• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    青海东昆仑沉积型锰矿构造背景与成矿规律

    刘永乐 张爱奎 张建平 李文 李文君 董志国 朱明田 张连昌

    刘永乐, 张爱奎, 张建平, 李文, 李文君, 董志国, 朱明田, 张连昌, 2024. 青海东昆仑沉积型锰矿构造背景与成矿规律. 地球科学, 49(12): 4278-4302. doi: 10.3799/dqkx.2024.024
    引用本文: 刘永乐, 张爱奎, 张建平, 李文, 李文君, 董志国, 朱明田, 张连昌, 2024. 青海东昆仑沉积型锰矿构造背景与成矿规律. 地球科学, 49(12): 4278-4302. doi: 10.3799/dqkx.2024.024
    Liu Yongle, Zhang Aikui, Zhang Jianping, Li Wen, Li Wenjun, Dong Zhiguo, Zhu Mingtian, Zhang Lianchang, 2024. Tectonic Setting and Metallogenic Regualtion of Sedimentary Manganese Deposits of East Kunlun, Qinghai Province. Earth Science, 49(12): 4278-4302. doi: 10.3799/dqkx.2024.024
    Citation: Liu Yongle, Zhang Aikui, Zhang Jianping, Li Wen, Li Wenjun, Dong Zhiguo, Zhu Mingtian, Zhang Lianchang, 2024. Tectonic Setting and Metallogenic Regualtion of Sedimentary Manganese Deposits of East Kunlun, Qinghai Province. Earth Science, 49(12): 4278-4302. doi: 10.3799/dqkx.2024.024

    青海东昆仑沉积型锰矿构造背景与成矿规律

    doi: 10.3799/dqkx.2024.024
    基金项目: 

    国家重点研发计划项目 2022YFC2903502

    青地三勘 2022-14

    青海省自然资源厅 2021-114

    详细信息
      作者简介:

      刘永乐(1985-),男,高级工程师,从事矿床地质研究及矿产勘查工作.ORCID:0000-0001-2345-6789. E-mail:281023605@qq.com

      通讯作者:

      张连昌,研究员,主要从事矿床地质研究工作. ORCID: 0000-30003-3509-1646. E-mail: lczhang@mail.iggcas.ac.cn

    • 中图分类号: P624

    Tectonic Setting and Metallogenic Regualtion of Sedimentary Manganese Deposits of East Kunlun, Qinghai Province

    • 摘要: 东昆仑造山带位于青藏高原东北部,经历了早期原特提斯洋构造演化,形成了一系列海相沉积型锰矿床.但对于东昆仑地区原特提斯洋演化的具体细节仍存在伸展与俯冲、活动大陆边缘与被动大陆边缘、岛弧与弧后盆地等不同的认识;有关大洋封闭的时间也存在中-晚奥陶世和早志留世的争议.本文通过东昆仑地区海相沉积型锰矿容矿围岩砂岩、粉砂岩和硅质岩的岩相学观察、主量和微量元素地球化学测试,并与形成于不同构造环境的砂岩与硅质岩进行对比分析,结果表明形成于中元古代的洪水河铁锰矿和浪木日锰矿,以及形成于奥陶纪-早志留世的三通沟北锰矿具有活动大陆边缘的地球化学特征,而形成于新元古代三通沟Ⅵ-Ⅶ锰矿带表现为被动大陆边缘的构造属性.综合研究认为东昆仑中带和南带从中元古代蓟县系狼牙山组到新元古代万宝沟群经历了原特提斯洋的活动大陆边缘到被动大陆边缘的演化过程,而奥陶纪-早志留世纳赤台群形成于原特提斯洋俯冲-岛弧增生-弧后盆地阶段.

       

    • 图  1  青海东昆仑锰矿区域地质简图

      1.第四系;2.新近系;3.侏罗系;4.三叠系;5.二叠系;6.石炭系;7.泥盆系;8.奥陶系;9.奥陶系-志留系;10.寒武系;11.元古界;12.岩浆岩;13.地质界线;14.断层;15.锰矿位置;16.地名

      Fig.  1.  Regional geological map of east Kunlun manganese deposits in Qinghai Province

      图  2  东昆仑地区地层对比

      据青海地质矿产勘探开发局(1997

      Fig.  2.  Stratigraphic comparison of East Kunlun region

      图  3  三通沟北锰矿床地质图

      1.第四系;2.上三叠统八宝山组火山岩段;3.上三叠统八宝山组砂砾岩段;4.灰岩;5.砂岩;6.粉砂岩;7.含砾岩屑砂岩;8.碳质粉砂岩;9.硅质岩;10.凝灰岩;11.英安岩;12.辉长岩;13.蛇纹岩;14.地质界线;15.不整合界线;16.断层;17.锰矿带位置及编号;18.锰矿化带位置及编号;19.地质剖面位置;据刘永乐等(2023

      Fig.  3.  Geological map of Santonggou north manganese deposits in

      图  4  三通沟北锰矿区地质剖面

      Fig.  4.  Geological profile of Santonggou north manganese mine area

      图  5  三通沟Ⅵ-Ⅶ锰矿带地质图

      Fig.  5.  Geological map of Santonggou Ⅵ-Ⅶ manganese ore belt

      图  6  三通沟Ⅵ-Ⅶ锰矿带实测地质剖面

      Fig.  6.  Measured geological profile of Santonggou Ⅵ-Ⅶ manganese ore belt

      图  7  洪水河铁锰矿区地质简图(王生明等,2018)

      Fig.  7.  Geological map of Hongshuihe iron-manganese ore area (afterWang et al., 2018)

      图  8  洪水河铁锰矿区Ⅰ-1锰矿体实测地质剖面

      Fig.  8.  Geological profile of Ⅰ-1 ore body in Hongshuihe iron-manganese ore area

      图  9  东昆仑各锰矿区代表性粉砂岩、变砂岩和硅质岩的宏观及显微地质照片

      a.三通沟北矿区细砂岩(钻孔岩芯标本);b.三通沟北矿区硅质岩(钻孔岩芯标本);c.三通沟北矿区细砂岩显微照片(正交偏光);d.三通沟北矿区硅质岩显微照片(正交偏光);e.三通沟北矿区粉砂岩显微照片(正交偏光);f.三通沟Ⅵ-Ⅶ矿带硅质岩与粉砂岩(露头)照片;g.三通沟Ⅵ-Ⅶ矿带粉砂岩显微照片(正交偏光);h.三通沟Ⅵ-Ⅶ矿带硅质粉砂岩显微照片(正交偏光);i.洪水河矿区变砂岩(露头)照片;j.洪水河矿区变砂岩显微照片(正交偏光)

      Fig.  9.  Macro and micro geological photos of representative siltstone, metasandstone and siliceous rock in the East Kunlun Mn deposits

      图  10  东昆仑锰矿区砂岩构造环境判别图(据Rose and Korsch, 1986)

      Fig.  10.  Tectonic setting diagram of sandstones in East Kunlun manganese deposit (after Rose and Korsch, 1986)

      图  11  东昆仑锰矿区硅质岩构造环境判别图(Murray, 1994)

