• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    新太古代-古元古代熊耳山地区的岩浆作用与大地构造意义

    刘恒 刘磊 张德贤 康诗胜 胡天杨

    刘恒, 刘磊, 张德贤, 康诗胜, 胡天杨, 2025. 新太古代-古元古代熊耳山地区的岩浆作用与大地构造意义. 地球科学, 50(2): 667-686. doi: 10.3799/dqkx.2024.019
    引用本文: 刘恒, 刘磊, 张德贤, 康诗胜, 胡天杨, 2025. 新太古代-古元古代熊耳山地区的岩浆作用与大地构造意义. 地球科学, 50(2): 667-686. doi: 10.3799/dqkx.2024.019
    Liu Heng, Liu Lei, Zhang Dexian, Kang Shisheng, Hu Tianyang, 2025. Magmatic Activity and Tectonic Significance in the Xiong'ershan Area during the Neoarchean to Early Paleoproterozoic. Earth Science, 50(2): 667-686. doi: 10.3799/dqkx.2024.019
    Citation: Liu Heng, Liu Lei, Zhang Dexian, Kang Shisheng, Hu Tianyang, 2025. Magmatic Activity and Tectonic Significance in the Xiong'ershan Area during the Neoarchean to Early Paleoproterozoic. Earth Science, 50(2): 667-686. doi: 10.3799/dqkx.2024.019

    新太古代-古元古代熊耳山地区的岩浆作用与大地构造意义

    doi: 10.3799/dqkx.2024.019
    基金项目: 

    国家自然科学基金资助项目 41972198

    湖南省自然科学基金资助项目 2022JJ30702

    中南大学研究生自主探索创新项目 2023ZZTS0439

    国家留学基金资助 CSC202306370128

    详细信息
      作者简介:

      刘恒(1994-),男,博士研究生,主要从事前寒武纪地质研究. ORCID:0000-0003-0120-8762. E-mail:liuheng@csu.edu.cn

      通讯作者:

      刘磊, ORCID:0000-0002-2731-8284. E-mail: liu01@ustc.edu.cn

    • 中图分类号: P595

    Magmatic Activity and Tectonic Significance in the Xiong'ershan Area during the Neoarchean to Early Paleoproterozoic

    • 摘要: 华北克拉通南缘出露的古老岩石主要为TTG和钾质花岗岩的岩石组合,该组合是研究花岗岩成因和大陆地壳生长演化的一个重要对象. 聚焦于熊耳山地区,利用锆石微区Hf-O同位素和微量元素分析来示踪岩浆的演化过程,探讨不同阶段花岗岩的地球化学特征、源区性质及其成因机理,厘定了2.5~2.4 Ga,~2.3 Ga两期重要岩浆-构造事件. 研究发现,小南沟地区2.51~2.43 Ga奥长花岗岩含有富钛氧化物,εHft)值为-6.9至+5.0,锆石δ18O值平均值分别为6.03‰和5.18‰,可能跟地壳物质的部分熔融和沉积物质的加入有关. 黄沟和穆册地区2.3 Ga钾质花岗岩显示锆石δ18O值平均值分别为3.98‰和3.10‰,εHft)值较低,为-5.8至-3.5. 锆石δ18O值的明显降低,可能跟地幔物质上涌引起的高温水岩反应过程有关. 不同时代花岗岩的不同类型锆石微量元素呈现出大陆弧环境的特征,结合较低的εHft)和降低的δ18O同位素组分变化,熊耳山地区在岩浆静寂期前夕可能形成于活动大陆边缘弧环境.

       

    • 图  1  华北克拉通地质图(a)(据Zhao et al., 2005修改);华北克拉通南部太华杂岩地质简图(b)(据Diwu et al., 2014修改)

      Fig.  1.  Simplified map of the North China Craton with exposed Archean to Paleoproterozoic basement (a) (modified from Zhao et al., 2005); Simplified geological map of the Taihua Complex in the southern NCC (b) (modified after Diwu et al., 2014).

