Magnetic Property Study of Australasian Tektites from South China
-
摘要: 地外天体物质的高速撞击深刻地影响着地球系统各个圈层的协同演化. 撞击过程产生了广泛分布的气化、熔融和冲击变质物质,其中,一部分飞行距离超过母坑半径五倍的气化和熔融物快速冷却形成远撞击溅射玻璃(tektites). 远撞击溅射玻璃是极端高温高压环境的忠实记录者,其蕴含的磁性信号是研究撞击过程、撞击体和靶体物质的关键信息. 澳大利亚-亚洲散布区(Australasian strewn field;AASF)是目前已知面积最大(~1×108 km2)、时代最新(78.8万年前)的远撞击溅射玻璃散布区. 该散布区是一颗小行星或彗星自北向南倾斜撞击地表的产物,形成的tektites和microtektites主要分布在下靶区方向(中南半岛-澳大利亚-南极洲及其毗邻地区). 但是,形成澳亚散布区的母坑至今仍未被发现,探索该母坑及其地质响应是地球和行星科学领域的重要科学问题.华南属于澳亚散布区的上靶区,区内存在丰富的tektites,它们是解译本次大型撞击过程、追溯母坑位置的重要载体,但其研究程度相对较低.我们近年来对采自广东省、广西壮族自治区和海南省的tektites进行了系统的岩石磁学研究.结果表明:华南tektites具有显著的顺磁性信号和微弱的铁磁性信号;在整个澳亚散布区内,华南芒农型tektites的磁化率最低,飞溅型tektites的天然剩磁强度和饱和等温剩磁强度最低;矿物包裹体的晶体学研究发现,华南芒农型tektites中存在纳米级磁铁矿颗粒,与检测到的单畴或假单畴磁铁矿信号吻合.本研究提出撞击熔体受到的冲击程度和经历的冷却历史影响着磁性颗粒的含量和粒径变化,进而控制了不同地区和不同类型AASF tektites磁性信号的差异表达. 相同形态类型的AASF tektites的磁性信号变化范围较大,而单块样品内部的磁性信号较均一,表明厘米级熔体具有相同的原岩组分并经历了相似的热历史. 本研究证明磁学性质是揭示AASF tektites形成过程的重要线索,是探寻其母坑方位的新线索,也为计划中的月球和火星表面采样返回探测有望采集的撞击玻璃的成因分析提供了比较行星学样本.Abstract: Hypervelocity impact of extra-terrestrial materials is one of the key controlling factors in the evolution of the Earth system. Impact cratering produces wide spread vaporized, molten and shock metamorphic materials. Tektites, part of distal impact ejecta that are located at more than five radii of the source crater, are quenched from vaporized and molten materials during flight. Tektites are faithful recorders of extreme high-temperature and high-pressure environments, and their magnetic signatures are key information for decoding impact cratering process. The Australasian strewn field (AASF) is the largest (~1×108 km2) and youngest (788, 000 years ago) Cenozoic strewn field of tektites and microtektites on Earth, but its source crater is undiscovered yet. AASF tektites formed in an oblique impact from north to south, and the majority of AASF tektites are distributed in the downrange area, i.e., the Indochina Peninsula-Australia-Antarctica and their adjacent areas. South China is part of the uprange area of this strewn field and tektites from this area are insufficiently studied compared to those from the rest of the strewn field. Here, we present rock magnetism study of AASF tektites from Guangdong, Guangxi, and Hainan Provinces. The results show that AASF tektites from South China are dominated by significant paramagnetic signals, and weak ferromagnetic signals are detected. In the entire strewn field, splash-form tektites from South China exhibit the lowest natural remanent magnetization, and saturation isothermal remanent magnetization, and Muong Nong-type tektites from South China exhibit the lowest magnetic susceptibility. Crystallographic investigation of mineral inclusions reveals the presence of nanoscale magnetite particles in Muong Nong-type AASF tektites from South China, consistent with the detected signals of pseudo-single domain magnetite. This study suggests that observed heterogeneous magnetic properties are mainly caused by the different contents and sizes of magnetic particles, which can be explained by the different shock level and/or cooling history of the tektite-forming melts. Although magnetic properties of AASF tektites in different regions show large variations, individual specimens of AASF tektites from South China have relatively homogeneous magnetic properties, indicating that impact melt that formed each tektite specimen had similar compositions and experienced similar thermal history. This study demonstrates the feasibility of rock magnetic studies in untangling formation processes of AASF tektites, and it is an important reference to the search of the potential source crater.
-
Key words:
- tektites /
- rock magnetism /
- Australasian strewn field /
- impact cratering /
- South China /
- planetary geology
-
图 1 新生代远撞击溅射玻璃散布区和澳亚散布区远撞击溅射玻璃的形态.