      Fig.  11.  Tectonic environment diagrams of siliceous rocks in East Kunlun manganese deposits(afterMurray, 1994)

      图  12  东昆仑锰矿区砂岩La-Th-Sc和Th-Sc-Zr/10三角图解(Bhatia and Crook, 1986)

      Fig.  12.  La-Th-Sc and Th-Sc-Zr/10 triangle diagrams of sandstones in the East Kunlun manganese mine area(afterBhatia and Crook, 1986)

      图  13  三通沟北锰矿区粉砂岩(a)与硅质岩(b)稀土元素配分图

      Fig.  13.  PAAS-normalized REE patterns of siltstone (a) and siliceous rock (b) in Santonggou north Mn deposit

      图  14  洪水河铁锰矿区变砂岩稀土元素配分图

      Fig.  14.  PAAS-normalized REE patterns of meta-sandstones in Hongshuihe Fe-Mn ore deposit

      图  15  三通沟Ⅵ-Ⅶ矿带粉砂岩稀土元素配分曲线图

      Fig.  15.  PAAS-normalized REE patterns of siltstone in Santonggou Ⅵ-Ⅶ Mn ore belt

      图  16  Ce异常判别图解(据Bau and Dulski, 1996)

      Fig.  16.  Ce/Ce* versus Pr/Pr* discrimination diagram for Ce anomaly (afterBau and Dulski, 1996)

      图  17  东昆仑沉积锰矿与区域构造演化示意图

      Fig.  17.  Schematic diagram of sedimentary manganese deposits and regional tectonic evolution in the East Kunlun region

      表  1  东昆仑锰矿围岩主量元素分析结果(%)

      Table  1.   Analysis results of major elements in surrounding rock of East Kunlun manganese deposit (%)

      矿床名称 送样编号 样品名称 Al2O3 SiO2 Fe2O3 FeO MnO CaO K2O MgO Na2O P2O5 TiO2 SO3 LOI TFe2O3


      三通沟
      北锰矿
      ZK706-806 硅质粉砂岩 10.3 64.52 4.09 2.55 0.51 5.47 1.38 2.25 0.65 2.90 0.32 2.15 2.27 6.64
      ZK706-829 硅质粉砂岩 9.80 69.35 3.66 2.10 0.65 3.98 1.94 2.09 0.75 0.55 0.33 0.85 3.23 5.76
      ZK706-R1 碳质粉砂岩 10.8 63.69 4.24 8.18 0.60 1.39 1.44 3.41 0.79 0.39 0.47 0.17 4.06 12.4
      ZK706-R2 碳质粉砂岩 11.5 60.49 5.18 8.10 0.65 1.72 1.64 3.59 0.61 0.30 0.54 0.85 4.15 13.3
      ZK706-R3 碳质粉砂岩 11.3 58.74 5.22 9.14 0.66 1.84 1.51 3.80 0.68 0.31 0.54 1.70 4.28 14.4
      ZK706-R5 碳质粉砂岩 10.2 69.60 6.27 4.57 0.27 0.51 1.60 2.16 0.76 0.16 0.36 3.00 0.17 10.8
      ZK706-R4 硅质岩 2.91 83.18 3.13 3.05 0.20 0.81 0.26 0.97 0.03 0.26 0.22 1.37 1.82 6.18
      STG-8B## 硅质岩 2.47 92.77 0.03 0.20 0.66 0.23 0.08 0.06 0.13 1.78 0.95
      STG-9B-1## 硅质岩 1.97 92.98 0.02 0.69 0.52 0.21 0.09 0.03 0.08 1.66 1.04
      STG-9B-3## 硅质岩 3.68 91.39 0.02 0.27 0.80 0.25 0.13 0.05 0.16 1.87 0.79

      洪水河
      铁锰矿
      HP1-1 变砂岩 12.3 60.76 1.93 2.63 0.43 7.25 4.46 6.62 1.36 0.21 0.67 0.01 1.63 4.56
      HP1-3 变砂岩 10.5 63.53 3.23 5.20 0.24 2.31 3.87 4.13 3.12 0.11 0.57 0.08 1.29 8.43
      HSH01-B10# 变粉砂岩 11.8 67.53 - - 0.44 2.19 4.12 4.35 0.63 0.16 0.77 - 1.89 5.39
      HSH02-B8# 变粉砂岩 11.1 65.70 - - 0.60 2.58 3.65 3.73 0.66 0.14 0.69 - 5.46 4.86
      HSH02-B9# 变粉砂岩 10.5 53.59 - - 1.62 6.38 3.14 5.32 1.82 0.13 0.59 - 10.62 5.88
      三通沟北
      Ⅵ-Ⅶ
      锰矿带
      ZK01-51 碳质粉砂岩 13.1 58.96 4.51 0.44 0.44 0.58 5.13 1.49 0.06 0.38 0.67 8.64 2.90 4.95
      ZK01-53 碳质粉砂岩 11.6 56.52 3.84 0.90 4.10 1.68 4.28 2.11 0.08 0.17 0.50 8.50 5.07 4.74
      ZK01-56 碳质粉砂岩 12.1 60.34 4.63 0.57 0.90 0.82 4.73 1.86 0.09 0.29 0.64 8.75 1.31 5.20
      ZK01-59 碳质粉砂岩 10.7 57.99 4.50 0.51 1.62 2.92 3.99 2.14 0.08 0.13 0.53 8.97 3.72 5.01
      ZK01-65 碳质粉砂岩 13.59 59.61 4.14 0.56 0.55 0.94 4.95 1.91 0.11 0.29 0.65 8.70 1.18 4.70
      ZK01-67 碳质粉砂岩 12.34 61.20 5.77 0.41 0.62 1.01 4.49 1.72 0.06 0.25 0.58 7.92 3.31 6.18
      ZK01-49 硅质粉砂岩 14.17 70.11 3.47 0.43 0.08 0.14 5.86 1.54 0.09 0.08 0.64 1.64 0.14 3.90
      ZK01-55.5 硅质粉砂岩 10.52 70.57 4.94 0.46 0.33 0.42 4.80 1.55 0.08 0.21 0.60 3.35 1.28 5.40
      ZK01-61 硅质粉砂岩 10.64 70.64 3.79 0.33 0.15 0.46 3.92 1.45 0.06 0.10 0.48 4.98 2.57 4.12
      注:#据张强等(2018);##据李杰等(2023).
      下载: 导出CSV

      表  2  东昆仑锰矿围岩微量元素含量分析结果(10-6)

      Table  2.   Analysis results of trace elements in surrounding rock of East Kunlun manganese deposit (10-6)