      图  2  华北克拉通南缘熊耳山地区地质简图(据Zhou et al., 2021修改)

      Fig.  2.  Simplified geological map of the Xiong'ershan area in the southern NCC (modified from Zhou et al., 2021)

      图  3  熊耳山地区新太古代晚期-古元古代早期岩石特征

      a. XNG13-1野外特征;b. 22-LN-03野外特征; c. 22-MC-01-D野外特征;d. 取样手标本照片; e~j. 奥长花岗岩XNG13-1,22-LN-03;二长花岗岩22-MC-01-D,HG-37;斜长角闪岩(XNG09-2);英云闪长岩(XNG07-3)镜下岩相学特征; Pl. 斜长石;Mu. 白云母;Hb. 角闪石;Ser. 绢云母;Cal. 方解石;Qz. 石英;Bt. 黑云母;Kfs. 钾长石

      Fig.  3.  The rock characteristics of the late Neoarchean to early Paleoproterozoic in the Xiong'ershan area

      图  8  样品XNG9-2铁钛氧化物能谱分析

      Fig.  8.  Energy spectrum analysis of iron titanium oxide in sample XNG9-2

      图  9  样品XNG13-1富钛氧化物,XNG07-2硫铁氧化物能谱分析

      Fig.  9.  Energy spectrum analysis about titanium-rich oxide in sample XNG13-1, iron oxide sulfide in XNG0-2

      图  4  熊耳山地区新太古代晚期TTG岩石-古元古代早期钾质花岗岩的锆石U-Pb谐和图及锆石微量稀土元素图解

      Fig.  4.  Concordia diagrams showing U-Pb zircon analyses of Late Archean TTG rocksand early Paleoproterozoic potassium granite and diagrams of trace rare earth elements in zircon in Xiong'ershan area

      图  5  熊耳山地区古元古代早期岩石εHf(t)-年龄图解(底图据王敬宇等, 2021

      Fig.  5.  εHf(t)-Age diagrams of early Paleoproterozoic rocks in Xiong'ershan area (after Wang et al., 2021)

      图  6  熊耳山地区新太古代晚期-古元古代早期岩石δ18O-结晶年龄(a)图解; δ18O平均值-εHf(t)平均值(b), (c) U-δ18O相关性图解和(d)岩石δ18O-实测U-Pb年龄图解

      Fig.  6.  δ18O vs crystallization age (a) δ18O-Average vs εHf(t)-Average age (b) diagrams of late Neoarchean and early Paleoproterozoic rocks in Xiong'ershan area; relationships of (c) U vs. δ18O; age (d) δ18O vs. age

      图  7  熊耳山地区古元古代早期岩石δCe-104/(T/K)(a)(底图据Qiu et al., 2013)和lg(fO2/105Pa)-T(b)(底图据Qiu et al., 2013)图解; 锆石微量元素Log(Nb/Yb)和Log(U/Yb)分配图解(c),底图背景源自Grimes et al. (2015),分别代表大陆弧,洋岛型,洋中脊型构造背景. (Sm/La)N和LREE-I图解(d);颜色的不同代表岩浆和热液锆石的不同,代表岩浆和初始年龄和锆石改造的区分(Bell et al., 2016);fO2(△FMQ)和结晶年龄(e)实测U-Pb年龄图解(f)

      Fig.  7.  δCe vs 104/(T/K) (a) (after Qiu et al., 2013) and lg(fO2/105Pa) vs T(b) (after Qiu et al., 2013) diagrams of early Paleoproterozoic rocks in Xiongershan area; The distribution diagram of trace elements Log (Nb/Yb) and Log (U/Yb) in zircon (c), derived from Grimes et al. (2015), represents the tectonic backgrounds of continental arc, oceanic island type, and mid ocean ridge type, respectively; the difference in color represents the difference between magma and hydrothermal zircon(d), representing the differentiation between magma and initial age and zircon alteration (Bell et al., 2016); variation of magmatic fO2 with age (e), crystallization age (f)

      图  10  (a)2.50~2.20 Ga期间华北克拉通长英质岩浆岩的综合年龄数据;(b)华北克拉通中2.50~2.20 Ga长英质火成岩组合的分布

      Fig.  10.  (a) Integrated age data of granitic magmatism in the NCC during the period from 2.50~2.20 Ga; (b) Distribution of granitic igneous rock assemblages in the NCC from 2.50~2.20 Ga

      图  11  熊耳山地区太华杂岩新太古代晚期-古元古代早期构造演化示意图

      Fig.  11.  Schematic diagram illustrating the tectonic scenario for the late Neoarchean and early Paleoproterozoic evolution of the Taihua Complex in the Xionger'shan area

    • Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses That Do Not Report 204Pb. Chemical Geology, 192(1): 59-79. https://doi.org/10.1016/S0009-2541(2)00195-X
      Bell, E. A., Boehnke, P., Harrison, M., 2016. Recovering the Primary Geochemistry of Jack Hills Zircons Through Quantitative Estimates of Chemical Alteration. Geochimica et Cosmochimica Acta, 191: 187-202. https://doi.org/10.1016/j.gca.2016.07.016
      Berman, R. G., Pehrsson, S., Davis, W. J., et al., 2013. The Arrowsmith Orogeny: Geochronological and Thermobarometric Constraints on Its Extent and Tectonic Setting in the Rae Craton, with Implications for Pre-Nuna Supercontinent Reconstruction. Precambrian Research, 232: 44-69. https://doi.org/10.1016/j.precamres.2012.10.015
      Bindeman, I., 2008. Oxygen Isotopes in Mantle and Crustal Magmas as Revealed by Single Crystal Analysis. Reviews in Mineralogy and Geochemistry, 69(1): 445-478. https://doi.org/10.2138/rmg.2008.69.12
      Bindeman, I. N., Zakharov, D. O., Palandri, J., et al., 2018. Rapid Emergence of Subaerial Landmasses and Onset of a Modern Hydrologic Cycle 2.5 Billion Years Ago. Nature, 557(7706): 545-548. https://doi.org/10.1038/s41586-018-0131-1
      Borisov, A. A., Shapkin, A. I., 1990. New Empirical Equation Relating Fe3+/Fe2+ in Magmas to Their Composition, Oxygen Fugacity, and Temperature. Geochemistry International, 27(1): 111-116.
      Carmichael, I., Nicholls, J., 1967. Iron-Titanium Oxides and Oxygen Fugacities in Volcanic Rocks. Journal of Geophysical Research Atmospheres, 72(18). https://doi.org/10.1029/JZ072i018p04665.
      Condie, K. C., O'Neill, C., Aster, R. C., 2009. Evidence and Implications for a Widespread Magmatic Shutdown for 250 My on Earth. Earth and Planetary Science Letters, 282(1-4): 294-298. https://doi.org/10.1016/j.epsl.2009.03.033
      Cui, Z., Xia, X. P., Huang, X. L., et al., 2022. Meso- to Neoarchean Geodynamic Transition of the North China Craton Indicated by H2O-in-Zircon for TTG Suite. Precambrian Research, 371: 106574. https://doi.org/10.1016/j.precamres.2022.106574
      Diwu, C. R, 2007. Zircon U-Pb Ages and Hf Isotopes and Their Geological Significance of Yiyang TTG Gneisses from Henan Province, China. Acta Petrologica Sinica, (2): 253-262 (in Chinese with English abstract).
      Diwu, C. R., Sun, Y., Zhao, Y., et al., 2014. Early Paleoproterozoic (2.45-2.20 Ga) Magmatic Activity During the Period of Global Magmatic Shutdown: Implications for the Crustal Evolution of the Southern North China Craton. Precambrian Research, 255: 627-640. https://doi.org/10.1016/j.precamres.2014.08.001
      Diwu, C. R, 2018. The Composition and Evolution of the Taihua Complex in the Southern North China Craton. Acta Petrologica Sinica, 34(4): 999-1018 (in Chinese with English abstract).
      Diwu, C. R, 2021. Crustal Growth and Evolution of Archean Continental Crust in the Southern North China Craton. Acta Petrologica Sinica, 37(2): 317-340 (in Chinese with English abstract). doi: 10.18654/1000-0569/2021.02.01
      Dong, M. M., Wang, C. M., Santosh, M., et al., 2020. Geochronology and Petrogenesis of the Neoarchean-Paleoproterozoic Taihua Complex, NE China: Implications for the Evolution of the North China Craton. Precambrian Research, 346: 105792. https://doi.org/10.1016/j.precamres.2020.105792
      Fedo, C. M., Sircombe, K. N., Rainbird, R. H., 2003. Detrital Zircon Analysis of the Sedimentary Record. Reviews in Mineralogy and Geochemistry, 53(1): 277-303. https://doi.org/10.2113/0530277