a.5个新生代远撞击溅射玻璃散布区(黑色虚线)及其母坑(黑点). 澳亚散布区母坑未标注,红点代表最近在南极洲SørRondane山脉发现的澳亚微撞击玻璃球粒(Soens et al., 2021);b.圆饼状华南飞溅型tektites,采自广东省;c.椭球状华南飞溅型tektites,采自广东省;d.泪滴状华南飞溅型tektites,采自广东省; e.钩状华南飞溅型tektites,采自广东省; f.树皮状华南飞溅型tektites,采自广东省; g.刀状华南飞溅型tektites,采自广东省; h.具有空气动力学形态的华南芒农型tektites,采自海南省; i. 华南芒农型tektites,采自海南省,发育层状构造
Fig. 1. Major Cenozoic strewn fields on Earth and morphology of tektites and microtektites from Australasian strewn field
图 2 华南澳亚远撞击溅射玻璃分布及其在地层中的赋存状态
a. 澳亚远撞击溅射玻璃在华南和中南半岛的分布情况. 红色圆点和白色方框为本研究野外调查得到的点位. 紫色圆点代表澳亚远撞击溅射玻璃在广西壮族自治区百色盆地的点位,引自Hou et al.(2000). 中南半岛的样品点位引自Schnetzler et al.(1988);b,c. 华南飞溅型tektites在北海组中的赋存状态;d,e. 芒农型tektites在北海组中的赋存状态
Fig. 2. Distribution and stratigraphic occurrences of Australasian tektites from South China
图 3 华南样品与5个新生代散布区远撞击溅射玻璃的主量元素含量对比
华南澳亚远撞击玻璃已发表主量元素数据引自李昌年(1984)、张虎男等(1991)、黄志涛(1995)、杨瑞瑛和樊琪诚(1995)、Ho and Chen(1996)、Lee et al.(2004)、Lin et al.(2011);澳亚散布区数据引自Chapman and Scheiber(1969)、Ackerman et al.(2020);中欧散布区数据引自Philpotts and Pinson(1966)、von Engelhardt et al.(2005);象牙海岸散布区数据引自Cuttitta et al.(1972)、Koeberl et al.(1997);北美散布区数据引自Albin et al.(2000);伯利兹散布区数据引自Koeberl et al.(2022)
Fig. 3. Comparison of the contents of major elements for tektite samples from South China and those from the five major types of Cenozoic strewn
图 4 华南澳亚芒农型远撞击溅射玻璃中的载磁矿物
a.铁硫球粒(HN-212)扫描电镜图像,来自一枚华南芒农型tektites. 根据Pan et al.(2023a)修改;b,c. 铁硫球粒聚焦离子束(Focused ion beam)剖面的铁元素和硫元素面扫图像,透射电镜下可见大量纳米级磁铁矿微晶. 白色图框指示图4d的边界. 根据Pan et al.(2023b)修改;d~f. 磁铁矿与陨硫铁的接触关系. 黄色箭头所指晶体为磁铁矿,其他区域为陨硫铁. 黄色图框指示晶体结构分析区域;g,h. Area 1指示磁铁矿晶体结构分析结果,Area 2指示陨硫铁晶体结构分析结果;i. Area 3指示磁铁矿晶体结构分析结果;j.铁硫球粒(MNL)剖面的磁铁矿粒径统计结果,N代表统计的磁铁矿晶体个数;k.铁硫球粒(HN-212)剖面的磁铁矿粒径统计结果. 根据Pan et al.(2023b)修改
Fig. 4. Magnetic carriers in Muong Nong-type tektites from South China
图 5 华南芒农型tektites的剩磁强度随温度的变化
a~c. 零场冷却曲线(zero-field warming curves,ZFC)和有场冷却曲线(the field warming curves,FC). 蓝色曲线代表有场冷却曲线的一阶导数变化. 根据Pan et al.(2023a)修改;d~f. 天然剩磁强度在高温下的变化. 蓝色曲线代表剩磁强度的一阶导数变化. 根据Pan et al.(2023b)修改
Fig. 5. Remanent magnetization intensity variations under low- and high-temperature treatments for Muong Nong-type tektites from South China
图 6 华南tektites的室温磁滞回线和低温交流磁化率
a~c. 华南飞溅型tektites的室温磁滞回线(未进行顺磁性校正),M是磁化强度(Magnetization)的缩写;d~f华南芒农型tektites的室温磁滞回线(未进行顺磁性校正),根据Pan et al.(2023a)修改;g~i. 分别在1 Hz和100 Hz频率下测量的华南飞溅型tektites的低温交流磁化率;j~l. 分别在1 Hz(黑色圆点)和100 Hz(红色叉号)频率下测量的华南芒农型tektites的低温交流磁化率;χ,指in-phase磁化率
Fig. 6. Hysteresis loops measured at room temperature and low-temperature magnetic susceptibility for Australasian tektites from South China
图 7 华南tektites的剩磁信号
a,b. 左侧为顺磁性校正后的华南芒农型和飞溅型tektites的室温磁滞回线. 右侧为顺磁性校正前的磁滞回线结果. M是磁化强度(Magnetization)的缩写. c. 华南芒农型和飞溅型tektites的等温剩磁逐步获得曲线;d. 华南和中南半岛芒农型tektites的磁滞参数比率. 剩磁矫顽力(Coercivity of remanence)=Bcr,矫顽力(Coercivity)=Bc,饱和剩余磁化强度(saturation remanence)=Mrs,饱和磁化强度(saturation magnetization)=Ms. 中南半岛样品数据引自Gattacceca et al.(2022)和Werner and Borradaile(1998);e. 华南芒农型tektites的非磁滞剩磁随交变场的变化;f. 华南飞溅型tektites的饱和等温剩磁随交变场的变化. 根据Pan et al.(2023a)修改
Fig. 7. Hysteresis loops measured at room temperature and low-temperature magnetic susceptibility for Australasian tektites from South China
图 8 不同区域的澳亚散布区tektites的磁性信号对比
a.低频磁化率;b. 天然剩磁与饱和等温剩磁,实线代表天然剩磁与饱和等温剩磁的比值(NRM/SIRM). 根据Pan et al.(2023a)修改
Fig. 8. Comparisons of magnetic signals for Australasian tektites at different areas
图 9 华南tektites平行样品的磁性信号
a,b. 华南飞溅型tektites平行样品的磁化率、天然剩磁(NRM)、饱和等温剩磁(SIRM)、NRM/SIRM;c,d. 华南芒农型tektites平行样品的磁化率、天然剩磁(NRM)、饱和等温剩磁(SIRM)、天然剩磁和饱和等温剩磁的比率(NRM/SIRM). 根据Pan et al.(2023b)修改
Fig. 9. Magnetic properties of parallel subsamples across individual specimens of splash-form and Muong Nong-Type tektites from South China
图 10 华南tektites的磁性信号范围
a.磁化率;b.天然剩磁强度(NRM);c.饱和等温剩磁强度(SIRM);d.天然剩磁和饱和等温剩磁的比率(NRM/SIRM).根据Pan et al.(2023b)修改
Fig. 10. Range of magnetic properties for individual splash-form and Muong Nong-type Australasian tektites specimens from South China
-
Albin, E. F., Norman, M. D., Roden, M., 2000. Major and Trace Element Compositions of Georgiaites: Clues to the Source of North American tektites. Meteoritics & Planetary Science, 35(4): 795-806. https://doi.org/10.1111/j.1945-5100.2000.tb01463.x Artemieva, N. A., 2008. Tektites: Model Versus Reality. Lunar and Planetary Science XXXIX, 1651. Artemieva, N. A., 2013. Numerical Modeling of the Australasian Strewn Field. The 44th Lunar and Planetary Science Conference, 1410. Ackerman, L., Skala, R., Krizova, S., et al., 2019. The Quest for An Extraterrestrial Component in Muong Nong-Type and Splash: Form Australasian Tektites from Laos using Highly Siderophile Elements and Re-Os Isotope Systematics. Geochimica et Cosmochimica Acta, 252: 179-189. https://doi.org/10.1016/j.gca.2019.03.009 Ackerman, L., Zak, K., Skala, R., et al., 2020. Sr-Nd-Pb Isotope Systematics of Australasian Tektites: Implications for the Nature and Composition of Target Materials and Possible Volatile Loss of Pb. Geochimicaet Cosmochimica Acta, 276: 135-150. https://doi.org/10.1016/j.gca. 2020.02.025 doi: 10.1016/j.gca.2020.02.025 Baldwin, K. A., Butler, S. L., Hill, R. J., 2015. Artificial Tektites: An Experimental Technique for Capturing the Shapes of Spinning Drops. Scientific Reports, 5: 7660. https://doi.org/10.1038/srep07660 Barnes, V. E., 1958. Origin of Tektites. Nature, 181: 1457-1458. https://doi.org/10.1038/1811457a0 Barnes, V. E., Pitakpaivan, K., 1962. Origin of Indochinite Tektites. Proceedings of the National Academy of Sciences, 48: 947-955. https://doi.org/10.1073/pnas. 48. 