      矿床名称 检测项目 样品名称 Rb Ba Sr Cr Co Sc Ti Nb Ta Zr Hf U Th
      三通沟
      北锰矿
      ZK706-806 硅质粉砂岩 52.3 196 228 70.0 31.9 10.0 0.189 5.90 0.40 87.0 2.10 4.69 6.57
      ZK706-829 硅质粉砂岩 87.3 285 56.0 70.0 39.7 9.80 0.197 7.20 0.56 70.0 1.80 3.44 9.23
      ZK706-R1 碳质粉砂岩 66.5 173 50.3 90.0 48.2 13.5 0.263 10.8 0.79 97.0 2.50 3.56 13.3
      ZK706-R2 碳质粉砂岩 74.5 189 38.7 120 71.5 14.8 0.306 11.6 0.87 113 3.00 3.41 14.4
      ZK706-R3 碳质粉砂岩 70.0 202 54.1 110 80.4 14.6 0.299 12.8 0.90 114 3.00 3.64 14.7
      ZK706-R5 碳质粉砂岩 68.2 205 25.1 90.0 38.4 10.7 0.222 8.30 0.63 75.0 1.90 3.73 9.80
      ZK706-R4 硅质岩 12.2 67.5 23.0 50.0 57.4 3.70 0.075 3.60 0.21 36.0 0.80 4.51 3.30
      STG-8B## 硅质岩 27.6 808 21.0 41.4 0.82 2.43 0.04 3.05 0.23 30.1 0.86 1.91 3.14
      STG-9B-1## 硅质岩 21.8 347 77.4 33.7 0.92 1.65 0.03 1.86 0.14 20.1 0.51 1.55 1.90
      STG-9B-3## 硅质岩 34.6 424 38.2 43.2 1.23 2.93 0.06 4.20 0.32 54.7 1.41 2.50 4.40
      洪水河
      铁锰矿
      HP1-1 变砂岩 156 3 080 102.5 80.0 43.6 19.0 0.406 18.8 1.36 304 7.20 2.06 14.6
      HP1-3 变砂岩 341 1 000 109 40.0 56.7 17.8 0.34 12.6 0.93 174 4.30 1.17 9.55
      HSH01-B10# 变粉砂岩 152 421 96.7 90.0 - - - 13.2 1.10 157 4.00 1.58 15.4
      HSH02-B8# 变粉砂岩 159 484 134 80.0 - - - 12.5 1.10 147 3.80 1.55 14.5
      HSH02-B9# 变粉砂岩 147 3 490 222 60.0 - - - 11.7 1.00 153 4.20 1.65 12.0
      三通沟
      北Ⅵ-Ⅶ锰矿带
      ZK01-51 碳质粉砂岩 134 1 140 69.3 100 23.8 11.6 0.38 18.7 1.12 166 4.50 13.9 19.9
      ZK01-53 碳质粉砂岩 121 725 55.3 60.0 15.4 11.4 0.28 10.3 0.76 110 3.10 7.13 11.9
      ZK01-56 碳质粉砂岩 128 881 54.3 90.0 22.6 12.0 0.35 15.2 1.10 147 4.10 10.8 16.1
      ZK01-59 碳质粉砂岩 101 676 79.5 70.0 20.5 13.0 0.30 11.1 0.81 121 3.20 7.39 12.4
      ZK01-65 碳质粉砂岩 135 715 64.2 90.0 22.2 14.6 0.36 14.3 1.06 152 4.20 9.93 17.1
      ZK01-67 碳质粉砂岩 122 811 84.3 80.0 24.3 12.8 0.30 13.8 0.86 138 3.70 8.10 16.5
      ZK01-49 硅质粉砂岩 145 1 530 63.0 90.0 11.3 12.2 0.36 15.4 1.08 146 3.90 10.1 14.3
      ZK01-55.5 硅质粉砂岩 126 928 60.8 80.0 19.3 11.6 0.33 13.8 0.99 139 3.80 8.76 13.1
      ZK01-61 硅质粉砂岩 102 729 31.7 70.0 18.0 9.00 0.28 10.7 0.81 112 3.00 5.40 12.3
      注:#据张强等(2018);##据李杰等(2023).单位:除Ti为10-2外,其他均为10-6;-.未检测.
      下载: 导出CSV

      表  3  东昆仑锰矿稀土元素分析结果(10-6

      Table  3.   Analysis results of rare earth elements in surrounding rock of East Kunlun manganese deposit (10-6)

      矿区 编号 样品 La Ce Pr Nd Sm Eu Gd Tb Dy Y Ho Er Tm Yb Lu Eu/Eu* Ce/Ce* Pr/Pr*
      洪水河 HP1-1 变质砂岩 45.1 110 12.0 47.2 10.6 1.86 10.5 1.71 9.79 59.3 2.05 6.00 0.83 5.28 0.86 0.83 1.08 0.98
      HP1-3 变质砂岩 37.3 105 9.61 35.2 7.37 1.73 7.95 1.21 7.59 42.6 1.37 3.84 0.61 3.68 0.66 1.06 1.28 0.92
      HSH01-B10# 粉砂质千枚岩 42.7 106 9.36 36.5 7.52 1.58 7.29 1.17 6.67 37.8 1.30 2.78 0.56 3.64 0.55 1.00 1.22 0.88
      HSH02-B8# 粉砂岩 38.6 94.7 8.66 33.8 7.01 1.39 6.71 1.04 6.40 37.3 1.27 3.58 0.55 3.61 0.55 0.95 1.20 0.90
      HSH02-B9# 粉砂岩 33.5 72.1 7.75 29.3 6.37 1.29 6.08 1.03 6.09 38.1 1.21 3.60 0.58 3.70 0.61 0.97 1.03 0.99
      三通沟Ⅵ-Ⅶ带 ZK01-51 碳质粉砂岩 51.4 90.5 11.0 41.6 6.92 1.19 3.97 0.44 2.30 13.2 0.48 1.61 0.25 1.74 0.31 1.05 0.88 1.05
      ZK01-53 碳质粉砂岩 43.5 82.9 10.9 42.1 6.31 1.23 5.69 1.07 6.00 40.2 1.41 3.85 0.56 2.31 0.41 0.97 0.88 1.06
      ZK01-56 碳质粉砂岩 41.2 82.9 9.68 36.5 6.88 1.22 4.63 0.56 2.95 17.0 0.62 1.96 0.30 1.99 0.35 1.01 0.96 1.04
      ZK01-59 碳质粉砂岩 30.3 58.9 6.76 24.3 5.03 0.93 4.60 0.75 4.66 27.9 0.95 2.93 0.44 1.67 0.43 0.91 0.95 1.05
      ZK01-65 碳质粉砂岩 50.4 90.5 9.65 46.2 7.49 1.20 6.30 1.07 6.34 43.2 1.46 4.07 0.55 2.14 0.40 0.82 0.94 0.87
      ZK01-67 碳质粉砂岩 40.6 83.0 9.57 36.2 7.18 1.15 4.89 0.56 2.49 12.4 0.45 1.31 0.20 1.34 0.24 0.91 0.97 1.03
      ZK01-61 硅质粉砂岩 22.7 43.2 4.98 18.1 3.51 0.58 2.93 0.44 2.70 16.5 0.56 1.66 0.26 1.60 0.27 0.85 0.94 1.05
      ZK01-55.5 硅质粉砂岩 29.7 56.2 6.47 24.5 4.79 0.76 2.99 0.35 1.77 10.2 0.35 1.05 0.18 1.21 0.22 0.94 0.94 1.03
      ZK01-49 硅质粉砂岩 50.7 106.0 11.90 43.8 8.00 0.99 5.52 0.80 4.88 32.7 1.03 3.02 0.42 2.43 0.41 0.70 1.00 1.03
      三通沟北 ZK706-806 硅质粉砂岩 84.2 205 17.8 76.3 18.3 4.92 21.6 3.13 18.5 13.0 3.66 9.38 1.15 5.83 0.88 1.15 1.22 0.84
      ZK706-829 硅质粉砂岩 22.1 49.0 5.23 19.5 3.99 0.69 3.32 0.53 3.16 16.8 0.61 1.73 0.26 1.61 0.26 0.89 1.05 0.99
      ZK706-R1 碳质粉砂岩 34.1 91.4 8.06 30.2 5.88 1.19 5.18 0.75 4.33 23.4 0.84 2.40 0.34 2.09 0.33 1.02 1.27 0.90
      ZK706-R2 碳质粉砂岩 30.4 78.4 6.96 26.1 5.03 0.94 4.34 0.63 3.73 20.6 0.75 2.20 0.34 2.24 0.37 0.95 1.24 0.90
      ZK706-R3 碳质粉砂岩 55.4 142.5 11.70 44.6 8.33 1.47 7.37 1.09 6.39 35.2 1.25 3.52 0.53 3.15 0.51 0.88 1.29 0.85
      ZK706-R5 碳质粉砂岩 30.0 78.3 6.77 25.9 5.13 0.93 4.46 0.66 4.01 21.5 0.81 2.35 0.34 2.12 0.35 0.92 1.27 0.88
      ZK706-R4 硅质岩 28.6 52.0 6.26 25.9 5.52 0.95 5.37 0.78 4.80 29.4 0.98 2.71 0.37 2.19 0.35 0.82 0.90 1.00
      STG-8B## 硅质岩 8.40 15.00 1.91 7.02 1.19 0.19 0.85 0.14 0.90 6.03 0.18 0.55 0.09 0.61 0.09 0.88 0.86 1.09
      STG-9B-1## 硅质岩 5.99 11.88 1.53 5.68 1.00 0.19 0.80 0.13 0.76 5.03 0.16 0.49 0.07 0.51 0.07 1.01 0.90 1.09
      STG-9B-3## 硅质岩 10.74 20.70 2.57 9.66 1.92 0.34 1.62 0.25 1.47 10.38 0.34 0.93 0.15 1.05 0.15 0.94 0.91 1.07
      注:#据张强等(2018);##据李杰等(2023);(Pr/Pr*)PAAS = [2Pr/(Ce + Nd)]PAAS; (Ce/Ce*)PAAS = [2Ce/(La + Pr)]PAAS; (Eu/Eu*) PAAS = [2Eu/(Sm + Gd)]PAAS.
      下载: 导出CSV