      Ferry, J. M., Watson, E. B., 2007. New Thermodynamic Models and Revised Calibrations for the Ti-in-Zircon and Zr-in-Rutile Thermometers. Contributions to Mineralogy & Petrology, 154(4): 429-437. https://doi.org/10.1007/s00410-007-0201-0
      French, J. E., Heaman, L. M., 2010. Precise U-Pb Dating of Paleoproterozoic Mafic Dyke Swarms of the Dharwar Craton, India: Implications for the Existence of the Neoarchean Supercraton Sclavia. Precambrian Research, 183(3): 416-441. https://doi.org/10.1016/j.precamres.2010.05.003
      Gasquet, D., Barbey, P., Adou, M., et al., 2003. Structure, Sr-Nd Isotope Geochemistry and Zircon U-Pb Geochronology of the Granitoids of the Dabakala Area (Côte d'Ivoire): Evidence for a 2.3 Ga Crustal Growth Event in the Palaeoproterozoic of West Africa? Precambrian Research, 127(4): 329-354. https://doi.org/10.1016/S0301-9268(3)00209-2
      Ge, R. F., Simon, A. Wilde, Zhu, W. B., et al., 2023. Earth's Early Continental Crust Formed from Wet and Oxidizing Arc Magmas, Nature, 623: 334-349. https://doi.org/10.1038/s41586-023-06552-0
      Grimes, C. B., Woode, J. L., Cheadle, M. J et al., 2015. "Fingerprinting" Tectono-Magmatic Provenance Using Trace Elements in Igneous Zircon. Contributions to Mineralogy and Petrology, 170: 46. https://doi.org/10.1007/s00410-015-1199-3
      Gong, S., Chen, N., Wang, Q., et al., 2012. Early Paleoproterozoic Magmatism in the Quanji Massif, Northeastern Margin of the Qinghai-Tibet Plateau and Its Tectonic Significance: LA-ICPMS U-Pb Zircon Geochronology and Geochemistry. Gondwana Research, 21(1): 152-166. https://doi.org/10.1016/j.gr.2011.07.011
      Hartlaub, R. P., Heaman, L. M., Chacko, T., et al., 2007. Circa 2.3 Ga Magmatism of the Arrowsmith Orogeny, Uranium City Region, Western Churchill Craton, Canada. Journal of Geology, 115(2): 181-195. https://doi.org/10.1086/510641
      Huang, X. L., Wilde, S. A., Zhong, J. W., 2013. Episodic Crustal Growth in the Southern Segment of the Trans-North China Orogen Across the Archean-Proterozoic Boundary. Precambrian Research, 233: 337-357. https://doi.org/10.1016/j.precamres.2013.05.016
      Huang, X. L., Wilde, S. A., Yang, Q. J., et al., 2012. Geochronology and Petrogenesis of Gray Gneisses from the Taihua Complex at Xiong'er in the Southern Segment of the Trans-North China Orogen: Implications for Tectonic Transformation in the Early Paleoproterozoic. Lithos, 134-135: 236-252. https://doi.org/10.1016/j.lithos. 2012.01.004 doi: 10.1016/j.lithos.2012.01.004
      Ishihara, S., 1977. The Magnetite-Series and Ilmenite-Series Granitic Rocks. Mining Geology, 27(145): 293-305. https://doi.org/10.11456/shigenchishitsu1951.27.293
      Jagoutz, O., Klein, B., 2018. On the Importance of Crystallization-Differentiation for the Generation of SiO2-Rich Melts and the Compositional Build-Up of Arc (and Continental) Crust. American Journal of Science, 318(1): 29-63. https://doi.org/10.2475/01.2018.03
      Jia, X. L, 2016. Research on the Taihua Complex in Xiaoqinling and Lushan Areas: Implications for the Evolution of the Crystalline Basement in the Southern North China Craton (Dissertation). Northwest University, Xian (in Chinese with English abstract).
      Jia, X. L., Zhai, M. G., Xiao, W. J., et al., 2019. Late Neoarchean to Early Paleoproterozoic Tectonic Evolution of the Southern North China Craton: Evidence from Geochemistry, Zircon Geochronology, and Hf Isotopes of Felsic Gneisses from the Taihua Complex. Precambrian Research, 326: 222-239. https://doi.org/10.1016/j.precamres.2017.11.013