6.947 doi: 10.1073/pnas.48.6.947 Barnes, V. E., 1963. Detrital Mineral Grains in Tektites. Science, 142: 1651-1652. https://doi.org/10.1126/science.142.3600.1651 Barnes, V. E., 1969. Progress of Tektite Studies in China. Eos, 50(12): 704-709. https://doi.org/10.1029/eo050i012p00704 Belkin, H. E., Horton, J. W. J., 2009. Silicate Glasses and Sulfide Melts in the ICDP-USGS Eyreville b Core, Chesapeake Bay Impact Structure, Virginia, USA. The ICDP-USGS Deep Drilling Project in the Chesapeake Bay Impact Structure: Results from the Eyreville Core Holes. Geological Society of America Special Paper, 458: 447-468. Beran, A., Koeberl, C., 1997. Water in Tektites and Impact Glasses by Fourier-Transformed Infrared Spectrometry. Meteoritics & Planetary Science, 32(2): 211-216. https://doi.org/10.1111/j.1945-5100.1997.tb01260.x Blum, D. J., Papanastassiou, D. A., Koeberl, C., et al., 1992. Neodymium and Strontium Isotopic Study of Australasian Tektites: New Constraints on the Provenance and Age of Target Materials. Geochimica et Cosmochimica Acta, 56: 483-492. https://doi.org/10.1016/0016-7037(92)90146-a Braslau, D., 1970. Partitioning of Energy in Hypervelocity Impact Against Loose and Targets. Journal of Geophysical Research, 75(20): 3987-3999. https://doi.org/10.1029/JB075i020p03987 Butler, R. F., 1992. Paleomagnetism: Magnetic Domains to Geologic Terranes. Blackwell Scientific Publications, Oxford, UK. Cavosie, A. J., Timms, N. E., Erickson, T. M., et al., 2018. New Clues from Earth's most Elusive Impact Crater: Evidence of Reidite in Australasian Tektites from Thailand. Geology, 46(3): 203-206. https://doi.org/10.1130/G39711.1 Chalmer, R. O., Henders, E. P., Mason, B., 1976. Occurrence, Distribution, and Age of Australian Tektites. Smithsonian Contributions to the Earth Sciences, Smithsonian Institution Press. Washington. https://doi.org/10.5479/si.00810274.17.1 Chao, E. C. T., Adler, I., Dwornik, E. J., et al., 1962. Metallic Spherules in Tektites from Isabela, Philippine Islands. Science, 135: 97-98. https://doi.org/10.1126/science.135.3498.97 Chao, E. C. T., Dwornik, E. J., Littler, J., 1964. New Data on the Nickel-Iron Spherules from Southeast Asian Tektites and Their Implications. Geochimicaet Cosmochimica Acta, 28: 971-980. https://doi.org/10.1016/0016-7037(64)90044-4 Chapman, D. R., Scheiber, L. C., 1969. Chemical Investigation of Australasian Tektites. Journal of Geophysical Research, 74(27): 6737-6776. https://doi.org/10.1029/JB074i027p06737 Chapman, D. R., 1971. Australasian Tektite Geographic Pattern, Crater and Ray of Origin, and Theory of Tektite Events. Journal of Geophysical Research, 76(26): 6309-6338. https://doi.org/10.1029/JB076i026p06309 Chaussidon, M., Koeberl, C., 1995. Boron Content and Isotopic Composition of Tektites and Impact Glasses: Constraints on Source Regions. Geochimicaet Cosmochimica Acta, 59(3): 613-624. https://doi.org/10.1016/0016-7037(94)00368-V Chen, H. T., 1981. The Significance of Glass Meteorites in The Study of Quaternary Landforms in the Leiqiong Area. Tropical Geography, 2: 56-60(in Chinese with English abstract). Chen, S. Y., 1997. The Discovery and Study on Tektites from Guangxi China. Journal of Central South University Technology, 28(2): 110-112(in Chinese with English abstract). Chernonozhkin, S. M., Gonzalez, D. V. C., Artemieva, N. A., et al., 2021. Isotopic Evolution of Planetary Crusts by Hypervelocity Impacts Evidenced by Fe in Microtektites. Nature Communications, 12: 5646. https://doi.org/10.1038/s41467-021-25819-6 Costa, B. F. O., Klingelhöfer, G., Panthöfer, M., et al., 2014. Backscattering Mossbauer MIMOS II and XRF Studies on Tektites from Different Strewn Fields. Hyperfine Interact, 226: 613-619. https://doi.org/10.1007/s10751-013-0986-3 Costa, B. F. O., Alves, E. I., Silva, P. A. O. C., et al., 2021. 57Fe Mössbauer Analysis of Meteorites and Tektites. Minerals, 11(6): 628. https://doi.org/10.3390/min11060628 Crawford, D. A., Schultz, P. H., 1988. Laboratory Observations of Impact-Generated Magnetic Fields. Nature, 336(6194): 50-52. https://doi.org/10.1038/336050a0 Crawford, D. A., Schultz, P. H., 1999. Electromagnetic Properties of Impact-Generated Plasma, Vapor and Debris. International Journal of Impact Engineering, 23: 169-180. https://doi.org/10.1016/S0734-743X(99)00070-6 Crawford, D. A., 2020. Simulations of Magnetic Fields Produced by Asteroid Impact: Possible Implications for Planetary Paleomagnetism. International Journal of Impact Engineering, 137: 103464. https://doi.org/10.1016/j.ijimpeng.2019.103464 Cuda, J., Kohout, T., Tucek, J., et