      表  4  东昆仑与其他地区典型锰矿地质特征对比

      Table  4.   Comparison of the geological characteristics of typical manganese deposits in East Kunlun and other region

      锰矿床 时代与构造背景 沉积建造 沉积相与沉积环境 矿石组成与锰品位 成矿物质来源 成矿氧化还原条件 成矿主控因素 参考文献
      三通沟北锰矿 奥陶-志留纪,活动大陆边缘弧后盆地 纳赤台群,细碎屑岩-硅质岩建造 斜坡-盆地相沉积 矿石主要呈纹层状;矿石矿物主要由菱锰矿、钙菱锰矿等组成;锰品位10%~25% 海底热液为主,少量陆源风化 海洋环境,具上部氧化下部还原的分层特征 弧后盆地;含碳黑色岩系;海底热液活动 刘永乐等(2023);张连昌等(2023, 内部报告)
      三通沟北Ⅵ-Ⅶ锰矿带 新元古代,被动陆缘裂陷盆地 万宝沟群,细碎屑岩-硅质岩建造 浅海台沟相环境 矿石主要呈纹层状;矿石矿物主要由菱锰矿、钙菱锰矿等组成;锰品位10%~18% 海底热液与陆源风化 海水具有氧化还原的分层特征 断陷盆地;含碳黑色岩系 张连昌等(2023, 内部
      报告)
      洪水河铁锰矿 中元古代,活动大陆边缘弧后盆地 蓟县系狼牙山组细碎屑岩-碳酸盐岩组合 滨海-浅海环境 矿石呈纹层状和块状,少量脉状;主要由软锰矿、硬锰矿、蔷薇辉石、磁铁矿等组成;平均锰品位22.5% 海底热液为主,少量陆源风化 沉积成矿为氧化环境 砂岩-泥质岩的过渡部位;沉积-变质作用 王生明等(2018)
      菜园子锰矿 新元古代,被动大陆边缘裂陷盆地 万宝沟群细碎屑岩-碳酸盐岩建造 滨海-浅海相台盆-台沟相沉积 矿石呈纹层状;主要由菱锰矿、软锰矿组成;锰矿品位10.3%~18.2% 海底热液与陆源风化 海水具有氧化还原的分层特征 白云岩-含碳泥质板岩过渡带 青海有色第一地质勘查院(2022).青海
      浪木日锰矿 中元古代, 活动大陆边缘 蓟县系狼牙山组火山-沉积岩屑岩建造 海相,滨海-浅海环境环境 金属矿物以软锰矿、硬锰矿为主,少量水锰矿及蔷薇辉石;矿石品位为22%~32% 海相沉积,后期热液改造 海水具有上部氧化下部还原的分层特征 硅质岩与基性火山岩组合控矿;后期变质作用叠加 杨顺龙等(2022); 韩雷(2022)
      哈莉哈德锰矿 奥陶-志留纪,活动大陆边缘 滩间山群,火山-沉积建造 浅海环境 矿石以条带状、网脉状构造为主;主要由蔷薇辉石、软锰矿和菱锰矿组成;矿石品位为15%~27% 海相沉积,后期热液改造成矿 沉积成矿为氧化环境 沉积-变质作用 党志刚和漆亮(2022)
      西昆仑玛尔坎苏锰矿 晚石炭世;弧后裂谷盆地 浅海碳酸盐岩台地,含碳泥质灰岩夹薄层泥灰岩 开阔台地相与局限裂陷盆地 矿石主要呈块状及层纹状;主要组成矿物菱锰矿,次为水褐锰矿、软锰矿、硫锰矿、硅锰矿等;锰品位30%~35% 盆内海底热液为主,陆源风化为次,有机质参与 氧化-次氧化为主;成岩期富有机质参与转化为还原环境 海陆棚环境中的局部洼地 张连昌等(2020);Li
      et al. (2022);
      Dong et al.(2023)
      贵州大塘坡锰矿 新元古代;扬子地块边缘裂陷,锰矿赋存于次级裂谷盆地中 海相黑色岩系沉积建造组合 主体为低能滞留缺氧水体的地堑盆地环境 矿石主要呈层状一似层状;主要由菱锰矿、钙菱锰矿、锰方解石、锰白云石、黄铁矿组成;锰品位10%~30% 在裂谷盆地背景下的甲烷渗漏提供锰质来源 锰矿初始富集处于氧化环境,成岩后进入富有机质沉积物还原环境 新元古代间冰期;同生深大断裂附近的地堑盆地 杜远生等(2015);周琦等(2016);Yu
      et al. (2016)
      南非卡拉哈里锰矿 古元古代,南非卡普瓦尔克拉通裂谷盆地 古元古代条带状硅铁建造 浅海环境,周期性的海进-海退过程 以黑锰矿、铁锰矿、褐锰矿为主,其次菱锰矿、锰白云石、钙菱锰矿、软锰矿 海底热液喷气活动提供成矿物质 氧化还原分层,成矿期以氧化环境为主 古元古代间冰期; 裂谷盆地环境 Beukes et al.(2016)
      下载: 导出CSV
    • Bau, M., Dulski, P., 1996. Distribution of Yttrium and Rare-Earth Elements in the Penge and Kuruman Iron-Formations, Transvaal Supergroup, South Africa. Precambrian Research, 79(1-2): 37-55. https://doi.org/10.1016/0301-9268(95)00087-9
      Bhatia, M. R., 1983. Plate Tectonics and Geochemical Composition of Sandstones. The Journal of Geology, 91(6): 611-627. https://doi.org/10.1086/628815
      Bhatia, M. R., Crook, K. A. W., 1986. Trace Element Characteristics of Graywackes and Tectonic Setting Discrimination of Sedimentary Basins. Contributions to Mineralogy and Petrology, 92(2): 181-193. https://doi.org/10.1007/bf00375292
      Beukes, N. J., Swindell, E. P. W., Wabo, H., 2016. Manganese Deposits of Africa. Episodes, 39(2): 285-317. doi: 10.18814/epiiugs/2016/v39i2/95779
      Chen, N. S., Sun, M., Wang, Q. Y., et al., 2008. Zircon U-Pb Dating in the Middle Belt of East Kunlun Orogenic Belt and Its Implications for Tectonic Evolution. China Science: Earth Science, 38(6): 657-666 (in Chinese).
      Chen, Y. X., Pei, X. Z., Li, R. B., et al., 2014. Geochemical Characteristics and Tectonic Significance of Meta-Sedimentary Rocks from Naij Tal Group, Eastern Section of East Kunlun. Geoscience, 28(3): 489-500 (in Chinese with English abstract).
      Chen, Y. X., Pei, X. Z., Li, R. B., et al., 2013. Zircon U-Pb Age, Geochemical Characteristics and Tectonic Significance of Metavolcanic Rocks from Naij Tal Group, East Section of East Kunlun. Earth Science Frontiers, 20(6): 240-254(in Chinese with English abstract).
      Cowgill, E., Yin, A., Harrison, T. M., et al., 2003. Reconstruction of the Altyn Tagh Fault Based on U-Pb Geochronology: Role of back Thrusts, Mantle Sutures, and Heterogeneous Crustal Strength in Forming the Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 108(B7). https://doi.org/10.1029/2002jb002080
      Dong, Z. G., Peng, Z. D., Robbins LJ, et al., 2023. Episodic Ventilation of Euxinic Bottom Waters Triggers the Formation of Black Shale-Hosted Mn Carbonate Deposits, Geochimica et Cosmochimica Acta, 341: 132-149.
      Dang, Z. G., Qi, L., 2022. Ore-Controlling Factors and Prospecting Indicators of Halihad Manganese Deposit in Wulan County, Qinghai Province. China Manganese Industry, 40(1): 47-51 (in Chinese with English abstract).
      Dong, Z. G., Zhang, L. C., Wang, C. L., et al., 2020. Progress and Problems in Understanding Sedimentary Manganese Carbonate Metallogenesis. Mineral Deposits, 39(2): 237-255(in Chinese with English abstract).
