流变性与大陆动力学的科学基础. 地质学报, 95(1): 159-181.
      李家彪, 丁巍伟, 高金耀, 等, 2011. 南海新生代海底扩张的构造演化模式: 来自高分辨率地球物理数据的新认识. 地球物理学报, 54(12): 3004-3015.
      任建业, 罗盼, 高圆圆, 等, 2022. 南海西南次海盆地壳岩石圈伸展破裂过程的构造、沉积和岩浆作用记录. 地球科学, 47(7): 2287-2302. doi: 10.3799/dqkx.2022.135
      解习农, 赵帅, 任建业, 等, 2022. 南海后扩张期大陆边缘闭合过程及成因机制. 地球科学, 47(10): 3524-3542. doi: 10.3799/dqkx.2022.265
      赵卫, 方念乔, 詹华明, 等, 2013. 南海北部新生代构造迁移特征. 海洋地质前沿, 29(4): 1-6.
      朱荣伟, 刘海龄, 姚永坚, 等, 2020. 南海西南次海盆两侧陆缘新生代构造沉降特征及演化过程. 海洋地质与第四纪地质, 40(6): 82-92.
    • 加载中
    图(10)
    计量
    • 文章访问数:  255
    • HTML全文浏览量:  102
    • PDF下载量:  43
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-11-02
    • 网络出版日期:  2025-02-10
    • 刊出日期:  2025-01-25

    目录

      /

      返回文章
      返回