al., 2011. Low-Temperature Magnetic Transition in Troilite: A Simple Marker for Highly Stoichiometric FeS Systems. Journal of Geophysical Research, 116(B11): B11205. https://doi.org/10.1029/2011jb008232 Cuttitta, F., Carron, M. K., Annell, C. S., 1972. New Data on Selected Ivory Coast Tektites. Geochimica et Cosmochimica Acta, 36(11): 1297-1309. https://doi.org/10.1016/0016-7037(72)90050-6 de Gasparis, A. A., Fuller, M., Cassidy, W., 1975. Natural Remanent Magnetism of Tektites of the Muong-Nong Type and Its Bearing on Models of Their Origin. Geology, 3(10): 605-607. https://doi.org/10.1130/0091-7613(1975)3<605:NRMOTO>2.0.CO;2 doi: 10.1130/0091-7613(1975)3<605:NRMOTO>2.0.CO;2 de Gasparis, A. A., 1973. Magnetic Properties of Tektites and Impact Glasses(Dissertation). University of Pittsburgh, Pittsburgh. Donofrio, R R., 1977. The Magnetic Environment of the Tektites(Dissertation). University of Oklahoma, Oklahoma. Dressler, B. O., Reimold, W. U., 2001. Terrestrial Impact Melt Rocks and Glasses. Earth-Science Reviews, 56: 205-284. https://doi.org/10.1016/S0012-8252(01)00064-2 Dunlop, D. J., Özdemir, Ö., 1997. Rock Magnetism. Cambridge University Press, Cambridge. Dunlop, D. J., 2002. Theory and Application of the Day Plot (Mrs/Ms versus Hcr/Hc) 1. Theoretical Curves and Tests Using Titanomagnetite Data. Journal of Geophysical Research, 107(B3): 1-22. https://doi.org/10.1029/2001JB000486 Elkins-Tanton, L. T., Aussillous, P., Bico, J., et al., 2003. A Laboratory Model of Splash-Form Tektites. Meteoritics & Planetary Science, 38(9): 1331-1340. https://doi.org/10.1111/j.1945-5100.2003.tb00317.x Fiske, P. S., Schnetzler, C. C., Mchone, J., et al., 1999. Layered Tektites of Southeast Asia: Field Studies in Central Laos and Vietnam. Meteoritics & Planetary Science, 34(5): 757-761. https://doi.org/10.1111/j.1945-5100.1999.tb01388.x Folco, L., Rochette, P., Perchiazzi, N., et al., 2008. Microtektites from Victoria Land Transantarctic Mountains. Geology, 36(4): 291-294. https://doi.org/10.1130/G24528A.1 Folco, L., Perchiazzi, N., D'Orazio, M., et al., 2010. Shocked Quartz and Other Mineral Inclusions in Australasian Microtektites. Geology, 38(3): 211-214. https://doi.org/10.1130/G30512.1 Folco, L., Rochette, P., D'Orazio, M., et al., 2023. The Chondritic Impactor Origin of the Ni-Rich Component in Australasian Tektites and Microtektites. Geochimica et Cosmochimica Acta, 360: 231-240. https://doi.org/10.1016/j.gca.2023.09.018 Friedman, I., Thorpe, A., Senftle, E., 1960. Comparison of the Chemical Composition and Magnetic Properties of Tektites and Glasses Formed by Fusion of Terrestrial Rocks. Nature, 187: 1089-1092. https://doi.org/10.1038/1871089a0 Futrell, D. S., Wasson, J. T., 1993. A 10.8kg Layered (Muong-Nong-type) Tektite from Wenchang, Hainan, China. Meteoritics, 28: 136-137. https://doi.org/10.1111/j.1945-5100.1993.tb00259.x Gattacceca, J., Rochette, P., 2004. Toward A Robust Normalized Magnetic Paleointensity Method Applied to Meteorites. Earth and Planetary Science Letters, 227: 377-393. https://doi.org/10.1016/j.epsl.2004.09.013 Gattacceca, J., Rochette, P., Quesnel, Y., et al., 2022. Revisiting the Paleomagnetism of Muong Nong Layered Tektites: Implications for Their Formation Process. Meteoritics & Planetary Science, 57(2): 558-571. https://doi.org/10.1111/maps.13703 Glass, B., 1967. Microtektites in Deep-Sea Sediments. Nature, 214: 372-374. https://doi.org/10.1038/214372b0 Glass, B., Heezen, B. C., 1967. Tektites and Geomagnetic Reversal. Nature, 214: 372. https://doi.org/10.1038/scientificamerican0767-32 Glass, B. P., Barlow, R. A., 1979. Mineral Inclusions in Muong Nong-Type Indochinites: Implications Concerning Parent Material and Process of Formation. Meteoritics, 14(1): 55-67. https://doi.org/10.1111/j.1945-5100.1979.tb00479.x Glass, B. P., 1984. Tektites. Journal of Non-Crystalline Solids, 67: 333-344. https://doi.org/10.1016/0022-3093(84)90158-3 Glass, B. P., Pizzuto, J. E., 1994. Geographic Variation in Australasian Microtektite Concentrations: Implications Concerning the Location and Size of the Source Crater. Journal of Geophysical Research, 99(E9): 19075-19081. https://doi.org/10.1029/94JE01866 Glass, B. P., Simonson, B. M., 2013. Distal Impact Ejecta Layers. Springer Press, New York. https://doi.org/10.1007/978-3-540-88262-6 Glass, B. P., 1970. Zircon and Chromite Crystals in a Muong Nong-type Tektite. Science, 169(3947): 766-769. https://doi.org/10.1126/science.169.3947.766 Glass, B. P., 1990. Tektites and Microtektites: Key Facts and Inferences. Tectonophysics, 171: 393-404. https://doi.org/10.1016/0040-1951(90)90112-L Goderis, S., Tagle, R., Fritz, J., et al., 2017. On the Nature of the Ni-Rich Component in Splash-Form Australasian Tektites. Geochimica et Cosmochimica Acta, 217: 28-50. https://doi.org/10.1016/j.gca.2017.08.013 Gu, Y., Sun, J. Y., Xiao, Q., et al., 2022. Morphology of Lunar Soil Returned by Chang'E-5 Mission and Implications for Space Weathering. Earth Science, 47(11): 4145-4160(in Chinese with English abstract). He, X. W., Zhang, L., 2023. Analysis of The Author and Age of Leigongmo's Name. China Mining Magazine, 32(S2): 128-131. https://doi.org/10.12075/j.issn.1004-4051. 