      Du, Y. S., Zhou, Q., Yu, W. C., et al., 2015. Linking the Cryogenian Manganese Metallogenic Process in the Southeast Margin of Yangtze Block to Break-Up of Rodinia Supercontinent and Sturtian Glaciation. Geological Science and Technology Information, 34(6): 1-7(in Chinese with English abstract).
      Fan, D. L., Ye, J., Li, J. J., 1999. Geology, Mineralogy, and Geochemistry of the Middle Proterozoic Wafangzi Ferromanganese Deposit, Liaoning Province, China. Ore Geology Reviews, 15(1-3): 31-53. https://doi.org/10.1016/s0169-1368(99)00013-x
      Frakes, L., Bolton, B. R., 1992. Effects of Ocean Chemistry, Sea Level, and Climate on the Formation of Primary Sedimentary Manganese Ore Deposits. Economic Geology, 87(5): 1207-1217. https://doi.org/10.2113/gsecongeo.87.5.1207
      Feng, C. Y., Zhang, D. Q., Dang, X. Y., et al., 2005. SHRIMP Zircon U-Pb Dating of Quartz Albitite from the Tuolugou Cobalt (Gold) Deposit, Golmud, Qinghai, China—Constraints on the Age of the Naij Tal Group. Geological of China Bulletin, 24(6): 501-505(in Chinese with English abstract).
      Gao, S., Wedepohl, K. H., 1995. The Negative Eu Anomaly in Archean Sedimentary Rocks: Implications for Decomposition, Age and Importance of Their Granitic Sources. Earth and Planetary Science Letters, 133(1-2): 81-94. https://doi.org/10.1016/0012-821x(95)00077-p
      Guo, G. L., 2018. Geological Characteristics and Prospecting Criteria of the Flood River Qingshui River Sedimentary Metamorphic Iron Manganese Deposit in Eastern Kunlun. World Nonferrous Metals, (16): 267-268 (in Chinese with English abstract).
      Han, L., 2022. Study on the Genesis of Langmuri Manganese Deposit in Dulan County, Qinghai Province (Dissertation). Jilin University, Changchun(in Chinese with English abstract).
      Jian, X., Weislogel, A., Pullen, A., et al., 2020. Formation and Evolution of the Eastern Kunlun Range, Northern Tibet: Evidence from Detrital Zircon U-Pb Geochronology and Hf Isotopes. Gondwana Research, 83: 63-79. https://doi.org/10.1016/j.gr.2020.01.015
      Jin, L. J., Zhou, H. W., Wang, J. L., et al., 2015. LA-ICP-MS U-Pb Dating of the Detrital Zircons from Clastic Rocks of Naij Tal Group in East Kunlun and Its Geological Implications. Geological Bulletin of China, 34(10): 1848-1859 (in Chinese with English abstract).
      Johnson, J. E., Webb, S. M., Ma, C., et al., 2016. Manganese Mineralogy and Diagenesis in the Sedimentary Rock Record. Geochimica et Cosmochimica Acta, 173: 210-231. https://doi.org/10.1016/j.gca.2015.10.027
      Kendall, B. S., Creaser, R. A., Ross, G. M., et al., 2004. Constraints on the Timing of Marinoan "Snowball Earth" Glaciation by 187Re–187Os Dating of a Neoproterozoic, Post-Glacial Black Shale in Western Canada. Earth and Planetary Science Letters, 222(3/4): 729-740. https://doi.org/10.1016/j.epsl.2004.04.004
      Li, J., Li, F. J., Li, Z. Q., 2023. Genesis Analysis of Manganese Ore Deposits from the Middle-Upper Proterozoic Wanbaogou Group in the Santonggou Area, East Kunlun, Qinghai Province. Acta Geologica Sinica, 97(2): 448-466(in Chinese with English abstract).
      Li, R. S., Ji, W. H., Zhao, Z. M., et al., 2007. Progress in the Study of the Early Paleozoic Kunlun Orogenic Belt. Geological Bulletin of China, 26(4): 373-382 (in Chinese with English abstract).
      Li, W. Y., Zhang, Z. W., Gao, Y. B., et al., 2011. Important Metallogenic Events and Tectonic Response of Qinling, Qilian and Kunlun Orogenic Belts. Geology in China, 38(5): 1135-1149 (in Chinese with English abstract).
      Li, W. Y., Zhang, Z. W., Wang, Y. L., et al., 2022. Tectonic Transformation of Proto- and Paleo-Tethys and the Metallization of Magmatic Ni-Cu-Co Sufide Deposits in Kunlun Orogen, Northwest China. Journal of Earth Sciences and Environment, 44(1): 1-19(in Chinese with English abstract).
      Liao, P. C., Lü, X. B., Jia, Q. Y., et al., 2016. Petrologic and Geochemical Characteristics of the Hongshuihe Iron Deposit in Qinghai Province: Implication for Ore Genesis. Bulletin of Mineralogy, Petrology and Geochemistry, 35(2): 285-294(in Chinese with English abstract).
      Liu, S. B., Zhang, A. K., Liu, G. L., et al., 2016. Geological Characteristics of the Hongshuihe Iorn-Manganese Deposit in Eastern Kunlun Metallogenic Belt and Its Discovery Significance. Northwestern Geology, 49(1): 197-205 (in Chinese with English abstract).