      Jia, X. L., Zhai, M. G., Xiao, W. J., et al., 2020. Mesoarchean to Paleoproterozoic Crustal Evolution of the Taihua Complex in the Southern North China Craton. Precambrian Research, 337: 105451. https://doi.org/10.1016/j.precamres.2019.105451
      Kang, S. S., Liu, H., Hu, T. Y., et al., 2023. Petrogenesis and Geotectonic Significance of TTG Gneiss in Late Neoarchean Dengfeng Complex. Earth Science, 48(9): 3342-3359 (in Chinese with English abstract).
      Lan, C., Zhou, Y., Wang, C., et al., 2017. Depositional Age and Protoliths of the Paleoproterozoic Upper Taihua Group in the Wuyang Area in the Southern Margin of the North China Craton: New Insights into Stratigraphic Subdivision and Tectonic Setting. Precambrian Research, 297: 77-100. https://doi.org/10.1016/j.precamres.2017.05.014
      Laurent, O., Martin, H., Moyen, J. F., et al., 2014. The Diversity and Evolution of Late-Archean Granitoids: Evidence for the Onset of "Modern-Style" Plate Tectonics Between 3.0 and 2.5 Ga. Lithos, 205: 208-235. https://doi.org/10.1016/j.lithos.2014.06.012
      Lee, C. T., 2016. Two-Step Rise of Atmospheric Oxygen Linked to the Growth of Continents. Nature Geoscience. 9: 417-424. https://doi.org/10.1038/NGEO2707
      Li, W. Y., Teng, F. Z., Ke, S., et al., 2010. Heterogeneous Magnesium Isotopic Composition of the Upper Continental Crust. Geochimica et Cosmochimica Acta, 74(23): 6867-6884. https://doi.org/10.1016/j.gca.2010.08.030
      Li, W., Huberty, J. M., Beard, B. L., et al., 2013. Contrasting Behavior of Oxygen and Iron Isotopes in Banded Iron Formations Revealed by In Situ Isotopic Analysis. Earth and Planetary Science Letters, 384(): 132-143. https://doi.org/10.1016/j.epsl.2013.10.014
      Li, Z. S, 2021. Late Precambrian Chronostratigraphic Framework and Tectonic Evolution of the Xiong'er Basin in Southern North China Craton. Acta Geologica Sinica, 95(11): 3234-3255 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2021.11.006
      Liu, H., Wang, W., Cawood, P. A., et al., 2020. Synchronous Late Neoarchean Na- and K-Rich Granitoid Magmatism at an Active Continental Margin in the Eastern Liaoning Province of North China Craton. Lithos, 376/377(1). doi: 10.1016/j.lithos.2020.105770
      Lu, G. M., Spencer, C. J., Tian, Y., et al., 2021. Significant Increase of Continental Freeboard During the Early Paleoproterozoic: Insights from Metasediment-Derived Granites. Geophysical Research Letters, 48(22). https://doi.org/10.1029/2021gl096049
      Lu, G. M., Wang, W., Tian, Y., et al., 2021. Siderian Mafic-Intermediate Magmatism in the SW Yangtze Block, South China: Implications for Global 'Tectono-Magmatic Lull' During the Early Paleoproterozoic. Lithos, 398-399: 106306. https://doi: 10.1016/j.lithos.2021.106306
      Lu, S., Zhao, G., Wang, H., et al., 2008. Precambrian Metamorphic Basement and Sedimentary Cover of the North China Craton: A Review. Precambrian Research, 160(1-2): 77-93. https://doi.org/10.1016/j.precamres.2007.04.017
      McCammon, C., 2005. The Paradox of Mantle Redox. Science, 308(5723): 807-808. https://doi.org/ 10.1126/science. 1110532 doi: 10.1126/science.1110532
      Miles, A. J., Graham, C. M., Hawkesworth, C. J., et al., 2014. Apatite: A New Redox Proxy for Silicic Magmas? Geochimica et Cosmochimica Acta, 132: 101-119. https://doi.org/10.1016/j.gca.2014.01.040
      Palin, R. M., Santosh, M., Cao, W. T., et al., 2020. Secular Change and the Onset of Plate Tectonics on Earth. Earth-Science Reviews, 207: 103172. https://doi.org/10.1016/j.earscirev.2020.103172