20230671 doi: 10.12075/j.issn.1004-4051.20230671 Ho, K., Chen, J., 1996. Geochemistry and Origin of Tektites from the Penglei Area, Hainan Province, Southern China. Journal of Southeast Asian Earth Sciences, 13(1): 61-72. https://doi.org/10.1016/0743-9547(96)00005-0 Hood, L. L., Artemieva, N. A., 2008. Antipodal Effects of Lunar Basin-Forming Impacts: Initial 3D Simulations and Comparisons with Observations. Icarus, 193(2): 485-502. https://doi.org/10.1016/j.icarus.2007.08.023 Hou, Y. M., Potts, R., Yuan, B. Y., et al., 2000. Mid-Pleistocene Acheulean-like Stone Technology of the Bose Basin, South China. Science, 287: 1622-1626. https://doi.org/10.1126/science.287.5458.1622 Huang, Z. T., 1995. Preliminary Study of Glass Meteorite, Guangxi Province. Geology and Geochemistry, 4: 50-58(in Chinese with English abstract). Johnson, H. P., Lowrie, W., Kent, D. V., 1975. Stability of Anhysteretic Remanent Magnetization in Fine and Coarse Magnetite and Maghemite Particles. Geophysical Journal of the Royal Astronomical Society, 41: 1-10. https://doi.org/10.1111/j.1365-246X.1975.tb05480.x Johnson, T. E., Kirkland, C. L., Lu, Y., et al., 2022. Giant Impacts and the Origin and Evolution of Continents. Nature, 608(7922): 330-335. https://doi.org/10.1038/s41586-022-04956-y Jonášová, Š., Ackerman, L., Žák, K., et al., 2016. Geochemistry of Impact Glasses and Target Rocks from the Zhamanshin Impact Structure, Kazakhstan: Implications for Mixing of Target and Impactor Matter. Geochimica et Cosmochimica Acta, 190: 239-264. https://doi.org/10.1016/j.gca.2016.06.031 Jourdan, F., Nomade, S., Wingate, M. T. D., et al., 2019. Ultraprecise Age and Formation Temperature of the Australasian Tektites Constrained by 40Ar/39Ar Analyses. Meteoritics & Planetary Science, 54(10): 2573-2591. https://doi.org/10.1111/maps.13305 Karimi, K., Kletetschka, G., Mizera, J., et al., 2023. Formation of Australasian Tektites from Gravity and Magnetic Indicators. Scientific Reports, 13: 12868. https://doi.org/10.1038/s41598-023-40177-7 Kinnunen, K. A., 1990. Lechatelierite Inclusions in Indochinites and the Origin of Tektites. Meteoritics, 25: 181-184. https://doi.org/10.1111/j.1945-5100.1990.tb00994.x Klein, L. C., Yinnon, H., Uhlmann, D. R., 1980. Viscous Flow and Crystallization Behavior of Tektite Glass. Journal of Geophysical Research, 85(B10): 5485-5489. https://doi.org/10.1029/JB085iB10p05485 Kleinmann, B., 1969. Magnetite Bearing Spherules in Tektites. Geochimicaet Cosmochimica Acta, 33: 1113-1120. https://doi.org/10.1016/0016-7037(69)90067-2 Koeberl, C., 1986. Geochemistry of Tektites and Impact Glasses. Annual Review of Earth and Planetary Sciences, 14: 323-350. https://doi.org/10.1146/annurev.ea.14. 050186.001543 doi: 10.1146/annurev.ea.14.050186.001543 Koeberl, C., 1990. The Geochemistry of Tektites: An Overview. Tectonophysics, 171: 405-422. https://doi.org/10.1016/0040-1951(90)90113-M Koeberl, C., 1992. Geochemistry and Origin of Muong Nong-Type Tektites. Geochimica et Cosmochimica Acta, 56: 1033-1064. https://doi.org/10.1016/0016-7037(92)90046-L Koeberl, C., Bottomley, R., Glass, B. P., et al., 1997. Geochemistry and Age of Ivory Coast Tektites and Microtektites. Geochimica et Cosmochimica Acta, 61(8): 1745-1772. https://doi.org/10.1016/S0016-7037(97)00026-4 Koeberl, C., Glass, B. P., Schulz, T., et al., 2022. Tektite Glasses from Belize, Central America: Petrography, Geochemistry, and Search for a Possible Meteoritic Component. Geochimica et Cosmochimica Acta, 325: 232-257. https://doi.org/10.1016/j.gca.2022.02.021 Kuiper, G. P., 1954. On the Origin of the Lunar Surface Features. Proceedings of the National Academy of Sciences, 40(12): 1096-1112. https://doi.org/10.1073/pnas. 40. 12.1096 doi: 10.1073/pnas.40.12.1096 Lacroix, A., 1935. Les Tectites Sans Formes Figtirees de I'lndochine. Comptes Rendus de l'Académie des Sciences (Paris), 200: 2129-2132. Lee, Y., Chen, J., Ho, K., 2004. Geochemical Studies of Tektites from East Asia. Geochemical Journal, 1: 1-17. https://doi.org/10.2343/geochemj.38.1 Li, C. N., 1984. A Discussion on Lei Gong Mo from Hainan Island and Its Origin. Acta Petrologicaet Mineralogica, 2: 207-216 (in Chinese with English abstract). Li, D. M., 1963. A Preliminary Survey and Study of The Tektites: Lei-Gong-Mo: from Leichow Peninsula and Hainan Island, China. Scientia Geologica Sinica, 1: 42-49 (in Chinese with English abstract). Lin, S., Guan, Y. B., Hsu, W., 2011. Geochemistry and Origin of Tektites from Guilin of Guangxi, Guangdong and Hainan. Science China Earth Sciences, 54(3): 349-358. https://doi.org/10.1007/s11430-010-4146-1 Ma, P., Aggrey, K., Tonzola, C., et al., 2004. Beryllium-10 in Australasian Tektites: Constraints on the Location of the Source Crater. Geochimicaet Cosmochimica Acta, 68(19): 3883-3896. https://doi.org/10.1016/j.gca.2004.03.026 