      Liu, Y. L., Zhao, J. C., Li, W., et al., 2023. Geological Characteristics and Discussion on Formation Age of Santonggoubei Sedimentary Manganese Deposit in Eastern Kunlun of Qinghai. Chinese Journal of Geology (Scientia Geologica Sinica), 58(2): 474-488 (in Chinese with English abstract).
      Maynard, J. B., 2010. The Chemistry of Manganese Ores through Time: A Signal of Increasing Diversity of Earth-Surface Environments. Economic Geology, 105(3): 535-552. https://doi.org/10.2113/gsecongeo.105.3.535
      Mo, X. X., Luo, Z. H., Deng, J. F., et al., 2007. Granitoids and Crustal Growth in the East-Kunlun Orogenic Belt. Geological Journal of China Universities, 13(3): 403-414(in Chinese with English abstract).
      Murray, R. W., 1994. Chemical Criteria to Identify the Depositional Environment of Chert: General Principles and Applications. Sedimentary Geology, 90(3-4): 213-232. https://doi.org/10.1016/0037-0738(94)90039-6
      Murray, R. W., Buchholtz ten Brink, M. R., Jones, D. L., et al., 1990. Rare Earth Elements as Indicators of Different Marine Depositional Environments in Chert and Shale. Geology, 18(3): 268. https://doi.org/10.1130/0091-7613(1990)0180268:reeaio>2.3.co;2 doi: 10.1130/0091-7613(1990)0180268:reeaio>2.3.co;2
      Ni, J. Y., Hu, D. G., Zhou, C. J., 2010. Tectonic Environment of Naij Tal Group in the East Kunlun Orogenic Belt. Journal of Geomechanics, 16(1): 11-20(in Chinese with English abstract).
      Pan, G. T., Xiao, Q. H., Lu, S. N., et al., 2009. Subdivision of Tectonic Units in China. Geology in China, 36(1): 1-28(in Chinese with English abstract).
      Pan, G. T., Xiao, Q. H., Zhang, K. X., et al., 2019. Recognition of the Oceanic Subduction-Accretion Zones from the Orogenic Belt in Continents and Its Important Scientific Significance. Earth Science, 44(5): 1544-1561(in Chinese with English abstract).
      Pan, Y. S., Zhang, Y. Q., 1996. The Early Paleozoic Geological Features and Evolutions of the Kunlun Mountain. Science in China (Series D), 26(4): 302-307 (in Chinese).
      Pei, X. Z., Li, R. B., Li, Z. C., et al., 2018. Composition Feature and Formation Process of Buqingshan Composite Accretionary Mélange Belt in Southern Margin of East Kunlun Orogen. Earth Science, 43(12): 4498-4520(in Chinese with English abstract).
      Qinghai Bureau of Geology and Mineral Resources Exploration and Development. 1997. Rock Strata of Qinghai Province. China University of Geosciences Press, Wuhan (in Chinese).
      Qinghai Bureau of Geology and Mineral Resources Exploration and Development, 2019. Qinghai Geological Record. Geology Press, Beijing(in Chinese).
      Ren, J. H., Liu, Y. Q., Feng, Q., et al., 2009. LA-ICP-MS U-Pb Zircon Dating and Geochemical Characteristics of Diabase-Dykes from the Qingshuiquan Area, Eastern Kunlun Orogenic Belt. Acta Petrologica Sinica, 25(5): 1135-1145 (in Chinese with English abstract).
      Roy, S., 2006. Sedimentary Manganese Metallogenesis in Response to the Evolution of the Earth System. Earth-Science Reviews, 77(4): 273-305. https://doi.org/10.1016/j.earscirev.2006.03.004
      Roser, B. P., Korsch, R. J., 1985. Plate Tectonics and Geochemical Composition of Sandstones: A Discussion. The Journal of Geology, 93(1): 81-84. https://doi.org/10.1086/628921
      Roser, B. P., Korsch, R. J., 1986. Determination of Tectonic Setting of Sandstone-Mudstone Suites Using SiO2 Content and K2O/Na2O Ratio. The Journal of Geology, 94(5): 635-650. https://doi.org/10.1086/629071
      Tong, H. K., Long, L. L., Wang, Y. W., et al., 2023. Metallogenic Characteristics of Langmuri Copper Polymetallic Deposit in East Kunlun and Its Ore Prospecting Enlightenment. Earth Science, 48(12): 4349-4369 (in Chinese with English abstract).
      Wang, B. Z., Li, J. Q., Fu, C. L., et al., 2022. Research on Formation and Evolution of Early Paleozoic Bulhanbuda Arc in East Kunlun Orogen. Earth Science, 47(4): 1253-1270 (in Chinese with English abstract).
      Wang, C. G., Du, X. B., Xu, G. L., 2015. Geochemical Characteristics and Tectonic Environment Analysis of Volcanic Rocks in Wanbaogou Group in Wulastai Area, Qinghai Province. Shandong Land and Resources, 31(7): 11-18 (in Chinese with English abstract).
      Wang, S. M., Zhang, D. M., Li, Z. F., et al., 2018. Discussion on Geological Characteristics and Genesis of Hongshuihe Manganese Deposit in Dulan, Qinghai. Mineral Exploration, 9(6): 1078-1086 (in Chinese with English abstract).