      Payne, J. L., Hand, M., Pearson, N. J., et al., 2015. Crustal Thickening and Clay: Controls on Oxygen Isotope Variation in Global Magmatism and Siliciclastic Sedimentary Rocks. Earth and Planetary Science Letters, 412: 70-76. https://doi.org/10.1016/j.epsl.2014.12.037
      Qiu, J. T., Yu, X. Q., Santosh, M., et al., 2013. Geochronology and Magmatic Oxygen Fugacity of the Tongcun Molybdenum Deposit, Northwest Zhejiang, SE China. Mineralium Deposita, 48(5): 545-556. https://doi.org/10.1007/s00126-013-0456-5
      Rey, P. F., Coltice, N., 2008. Neoarchean Lithospheric Strengthening and the Coupling of Earth's Geochemical Reservoirs. Geology, 36(8): 635-638. https://doi.org/10.1130/g25031a.1
      Silver, P. G., Behn, M. D., 2008. Intermittent Plate Tectonics? Science, 319(5859): 85-88. https://doi.org/10.1126/science.1148397
      Sun, G., Liu, S., Cawood, P. A., et al., 2021. Thermal State and Evolving Geodynamic Regimes of the Meso- to Neoarchean North China Craton. Nature Communication, 12(1): 3888. https://doi.org/10.1038/s41467-021-24139-z
      Sun, Q., Zhou, Y., Wang, W., et al., 2017. Formation and Evolution of the Paleoproterozoic Meta-Mafic and Associated Supracrustal Rocks from the Lushan Taihua Complex, Southern North China Craton: Insights from Zircon U-Pb Geochronology and Whole-Rock Geochemistry. Precambrian Research, 303: 428-444. https://doi.org/10.1016/j.precamres.2017.05.018
      Sun, W. D, 2020. Oxygen Fugacity of Earth. Geochimica, 49(1): 1-20 (in Chinese with English abstract).
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London. Special Publications, 42(1): 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
      Tang, M., Chu, X., Hao, J., et al., 2021. Orogenic Quiescence in Earth's Middle Age. Science, 371(6530): 728-731. https://doi.org/10.1126/science.abf1876
      Trail, D., Watson, E. B., Tailby, N. D., 2011. The Oxidation State of Hadean Magmas and Implications for Early Earth's Atmosphere. Nature, 480(7375): 79-82. https://doi.org/10.1038/nature10655
      Trail, D., Bruce Watson, E., Tailby, N. D., 2012. Ce and Eu Anomalies in Zircon as Proxies for the Oxidation State of Magmas. Geochimica et Cosmochimica Acta, 97: 70-87. https://doi.org/10.1016/j.gca.2012.08.032
      Valley, J. W., Lackey, J. S., Cavosie, A. J., et al., 2005. 4.4 Billion Years of Crustal Maturation: Oxygen Isotope Ratios of Magmatic Zircon. Contributions to Mineralogy and Petrology, 150(6): 561-580. https://doi.org/10.1007/s00410-005-0025-8
      Van Kranendonk, M. J., Hugh Smithies, R., Hickman, A. H., et al., 2007. Review: Secular Tectonic Evolution of Archean Continental Crust: Interplay Between Horizontal and Vertical Processes in the Formation of the Pilbara Craton, Australia. Terra Nova, 19(1): 1-38. https://doi.org/10.1111/j.1365-3121.2006.00723.x
      Wan, Y. S., Dong, C. Y., Xie, H. Q., 2015. Some Progress in the Study of Archean Basement of the North China Craton. Acta Geoscientica Sinica, 36(6): 685-700 (in Chinese with English abstract).
      Wang, J. Y., Long, X. P., Zhai, M. G., 2021. Early Paleoproterozoic magmatism and tectonic evolution in the southern section of North ChinaCraton. Journal of Northwest University(Philosophy and Social Sciences Edition), 51(6): 985-1006 (in Chinese with English abstract).
      Wang, P., Mao, J., Ye, H., et al., 2022. Zircon Xenocryst Hf-O Isotopic Compositions in the Qiyugou Au Orefield: A Record of Paleoproterozoic Oceanic Slab Subduction in the Trans-North China Orogen. Precambrian Research, 368: 106499. https://doi.org/10.1016/j.precamres.2021