Macris, C. A., Asimow, P. D., Badro, J., et al., 2018. Seconds after Impact: Insights into the Thermal History of Impact Ejecta from Diffusion between Lechatelierite and Host Glass in Tektites and Experiments. Geochimica et Cosmochimica Acta, 241: 69-94. https://doi.org/10.1016/j.gca.2018.08.031 Magna, T., Jiang, Y., Skála, R., et al., 2021. Potassium Elemental and Isotope Constraints on the Formation of Tektites and Element Loss during Impacts. Geochimica et Cosmochimica Acta, 312: 321-342. https://doi.org/10.1016/j.gca.2021.07.022 Maher, B. A., 1988. Magnetic Properties of Some Synthetic Sub-Micron Magnetites. Geophysical Journal, 94: 83-96. https://doi.org/10.1111/j.1365-246X.1988.tb03429.x Masotta, M., Peres, S., Folco, L., et al., 2020. 3D X-Ray Tomographic Analysis Reveals How Coesite is Preserved in Muong Nong-Type Tektites. Scientific Reports, 10: 20608. https://doi.org/10.1038/s41598-020-76727-6 Melosh, H. J., 1989. Impact Cratering: A Geologic Process. Oxford University Press, New York. Melosh, H J., 2020. The Australasian Tektite Source Crater: Found at Last. Proceedings of the National Academy of Sciences, 117(3): 1252-1253. https://doi.org/10.1073/pnas.1920576117 Michel, V., Feng, X., Shen, G., et al., 2021. First 40Ar/39Ar Analyses of Australasian Tektites in Close Association with Bifacially Worked Artifacts at Nalai Site in Bose Basin, South China: The Question of the Early Chinese Acheulean. Journal of Human Evolution, 153: 102953. https://doi.org/10.1016/j.jhevol.2021.102953 Mizera, J., Řanda, Z., Kameník, J., 2016. On a Possible Parent Crater for Australasian Tektites: Geochemical, Isotopic, Geographical and Other Constraints. Earth-Science Reviews, 154: 123-137. doi: 10.1016/j.earscirev.2015.12.004 Mizera, J., 2022. Quest for the Australasian Impact Crater: Failings of the Candidate Location at the Bolaven Plateau, Southern Laos. Meteoritics & Planetary Science, 57(11): 1973-1986. http://doi.org/10.1016/j.earscirev. 2015. 12.004 doi: 10.1016/j.earscirev.2015.12.004 Morgan, J. V., Bralower, T. J., Brugger, J., et al., 2022. The Chicxulub Impact and Its Environmental Consequences. Nature Reviews Earth & Environment, 3: 338-354. https://doi.org/10.1038/s43017-022-00283-y Nininger, H. H., Huss, G. I., 1967. Tektites That Were Partially Plastic after Completion of Surface Sculpturing. Science, 157: 61-62. https://doi.org/10.1126/science. 157.3784.61 doi: 10.1126/science.157.3784.61 O'Keefe, J. A., 1958. Origin of Tektites. Nature, 181: 172-173. https://doi.org/10.1038/181172a0 O'Keefe, J. A., 1975. Tektites and Their Origin. NASA Coddard Space Flight Center. Ouyang, Z. Y., Zhong, P. H., Yi, W. X., 1976. Trace Element in Tektite from Hainan Island, China. Geochimica, 2: 144-147 (in Chinese with English abstract). doi: 10.3321/j.issn:0379-1726.1976.02.008 Pan, Q., Xiao, Z. Y., Wu, Y. H., et al., 2023a. Magnetic Properties of Australasian Tektites from South China. Journal of Geophysical Research: Solid Earth, 128(3): e2022JB025269. https://doi.org/10.1029/2022JB025269 Pan, Q., Xiao, Z. Y., Wu, Y. X., et al., 2023b. Magnetite in Muong Nong-Type Australasian Tektites from South China. Geochemistry, Geophysics, Geosystems, 24(10): e2023GC011103. https://doi.org/10.1029/2023GC011103 Philpotts, J. A. Pinson, W. H., 1966. New Data on the Chemical Composition and Origin of Moldavites. Geochimica et Cosmochimica Acta, 30(3): 253-266. https://doi.org/10.1016/0016-7037(66)90001-9 Poag, C. W., Powars, D. S., Poppe, L. J., et al., 1994. Meteoroid Mayhem in Ole Virginny Source of the North American Tektite Strewn Field. Geology, 22(8): 691-694. https://doi.org/10.1130/0091-7613(1994)022<0691:MMIOVS>2.3.CO;2 doi: 10.1130/0091-7613(1994)022<0691:MMIOVS>2.3.CO;2 Ray, D., Misra, S., 2014. Contrasting Aerodynamic Morphology and Geochemistry of Impact Spherules from Lonar Crater, India: Some Insights into Their Cooling History. Earth Moon Planets, 114: 59-86. https://doi.org/10.1007/s11038-014-9451-9 Rochette, P., Gattacceca, J., Devouard, B., et al., 2015. Magnetic Properties of Tektites and Other Related Impact Glasses. Earth and Planetary Science Letters, 432: 381-390. https://doi.org/10.1016/j.epsl.2015.10.030 Rochette, P., Braucher, R., Folco, L., et al., 2018. 