      Wei, Q. R., Li, D. W., Wang, G. C., 2007. Geochemistry and Its Tectonic Setting of Wanbaogou Group Volcanics in East Kunlun. Mineral and Petrology, 27(1): 97-106 (in Chinese with English abstract).
      Wu, R. C., Gu, X. X., Zhang, Y. M., et al., 2017. The Sedimentary Geochemical Records about the Tectonic Evolution of the East Kunlun Orogenic Belt from Early Paleozoic to Early Mesozoic. Geoscience, 31(4): 716-733(in Chinese with English abstract).
      Xie, S. L., Zheng, C. X., Jia, B., et al., 2021. The Geological Characteristics and Prospecting Criteria of Manganese Deposit in Caiyuanzigou Area, East Kunlun. China Manganese Industry, 39(2): 24-27(in Chinese with English abstract).
      Xu, L. G., 2020. Sedimentary Manganese Formation and Its Link with Paleo-Oceanic Environment. Mineral Deposits, 39(6): 959-973 (in Chinese with English abstract).
      Xu, X., Song, S. G., Su, L., 2016. Formation Age and Tectonic Significance of the Wanbaogou Basalts in the Middle East Kunlun Orogenic Belt. Acta Petrologica et Mineralogica, 35(6): 965-980(in Chinese with English abstract).
      Xu, Z. Q., Yang, J. S., Li, H. B., et al., 2007. Orogenic Plateaux-Terrane Amalgamation, Collision and Plift in the Qinghai-Tibet Plateau. Geological Publishing House, Beijng(in Chinese).
      Yang, S. L., Mao, S. L., Duan, H. C., et al., 2022. Geological Significance of Manganese Ore Prospecting in the South Area of Langmuri, East Kunlun Metallogenic Belt. Mining Technology, 22(3): 210-214 (in Chinese with English abstract).
      Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28: 211-280. https://doi.org/10.1146/annurev.earth.28.1.211
      Yin, H. F., Zhan, K. X., 1997. Characteristics of the Eastern Kunlun Orogenic Belt. Earth Science, 22(4): 3-6 (in Chinese with English abstract).
      Yu, F. C., Ma, G. L., Wei, G. F., et al., 1998. Geological Characteristics and Ore Controlling Factors of the Tanjianshan Gold Deposit, Qinghai Province. Mineral Deposits, 17(1): 47-56 (in Chinese with English abstract).
      Yu, W. C., Algeo, T. J., Du, Y. S., et al., 2016. Genesis of Cryogenian Datangpo Manganese Deposit: Hydrothermal Influence and Episodic Post-Glacial Ventilation of Nanhua Basin, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 459: 321-337. https://doi.org/10.1016/j.palaeo.2016.05.023
      Zhang, A. K., Ma, S. L., Liu, G. L., et al., 2019. The Spatial-Temporal Distribution, Minerogenic Series and Metallogenic Models of Iron Deposits, Qinghai Province, China. Acta Mineralogica Sinica, 39(1): 41-54 (in Chinese with English abstract).
      Zhang, L. C., Zhang, B. L., Dong, Z. G., et al., 2020. Tectonic Setting and Metallogenetic Conditions of Carboniferous Malkansu Giant Manganese Belt in West Kunlun Orogen. Journal of Jilin University (Earth Science Edition), 50(5): 1340-1357(in Chinese with English abstract).
      Zhang, L. C., Feng, J., Li, P., et al., 2022a. Tectonic Evolution and Metallogenic Regularity of Dominant Deposits in the Western Tianshan. Earth Science, 47(9): 3127-3146 (in Chinese with English abstract).
      Zhang, L. C., Dong, Z. G., Zhang, B. L., et al., 2022b. Controlling Factors and "Malkansu Style" Metallogenetic Model of High Grade Manganese Ore in West Kunlun Orogen. Acta Geologica Sinica, 96(9): 3195-3210(in Chinese with English abstract).
      Zhang, Q., Ding, Q. F., Song, K., et al., 2018. Detrital Zircon U-Pb Geochronology and Hf Isotope of Phyllite of Langyashan Formation in Hongshuihe Iron Ore District of Eastern Kunlun and Their Geological Significance. Journal of Jilin University (Earth Science Edition), 48(4): 1085-1104(in Chinese with English abstract).
      Zhang, X. T., Yang, S. D., Yang, Z. J., 2007. The Regional Geology of Qinghai Province. Geological Publishing House, Beijng(in Chinese).
      Zhang, Y. L., Zhang, X. J., Hu, D. G., et al., 2010. SHRIMP Zircon U-Pb Ages of Rhyolite from the Naij Tal Group in the East Kulun Orogenic Belt. Journal of Geomechanics, 16(1): 21-27, 50(in Chinese with English abstract).
      Zhao, J. C., Dai, W., Qu, G. J., et al., 2020. Geological Characteristics and Prospecting Potentiality of North Santonggou Manganese Deposit in Dulan County, Qinghai Province. Mineral Exploration, 11(7): 1372-1378(in Chinese with English abstract).
