• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    东昆仑东段沟里地区早古生代迈龙花岗岩年代学、岩石地球化学及地质意义

    李斌 魏俊浩 高强 赖联新 李笑龙 张声桃 杜玉梅

    李斌, 魏俊浩, 高强, 赖联新, 李笑龙, 张声桃, 杜玉梅, 2025. 东昆仑东段沟里地区早古生代迈龙花岗岩年代学、岩石地球化学及地质意义. 地球科学, 50(4): 1417-1442. doi: 10.3799/dqkx.2024.025
    引用本文: 李斌, 魏俊浩, 高强, 赖联新, 李笑龙, 张声桃, 杜玉梅, 2025. 东昆仑东段沟里地区早古生代迈龙花岗岩年代学、岩石地球化学及地质意义. 地球科学, 50(4): 1417-1442. doi: 10.3799/dqkx.2024.025
    Li Bin, Wei Junhao, Gao Qiang, Lai Lianxin, Li Xiaolong, Zhang Shengtao, Du Yumei, 2025. Geochronology, Geochemical Characteristics and Geological Significance of Early Paleozoic Mailong Granites in Eastern Section of East Kunlun. Earth Science, 50(4): 1417-1442. doi: 10.3799/dqkx.2024.025
    Citation: Li Bin, Wei Junhao, Gao Qiang, Lai Lianxin, Li Xiaolong, Zhang Shengtao, Du Yumei, 2025. Geochronology, Geochemical Characteristics and Geological Significance of Early Paleozoic Mailong Granites in Eastern Section of East Kunlun. Earth Science, 50(4): 1417-1442. doi: 10.3799/dqkx.2024.025

    东昆仑东段沟里地区早古生代迈龙花岗岩年代学、岩石地球化学及地质意义

    doi: 10.3799/dqkx.2024.025
    基金项目: 

    国家自然科学基金项目 42172084

    详细信息
      作者简介:

      李斌(1999-),男,硕士研究生,主要从事岩石地球化学研究.ORCID:0009-0009-8407-1300. E-mail:Lebiin@163.com

      通讯作者:

      魏俊浩(1961-),男,教授,博士生导师,E-mail:junhaow@163.com

    • 中图分类号: P581

    Geochronology, Geochemical Characteristics and Geological Significance of Early Paleozoic Mailong Granites in Eastern Section of East Kunlun

    • 摘要: 东昆仑造山带志留纪的岩浆岩对于确定原特提斯洋的碰撞演化过程具有重要意义.通过对东昆仑造山带东段沟里地区出露的迈龙二长花岗岩及花岗闪长岩开展岩相学、年代学、地球化学和锆石Hf同位素研究,探讨岩石成因及其形成的构造背景.结果表明,二长花岗岩和花岗闪长岩年龄分别为438±3 Ma和426±2 Ma,指示侵位时代为早志留世和晚志留世.二长花岗岩具有高硅(SiO2=71.86%~74.37%)、富钾(K2O=4.67%~5.81%)、贫钙、镁、钛和磷和弱过铝质(A/CNK=1.01~1.08),较富集大离子亲石元素(K、Rb、Sr、U和Th),亏损高场强元素(HFSE,如Nb、Ta和Ti)等特征,以及负Eu异常特征,锆石εHft)值在-9.2~12.7之间,二阶段模式年龄T2DM(Hf)为1 805~592 Ma.花岗闪长岩具有高铝(Al2O3=15.90%~17.12%)、高锶(Sr=359×10-6~468×10-6)、低钇、高Sr/Y(33.2~87.5)和(La/Yb)N(11.6~43.7)比值等特征.岩石稀土元素总量较低,轻重稀土分异明显,富集大离子亲石元素(LILE;Rb、K、Sr、Th、U),亏损Ba、Nb、Ta、P、Ti等元素,具有正Eu异常特征,锆石εHft)为-4.9~-0.7,二阶段模式年龄T2DM(Hf)为1 559~1 322 Ma.迈龙二长花岗岩具有高分异I型花岗岩的特征,是下地壳长英质岩浆和少量地幔镁铁质岩浆混合后经历高程度分离结晶作用的产物;与前者不同的是,花岗闪长岩具有埃达克岩的特征,由加厚的新生下地壳部分熔融后经过一定程度分离结晶作用形成.结合区域上报道的最新资料,二长花岗岩和花岗闪长岩可能分别形成于同碰撞环境和同碰撞向后碰撞伸展的转换环境.东昆仑地区至少在早志留世(440 Ma)开始进入同碰撞阶段,经历一个快速大陆碰撞期(440~427 Ma),并在427~425 Ma之间由于板片断离而由碰撞阶段向后碰撞伸展阶段转换.