10Be in Australasian Microtektites Compared to Tektites: Size and Geographic Controls. Geology, 46(9): 803-806. https://doi.org/10.1130/G45038.1 Rochette, P., Bezaeva, N. S., Kosterov, A., et al., 2019. Magnetic Properties and Redox State of Impact Glasses: AReview and New Case Studies from Siberia. Geosciences, 9(5): 225. https://doi.org/10.3390/geosciences9050225 Rochette, P., Beck, P., Bizzarro, M., et al., 2021. Impact Glasses from Belize Represent Tektites from the Pleistocene PantasmaImpact Crater in Nicaragua. Communications Earth & Environment, 2: 94. https://doi.org/10.1038/s43247-021-00155-1 Rochette, P., Bezaeva, N. S., Beck, P., et al., 2022. Obsidian and Mafic Volcanic Glasses from the Philippines and Vietnam Found in the Paris Museum Australasian Tektite Collection. Meteoritics & Planetary Science, 57(7): 1460-1471. https://doi.org/10.1111/maps.13825 Schmidt, G., Zhou, L., Wasson, J. T., 1993. Iridium Anomaly Associated with the Australasian Tektite-Producing Impact; Masses of the Impactor and of the Australasian Tektites. Geochimica et Cosmochimica Acta, 57: 4851-4859. https://doi.org/10.1016/0016-7037(93)90204-A Schnetzler, C. C., Walter, L. S., Marsh, J. G., 1988. Source of the Australasian Tektite Strewn Field: A Possible Offshore Impact Site. Geophysical Research Letters, 15(4): 357-360. https://doi.org/10.1029/gl015i004p00357 Senftle, F. E., Thorpe, A., 1959. Magnetic Susceptibility of Tektites and Some Other Glasses. Geochimica et Cosmochimica Acta, 17: 234-247. https://doi.org/10.1016/0016-7037(59)90098-5 Short, A. M., 1966. Shock Processes in Geology. Journal of Geological Education, 14(4): 149-166. https://doi.org/10.5408/0022-1368-XIV.4.149 Sieh, K., Herrin, J., Jicha, B., et al., 2020. Australasian Impact Crater Buried under the BolavenVolcanic Field, Southern Laos. Proceedings of the National Academy of Sciences, 117(3): 1346-1353. https://doi.org/10.1073/pnas.1904368116 Soens, B., van Ginneken, M., Chernonozhkin, S., et al., 2021. Australasian Microtektites Across the Antarctic Continent: Evidence from the Sør Rondane Mountain Range (East Antarctica). Geoscience Frontiers, 12(4). https://doi.org/101153.10.1016/j.gsf.2021.101153 doi: 10.1153.10.1016/j.gsf.2021.101153 Soro, P., Rochette, P., Baratoux, D., et al., 2023. Revisiting the Côte d'ivoireTektite Strewn Field. Journal of African Earth Sciences, 205: 104990. https://doi.org/10.1016/j.jafrearsci.2023.104990 Spaepen, F., Turnbull, D., 1984. Metallic Glasses. Annual Review of Physical Chemistry, 35: 241-263. https://doi.org/10.1146/annurev.pc.35.100184.001325 Spencer, L. J., 1933. Origin of Tektites. Nature, 131: 117-118. https://doi.org/10.1038/131117a0 Stähle, V., 1972. Impact Glasses from the Suevite of the NördlingerRies. Earth and Planetary Science Letters, 17: 275-293. https://doi.org/10.1016/0012-821X(72)90287-7 Starunov, V. A., Kosterov, A., Sergienko, E. S., et al., 2019. Magnetic Properties of Tektite-like Impact Glasses from Zhamanshin Astrobleme, Kazakhstan. Cham: Springer International Publishing, 445-465. https://doi.org/10.1007/978-3-319-90437-5_30 Strangway, D. W., Larson, E. E., Pearce, G. W., 1970. Magnetic Properties of Lunar Samples. Science, 167: 691-693. https://doi.org/10.1126/science.167.3918.691 Tarduno, J. A., Cottrell, R. D., Lawrence K., et al., 2021. Absence of A Long-Lived Lunar Paleomagnetosphere. Science Advances, 7(32): eabi7647. https://doi.org/10.1126/sciadv.abi7647 Taylor, S. R., 1962a. The Chemical Composition of Australites. Geochimica et Cosmochimica Acta, 26: 685-722. https://doi.org/10.1016/0016-7037(62)90034-0 Taylor, S. R., 1962b. Fusion of Soil during Meteorite Impact, and The Chemical Composition of Tektites. Nature, 195(4836): 32-33. https://doi.org/10.1038/195032a0 Taylor, S. R., Kaye, M., 1969. Genetic Significance of The Chemical Composition of Tektites: AReview. Geochimica et Casmochimica Acta, 33: 1083-1100. https://doi.org/10.1016/0016-7037(69)90064-7 Thorpe, A. N., Senftle, F. E., Cuttitta, F., 1963. Magnetic and Chemical Investigations of Iron in Tektites. Nature, 197: 836-840. https://doi.org/10.1038/197836a0 Verrier, V., Rochette, P., 2002. Estimating Peak Currents at Ground Lightning Impacts Using Remanent Magnetization. Geophysical Research Letters, 29(18): 1867. https://doi.org/10.1029/2002GL015207 Verwey, E. J. W., 1939. Electronic Conduction of Magnetite (Fe3O4) and Its Transition Point at Low Temperatures. Nature, 144(3642): 327-328. https://doi.org/10.1038/144327b0 von Engelhardt, W., Berthold, C., Wenzel, T., et al., 2005. Chemistry, Small-Scale Inhomogeneity, and Formation of Moldavites as Condensates from Sands Vaporized by the Ries Impact. Geochimica et Cosmochimica Acta, 69(23): 5611-5626. https://doi.org/10.1016/j.gca.2005.07.004 Walter, L. S., 1965. Coesite Discovered in Tektites. Science, 147(3661): 1029-1032. https://doi.org/10.1126/science.147.3661.1029 Wasilewski, P. J., Kletetschka, G., 1999. Lodestone: Nature's Only Permanent Magnet-What It Is and How It Gets Charged. Geophysical Research Letters, 26(15): 2275-2278. https://doi.org/10.1029/1999GL900496 Wasilewski, P. J., Dickinson, T., 2000. Aspects of The Validation of Magnetic Remanence in Meteorites. Meteoritics & Planetary Science, 35(3): 537-544. https://doi.org/10.1111/j.1945-5100.2000.tb01434.x Weiss, B. P., Pedersen, S., Garrick-Bethell, I., et al., 2010. Paleomagnetism of Impact Spherules from Lonar Crater, India and A Test for Impact-Generated Fields. Earth and Planetary Science Letters, 298: 66-76. https://doi.org/10.1016/j.epsl.2010.07.028 Werner, T., Borradaile, G. J., 1998. Homogeneous Magnetic Susceptibilities of Tektites: Implications for Extreme Homogenization of Source Material. Physics of the Earth and Planetary Interiors, 108: 