      Wang, W., Cawood, P. A., Zhou, M. F., et al. 2017. Low-δ18O Rhyolites from the Malani Igneous Suite: A Positive Test for South China and NW India Linkage in Rodinia. Geophysical Research Letters, 44(20), 10, 298-210, 305. https://doi.org/10.1002/2017GL074717
      Wang, X., Huang, X. L., Yang, F., 2021. Geochronology and Geochemistry of the Xiaoqinling Taihua Complex in the Southern Trans-North China Orogen: Implications for Magmatism During the Early Paleoproterozoic Global Tectono-Magmatic Shutdown. Lithos, 402-403. https://doi.org/10.1016/j.lithos.2021.106248
      Windley, B. F., Kusky, T., Polat, A., 2021. Onset of Plate Tectonics by the Eoarchean. Precambrian Research, 352: 105980. https://doi.org/10.1016/j.precamres.2020.105980
      Wu, F. Y., Li, X. H., Zheng, Y. F., et al., 2007. Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, (2): 185-220 (in Chinese with English abstract).
      Xu, D. L., Peng, L. H., Deng, X., et al., 2013. Identification of Mesoarchean to Paleoproterozoic Magmatic Tectono-Thermal Events from Wengmen Complex in Southern Dabie Orogen and Its Geological Significance. Earth Science, 48(11): 4072-4087 (in Chinese with English abstract).
      Yang, C. H, Du, L. L., Song, H. X., et al., 2018. Stratigraphic Division and Correlation of the Paleoproterozoic Strata in the North China Craton: A Review. Acta Petrologica Sinica, 34(4): 1019-1057 (in Chinese with English abstract).
      Yang, X., Gaillard, F., Scaillet, B., 2014. A Relatively Reduced Hadean Continental Crust and Implications for the Early Atmosphere and Crustal Rheology. Earth and Planetary Science Letters, 393: 210-219. https://doi.org/10.1016/j.epsl.2014.02.056
      Zeh, A., Gerdes, A., Barton, J. M., 2009. Archean Accretion and Crustal Evolution of the Kalahari Craton: The Zircon Age and Hf Isotope Record of Granitic Rocks from Barberton/Swaziland to the Francistown Arc. Journal of Petrology. 50, 933-966. https://doi.org/10.1093/petrology/egp027
      Zhang, S. B., Zheng, Y. F., 2013. Time and Space of Neoproterozoic Low δ18O Magmatic Rocks in South China. Science China Bullet, 58(23): 2344-2350(in Chinese with English abstract). doi: 10.1360/972013-655
      Zhai, M. G., Santosh, M., 2011. The Early Precambrian Odyssey of the North China Craton: A Synoptic Overview. Gondwana Research, 20(1): 6-25. https://doi.org/10.1016/j.gr.2011.02.005
      Zhai, M. G, 2013. Secular Changes of Metallogenic Systems Linked with Continental Evolution of the North China Craton. Acta Petrologica Sinica, 29(5): 1759-1773 (in Chinese with English abstract).
      Zhai, M. G, 2020. Review and Overview for the Frontier Hotspot: Early Continents and the Start of Plate Tectonics. Acta Petrologica Sinica, 36(8): 2249-2275 (in Chinese with English abstract). doi: 10.18654/1000-0569/2020.08.01
      Zhao, G. C., Wilde, S. A., Cawood, P. A., et al., 2001. Archean Blocks and Their Boundaries in the North China Craton: Lithological, Geochemical, Structural, and P-T Path Constraints and Tectonic Evolution. Precambrian Research, 107(1): 45-73. https://doi.org/10.1016/S0301-9268(0)00154-6
      Zhao, G. C., Sun, M., Wilde, S. A., et al., 2005. Late Archean to Paleoproterozoic Evolution of the North China Craton: Key Issues Revisited. Precambrian Research, 136(2): 177-202. https://doi.org/10.1016/j.precamres. 2004.10.002 doi: 10.1016/j.precamres.2004.10.002
      Zhao, G. C., Zhang, G. W., 2021. Origin of Continents. Acta Geologica Sinica, 95(1): 1-19 (in Chinese with English abstract). doi: 10.1111/1755-6724.14621