      Zhao, Z. H., 1997. Geochemical Principles of Trace Elements. Science Press, Beijing (in Chinese).
      Zhou, Q., Du, Y. S., Yuan, L. J., et al., 2016. The Structure of the Wuling Rift Basin and Its Control on the Manganese Deposit during the Nanhua Period in Guizhou-Hunan-Chongqing Border Area, South China. Earth Science, 41(2): 177-188 (in Chinese with English abstract).
      陈能松, 孙敏, 王勤燕, 等, 2008. 东昆仑造山带中带的锆石U-Pb定年与构造演化启示. 中国科学: 地球科学, 38(6): 657-666.
      陈有炘, 裴先治, 李瑞保, 等, 2013. 东昆仑东段纳赤台岩群变火山岩锆石U-Pb年龄、地球化学特征及其构造意义. 地学前缘, 20(6): 240-254.
      陈有炘, 裴先治, 李瑞保, 等, 2014. 东昆仑东段纳赤台岩群变沉积岩地球化学特征及构造意义. 现代地质, 28(3): 489-500.
      党志刚, 漆亮, 2022. 青海乌兰县哈莉哈德锰矿床控矿因素及找矿标志探讨. 中国锰业, 40(1): 47-51.
      董志国, 张连昌, 王长乐, 等, 2020. 沉积碳酸锰矿床研究进展及有待深入探讨的若干问题. 矿床地质, 39(2): 237-255.
      杜远生, 周琦, 余文超, 等, 2015. Rodinia超大陆裂解、Sturtian冰期事件和扬子地块东南缘大规模锰成矿作用. 地质科技情报, 34(6): 1-7.
      丰成友, 张德全, 党兴彦, 等, 2005. 青海格尔木地区驼路沟钴(金)矿床石英钠长石岩锆石SHRIMP U-Pb定年: 对"纳赤台群" 时代的制约. 地质通报, 24(6): 501-505.
      郭桂兰, 2018. 东昆仑洪水河-清水河沉积变质型铁锰矿床地质特征及找矿标志. 世界有色金属, (16): 267-268.
      韩雷, 2022. 青海省都兰县浪木日锰矿成因研究(硕士学位论文). 长春: 吉林大学.
      靳立杰, 周汉文, 王继林, 等, 2015. 东昆仑地区纳赤台群碎屑岩段碎屑锆石LA-ICP-MS U-Pb年龄及其地质意义. 地质通报, 34(10): 1848-1859.
      李杰, 李凤杰, 李佐强, 2023. 青海东昆仑三通沟地区中—新元古界万宝沟群锰矿成因分析. 地质学报, 97(2): 448-466.
      李荣社, 计文化, 赵振明, 等, 2007. 昆仑早古生代造山带研究进展. 地质通报, 26(4): 373-382.
      李文渊, 张照伟, 高永宝, 等, 2011. 秦祁昆造山带重要成矿事件与构造响应. 中国地质, 38(5): 1135-1149.
      李文渊, 张照伟, 王亚磊, 等, 2022. 东昆仑原、古特提斯构造转换与岩浆铜镍钴硫化物矿床成矿作用. 地球科学与环境学报, 44(1): 1-19.
      廖鹏程, 吕新彪, 贾启元, 等, 2016. 青海省洪水河铁矿床岩石学、地球化学特征及其成因. 矿物岩石地球化学通报, 35(2): 285-294.
      刘世宝, 张爱奎, 刘光莲, 等, 2016. 东昆仑洪水河铁锰矿床特征及发现意义. 西北地质, 49(1): 197-205.
      刘永乐, 赵静纯, 李文, 等, 2023. 青海东昆仑三通沟北沉积锰矿地质特征及形成时代探讨. 地质科学, 58(2): 474-488.
      莫宣学, 罗照华, 邓晋福, 等, 2007. 东昆仑造山带花岗岩及地壳生长. 高校地质学报, 13(3): 403-414.
      倪晋宇, 胡道功, 周春景, 2010. 东昆仑造山带纳赤台群形成的大地构造环境探讨. 地质力学学报, 16(1): 11-20.
      潘桂棠, 肖庆辉, 陆松年, 等, 2009. 中国大地构造单元划分. 中国地质, 36(1): 1-28.
      潘桂棠, 肖庆辉, 张克信, 等, 2019. 大陆中洋壳俯冲增生杂岩带特征与识别的重大科学意义. 地球科学, 44(5): 1544-1561. doi: 10.3799/dqkx.2019.063
      潘裕生, 张玉泉. 1996. 昆仑山早古生代地质特征与演化. 中国科学(D辑), 26(4): 302-307.
      裴先治, 李瑞保, 李佐臣, 等, 2018. 东昆仑南缘布青山复合增生型构造混杂岩带组成特征及其形成演化过程. 地球科学, 43(12): 4498-4520.
      青海地质矿产勘探开发局, 1997. 青海省岩石地层. 武汉: 中国地质大学出版社.
      青海地质矿产勘探开发局, 2019. 青海区域地质志, 北京: 地质出版社.
      任军虎, 柳益群, 冯乔, 等, 2009. 东昆仑清水泉辉绿岩脉地球化学及LA-ICP-MS锆石U-Pb定年. 岩石学报, 25(5): 1135-1145.
      童海奎, 龙灵利, 王玉往, 等, 2023. 东昆仑浪木日铜多金属矿床成矿特征及找矿启示. 地球科学, 48(12): 4349-4369. doi: 10.3799/dqkx.2023.028
      王秉璋, 李积清, 付长垒, 等, 2022. 东昆仑布尔汗布达早古生代岩浆弧的形成与演化初探. 地球科学, 47(4): 1253-1270.
      王成国, 杜显彪, 徐国良, 2015. 青海乌拉斯太地区万宝沟群火山岩地球化学特征及构造环境分析. 山东国土资源, 31 (7): 11-18.
      王生明, 张大明, 李泽峰, 等, 2018. 青海洪水河锰矿床地质特征及成因探讨. 矿产勘查, 9(6): 1078-1086.
      魏启荣, 李德威, 王国灿. 2007. 东昆仑万宝沟群火山岩岩石地球化学特征及其构造背景. 矿物岩石, 27(1): 97-106.
      武若晨, 顾雪祥, 章永梅, 等, 2017. 东昆仑造山带早古生代-早中生代构造演化的沉积地球化学记录. 现代地质, 31(4): 716-733.
      谢升浪, 郑才贤, 贾波, 等, 2021. 东昆仑菜园子沟地区锰矿地质特征及找矿标志. 中国锰业, 39(2): 24-27.
      徐林刚, 2020. 沉积型锰矿床的形成及其与古海洋环境的协同演化. 矿床地质, 39(6): 959-973.
      许鑫, 宋述光, 苏犁, 2016. 东昆仑中段万宝沟群玄武岩的形成时代和构造意义. 岩石矿物学杂志, 35(6): 965-980.
      许志琴, 杨经绥, 李海兵, 等. 2007. 造山的高原-青藏高原地体的拼合、碰撞造山及隆升机制. 北京: 地质出版社.
      杨顺龙, 毛生录, 段鸿昌, 等, 2022. 东昆仑成矿带浪木日南区锰矿找矿地质意义. 采矿技术, 22(3): 210-214.
      殷鸿福, 张克信, 1997. 东昆仑造山带的一些特点. 地球科学, 22(4): 39-342. http://www.earth-science.net/article/id/532
      于凤池, 马国良, 魏刚锋, 等, 1998. 青海滩间山金矿床地质特征和控矿因素分析. 矿床地质, 17(1): 47-56.
      张爱奎, 马生龙, 刘光莲, 等, 2019. 青海省铁矿时空分布、成矿系列及成矿模式. 矿物学报, 39(1): 41-54.
      张连昌, 冯京, 李平, 等, 2022a. 西天山构造演化与优势矿产成矿规律. 地球科学, 47(9): 3127-3146.
      张连昌, 董志国, 张帮禄, 等, 2022b. 西昆仑"玛尔坎苏式" 富锰矿主控因素及成矿模式. 地质学报, 96(9): 3195-3210.
      张连昌, 张帮禄, 董志国, 等, 2020. 西昆仑玛尔坎苏石炭纪大型锰矿带构造背景与成矿条件. 吉林大学学报(地球科学版), 50(5): 1340-1357.
      张强, 丁清峰, 宋凯, 等, 2018. 东昆仑洪水河铁矿区狼牙山组千枚岩碎屑锆石U-Pb年龄、Hf同位素及其地质意义. 吉林大学学报(地球科学版), 48(4): 1085-1104.
      张雪亭, 杨生德, 杨站君, 等, 2007. 青海省区域地质概论. 北京: 地质出版社.
      张耀玲, 张绪教, 胡道功, 等, 2010. 东昆仑造山带纳赤台群流纹岩SHRIMP锆石U-Pb年龄. 地质力学学报, 16(1): 21-27, 50.
      赵静纯, 代威, 屈光菊, 等, 2020. 青海都兰县三通沟北地区锰矿地质特征及找矿前景. 矿产勘查, 11(7): 1372-1378.
      赵振华, 1997. 微量元素地球化学原理. 北京: 科学出版社.
      周琦, 杜远生, 袁良军, 等, 2016. 黔湘渝毗邻区南华纪武陵裂谷盆地结构及其对锰矿的控制作用. 地球科学, 41(2): 177-188. doi: 10.3799/dqkx.2016.014
    • dqkxzx-49-12-4278-附表1-3.docx
    • 加载中
    图(17) / 表(4)
    计量
    • 文章访问数:  479
    • HTML全文浏览量:  117
    • PDF下载量:  101
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-08-23
    • 网络出版日期:  2025-01-09
    • 刊出日期:  2024-12-25

    目录

      /

      返回文章
      返回