235-243. https://doi.org/10.1016/S0031-9201(98)00098-3 Whymark, A., 2021. A Review of Evidence for A Gulf of Tonkin Location for the Australasian Tektite Source Crater. Thai Geoscience Journal, 2(2): 1-29. https://doi.org/10.14456/tgj.2021.2 Wilding, M., Webb, S., Dingwell, D. B., 1996. Tektite Cooling Rates: Calorimetric Relaxation Geospeedometry Applied to A Natural Glass. Geochimica et Cosmochimica Acta, 60(6): 1099-1103. https://doi.org/10.1016/0016-7037(96)00010-5 Xiao, Z. Y., Yan, P., Wu, B., et al., 2022. Translucent Glass Globules on The Moon. Science Bulletin, 67(4): 355-358. https://doi.org/10.1016/j.scib.2021.11.004 Yan, P., Xiao, Z. Y., Xiao, G. Q., et al., 2022. Undetection of Australasian microtektites in the Chinese Loess Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 585: 110721. https://doi.org/10.1016/j.palaeo.2021.110721 Yan, Z., Yuan, B. Y., Ye, L. F., 1979. Fission Track Ages of Lei Gong Mo from Hainan Island. Scientia Geologica Sinica, 1, 37-42 (in Chinese with English abstract). Yang, R. Y., Fan, Q. C., 1995. Geochemical Characteristics of Glass Meteorites from Hainan Island. Geology and Geochemistry, 4: 45-49 (in Chinese with English abstract). Yu, Y., Dunlop, D. J., Özdemir, Ö., 2002. Partial Anhysteretic Remanent Magnetization in Magnetite 1. Additivity. Journal of Geophysical Research, 107(B10): 2244. https://doi.org/10.1029/2001JB001249 Yuan, B. Y., Ye, L. F., 1979. Stratigraphic Chronology of Lei Gong Mo. Chinese Science Bulletin, 6(4): 271-273(in Chinese with English abstract). Yuan, B. Y., 1981. Preliminary Discussion on The Origin of Lei-Gong-Mo (Tektites). Scientia Geologica Sinica, 16(4): 329-336. (in Chinese with English abstract). Zhang, H. N., Chen, W. G., Li, Z. Q., et al., 1991. Discovery of Tektite in West Guangdong and Its Sense for Determination of The Age. Marine Geology & Quaternary Geology, 11(4): 101-108 (in Chinese with English abstract). Zhang, W. J., Gai, C. C., Liu, J. B., et al., 2022. Paleomagnetism: From the Earth to Mars. Earth Science, 47(10): 3736-3764 (in Chinese with English abstract). Zheng, H. H., Huang, B. L., Gao, S. M., 1990. Geochemical Component and Thermoluminescence Characters of Glass Meteorites from Leiqiong Area. Science Bulletin, 4: 282-284 (in Chinese with English abstract). Zák, K., Skála, R., Řanda, Z., et al., 2016. Chemistry of Tertiary Sediments in The Surroundings of The Ries Impact Structure and Moldavite Formation Revisited. Geochimica et Cosmochimica Acta, 179: 287-311. https://doi.org/10.1016/j.gca.2016.01.025 Zhu, Z. Y., Zhang, G. M., Wang, J. D., et al., 1993. Swarm Geological Events Around B/M Boundary Along the Coast of South China. Marine Geology & Quaternary Geology, 13(3), 35-42 (in Chinese with English abstract). Zhu, Z. Y., Zhou, H. Y., Qiao, Y. L., et al., 2001. Initial Strata Occurrence of the South China Tektite in Strata and Its Implication for Event-Stratigraphy. Journal of Geomechanics, 7(4): 296-302 (in Chinese with English abstract). 陈华堂, 1981. 玻璃陨石在琼雷地区地貌第四纪研究中的意义. 热带地理, 2: 56-60. https://www.cnki.com.cn/Article/CJFDTOTAL-RDDD198102008.htm 陈世益, 1997. 广西贵港靖西玻璃陨石的发现与研究. 中南工业大学学报, 28(2): 110-112. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD702.002.htm 顾铱, 孙继尧, 肖倩, 等, 2022. 嫦娥五号返回月壤微观形貌特征及其对太空风化的指示意义. 地球科学, 47(11): 4145-4160. doi: 10.3799/dqkx.2022.432 何贤伟, 张林, 2023. 雷公墨称谓创立作者及其年代辨析. 中国矿业, 32(2): 128-131. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA2023S2023.htm 黄志涛, 1995. 广西玻璃陨石初步研究. 地质地球化学, 4: 50-58. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ199504010.htm 李昌年, 1984. 海南岛雷公墨及成因探讨. 岩石矿物学杂志, 3: 17-26. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS198403001.htm 李达明, 1963. 雷州半岛与海南岛玻璃陨石——雷公墨的调查与初步研究. 地质科学, 1: 42-49. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX196301004.htm 欧阳自远, 宗普和, 易惟熙, 1976. 海南岛玻璃陨石中某些微量元素组成. 地球化学, 2: 144-147. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX197602007.htm 严正, 袁宝印, 叶莲芳, 1979. 海南岛玻璃陨石(雷公墨)裂变径迹年龄的测定. 地质科学, 1: 37-42. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX197901003.htm 杨瑞瑛, 樊琪诚, 1995. 海南岛玻璃陨石的地球化学特征. 地质地球化学, 4: 45-49. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ199504009.htm 袁宝印, 叶莲芳, 1979. 雷公墨的地层年代学研究. 科学通报, 24(6): 271-273. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB197906008.htm 袁宝印, 1981. 海南岛雷公墨(玻璃陨石)起源问题的初步探讨. 地质科学, 4: 329-336. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX198104003.htm 张虎男, 陈伟光, 李子权, 等, 1991. 粤西玻璃陨石的发现及其断代意义. 海洋地质与第四纪地质, 4: 101-108. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ199104013.htm 张伟杰, 盖聪聪, 柳加波, 等, 2022. 古地磁: 从地球到火星. 地球科学, 47(10): 3736-3764. doi: 10.3799/dqkx.2022.288 郑洪汉, 黄宝林, 高三玫, 1990. 琼雷地区玻璃陨石的化学组成和热释光特性初步研究. 科学通报, 4: 282-284. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199004013.htm 朱照宇, 张国梅, 王骏达, 等, 1993. 华南沿海B/M界线附近的群发地质事件. 海洋地质与第四纪地质, 13(3): 35-42. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ199303003.htm 朱照宇, 周厚云, 乔玉楼, 等, 2001. 华南玻璃陨石的原生层位及其事件地层学意义. 地质力学学报, 7(4): 296-302. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX200104001.htm -