      Zhang R. Y., Zhang C. L., Diwu C. R., et al., 2012. Zircon U-Pb Geochronology, Geochemistry, and Its Geological Implications for the Precambrian Granitoids in Zhongtiao Mountain, Shanxi Province. Acta Petrologica Sinica, 28(11): 3559-3573 (in Chinese with English abstract).
      Zheng, Y. F., Zhao, G., 2020. Two Styles of Plate Tectonics in Earth's History. Science Bulletin, 65(4): 329-334. https://doi.org/10.1016/j.scib.2018.12.029
      Zheng, Y. F., 2021. Convergent Plate Boundaries and Accretionary Wedges. In: Encyclopedia of Geology(2nd Edition). Alderton, D., Elias, S. A., eds., Academic Press, United Kingdom, 3: 770-787. https://doi.org/10.1016/B978-0-08-102908-4.00042-4
      Zheng, Y. F., Gao, P., 2021. The Production of Granitic Magmas through Crustal Anatexis at Convergent Plate Boundaries. Lithos, 402-403: 106232. https://doi.org/10.1016/j.lithos.2021.106232
      Zheng, Y. L., Zhou, Y. Y., Zhai, M. G., et al., 2022. Ca. 2.1 Ga Low-δ18O Gabbro-Diorite Association in Southern North China Craton: Implications for an Intraplate Rifting. Lithos, 430-431: 106858. https://doi.org/10.1016/j.lithos.2022.106858
      Zhou, Y., Zhao, T., Zhai, M., et al., 2014. Petrogenesis of the Archean Tonalite-Trondhjemite-Granodiorite (TTG) and Granites in the Lushan Area, Southern Margin of the North China Craton: Implications for Crustal Accretion and Transformation. Precambrian Research, 255: 514-537. https://doi.org/10.1016/j.precamres.2014.06.023
      Zhou, Y. Y., Sun, Q. Y., Zhao, T. P., et al., 2021. Petrogenesis of the Early Paleoproterozoic Low-δ18O Potassic Granites in the Southern NCC and Its Possible Implications for No Confluence of Glaciations and Magmatic Shutdown at ca. 2.3 Ga. Precambrian Research, 361. https://doi.org/36110.1016/j.precamres.2021.106258
      Zhou, Y. Y., Zhai, M. G., 2022. Mantle Plume-Triggered Rifting Closely Following Neoarchean Cratonization Revealed by 2.50-2.20 Ga Magmatism Across North China Craton. Earth-Science Reviews, 23010. https://doi.org/1016/j.earscirev.2022.104060
      第五春荣, 孙勇, 林慈銮, 等, 2007. 豫西宜阳地区TTG质片麻岩锆石U-Pb定年和Hf同位素地质学. 岩石学报, (2): 253-262.
      第五春荣, 刘祥, 孙勇, 2018. 华北克拉通南缘太华杂岩组成及演化. 岩石学报, 34(4): 999-1018.
      第五春荣, 2021. 华北克拉通南部太古宙大陆地壳的生长和演化. 岩石学报, 37(2): 317-340.
      康诗胜, 刘恒, 胡天杨, 等, 2023. 新太古代晚期登封地区TTG片麻岩成因及大地构造意义. 地球科学, 48(9): 3342-3359. doi: 10.3799/dqkx.2023.077
      贾晓亮, 2016. 小秦岭和鲁山地区太华杂岩的研究: 对华北南缘基底演化的意义(博士学位论文). 西安: 西北大学.
      李振生, 江柔柔, 马学婷, 等, 2021. 华北克拉通南部熊耳盆地晚前寒武纪年代地层格架和演化. 地质学报, 95(11): 3234-3255. doi: 10.3969/j.issn.0001-5717.2021.11.006
      孙卫东, 2020. 地球氧逸度. 地球化学, 49(1): 1-20.
      徐大良, 彭练红, 邓新, 等, 2023. 大别山南缘翁门杂岩中太古代-古元古代岩浆构造热事件的识别及其地质意义. 地球科学, 48(11): 4072-4087. doi: 10.3799/dqkx.2023.042
      万渝生, 董春艳, 颉颃强, 等, 2015. 华北克拉通太古宙研究若干进展. 地球学报, 36(6): 685-700.
      王敬宇, 龙晓平, 翟明国, 2021. 华北克拉通南缘古元古代早期岩浆作用及构造演化. 西北大学学报, 51(6): 985-1006.
      吴福元, 李献华, 郑永飞, 等, 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, (2): 185-220.
      杨崇辉, 杜利林, 宋会侠, 等, 2018. 华北克拉通古元古代地层划分与对比. 岩石学报, 34(4): 1019-1057.
      张少兵, 郑永飞, 2013. 华南陆块新元古代低δ18O岩浆岩的时空分布. 科学通报, 58(23): 2344-2350.
      翟明国, 2013. 华北前寒武纪成矿系统与重大地质事件的联系. 岩石学报, 29(5): 1759-1773.
      翟明国, 赵磊, 祝禧艳, 等, 2020. 早期大陆与板块构造启动——前沿热点介绍与展望. 岩石学报, 36(8): 2249-2275.
      张瑞英, 张成立, 第五春荣, 等, 2012. 中条山前寒武纪花岗岩地球化学、年代学及其地质意义. 岩石学报, 28(11) : 3559-3573.
      赵国春, 张国伟, 2021. 大陆的起源. 地质学报, 95(1): 1-19.
    • dqkxzx-50-2-667-附表1-4.docx
    • 加载中
    图(11)
    计量
    • 文章访问数:  206
    • HTML全文浏览量:  90
    • PDF下载量:  47
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-01-03
    • 刊出日期:  2025-02-25

    目录

      /

      返回文章
      返回