       

    • 图  1  东昆仑造山带构造位置(a)和东昆仑造山带地质简图(b)

      底图据 Chen et al.(2020)修改

      Fig.  1.  Structural location of East Kunlun orogenic belt (a) and simplified geological map of East Kunlun orogenic belt (b)

      图  2  沟里地区地质图

      岩体锆石U-Pb年龄据陈加杰等(2016)Zhou et al.(2016)Dong et al.(2018)Chen et al.(2020)Fu et al.(2022);榴辉岩年龄据 Bi et al.(2020);蛇绿岩年龄据 Yang et al.(1996)Li et al.(2019). 底图据 Fu et al.(2022)修编

      Fig.  2.  Geological map of the Gouli area

      图  3  迈龙花岗闪长岩与二长花岗岩野外照片与镜下照片

      a~c分别为花岗闪长岩野外照片和镜下照片(正交偏光);d~f分别为二长花岗岩野外照片和镜下照片(正交偏光);Qtz. 石英;Pl. 斜长石;Kfs. 钾长石;Hbl. 角闪石;Bt. 黑云母;Zr. 锆石;Ap. 绿泥石

      Fig.  3.  Field photos and microscope photos of granodiorite and monzogranite in the Mailong area

      图  4  迈龙二长花岗岩和花岗闪长岩样品典型锆石CL图

      白色实线圈和黄色虚线圈分别代表U-Pb和Hf同位素分析测试点

      Fig.  4.  Typical zircon CL diagrams of Mailong monzogranite sample and granodiorite sample

      图  5  迈龙地区二长花岗岩和花岗闪长岩锆石U-Pb年龄谐和图及加权平均年龄图

      Fig.  5.  The zircon U-Pb age harmony map and weighted average age map of the monzogranite and granodiorite in the Mailong area

      图  6  迈龙地区二长花岗岩和花岗闪长岩TAS图解(a)、SiO2-K2O图解(b)、(Na2O+K2O-CaO)-SiO2图解(c)和A/NK-A/CNK图解(d)

      东昆仑同碰撞花岗岩数据据 Fu et al.(2022),后碰撞花岗岩数据据 Zhang et al.(2021),岛弧花岗岩数据据陈加杰等(2016).TAS图解(a)据Middlemost(1994)、SiO2-K2O图解(b)和A/NK-A/CNK图解(d)据 Peccerillo and Taylor(1976)、(Na2O+K2O-CaO)-SiO2图解(c)据Frost et al.(2001)

      Fig.  6.  Mailong area monzogranite and granodiorite TAS diagram(a), SiO2-K2O diagram(b), (Na2O+K2O-CaO)-SiO2 diagram (c) and A/NK-A/CNK diagram (d)

      图  7  迈龙二长花岗岩和花岗闪长岩哈克图解

      Fig.  7.  Harker variation diagrams showing the concentration of major elements for the Mailing monzogranite and granodiorite

      图  8  迈龙二长花岗岩稀土元素配分图(a)、微量元素原始地幔标准化蛛网图(b)和花岗闪长岩稀土元素配分图(c)、微量元素原始地幔标准化蛛网图(d)

      下地壳和平均地壳数据引自 Rudnick and Gao(2003),球粒陨石和原始地幔数据引自 Sun and McDonough(1989)

      Fig.  8.  Mailong monzogranite chondrite-normalized REE patterns (a), primitive mantle-normalized trace element spider diagram(b) and Mailong granodiorite chondrite-normalized REE patterns (c), primitive mantle-normalized trace element spider diagram (d)

      图  9  迈龙花岗闪长岩及二长花岗岩锆石Hf同位素图解

      前寒武纪基底数据据 He et al.(2018);岩浆混合成因花岗岩数据据 Dong et al.(2018)Fu et al.(2022);拆沉下地壳形成的埃达克岩数据据 Fu et al.(2022);俯冲洋壳形成的埃达克岩数据据陈加杰等(2016);底图据 Fu et al.(2022)修编

      Fig.  9.  Diagrams of zircon Hf isotope compositions for Mailong on monzogranite and granodiorite

      图  10  迈龙二长花岗岩和花岗闪长岩石成因类型判别图解

      a、c和d底图据 Whalen et al.(1987);图b底图据吴福元等(2017);高分异I型花岗岩数据来源于周红智等(2020)

      Fig.  10.  The genetic type discrimination diagrams for Mailong monzogranite and granodiorite

      图  11  迈龙二长花岗岩和花岗闪长岩Rb/Sr-Rb图解(a)、La/Sm-La图解(b)、1/V-Rb/V图解(c)和Rb/La-Zr/Th图解(d)

      智玉二长花岗岩数据据 Dong et al.(2018);瓦拉尕二长花岗岩数据据 Fu et al.(2022).a和b底图据 Schiano et al.(2010),c和d底图据 Fu et al.(2022)

      Fig.  11.  Rb/Sr-Rb diagram (a), La/Sm-La diagram (b), 1/V-Rb/V diagram (c), Rb/La-Zr/Th diagram (d) of Mailong monzogranite and granodiorite

      图  12  迈龙二长花岗岩和花岗闪长岩Sr/Y-Y图解(a)及(La/Yb)N-YbN图解(b)

      底图a据 Defant and Drummond(1990),底图b据 Martin(1999)

      Fig.  12.  Sr/Y-Y diagram (a) and (La/Yb)N-YbN diagram (b) of Mailong monzogranite and granodiorite

      图  13  迈龙花岗闪长岩MgO-SiO2图解(a)、Mg#-SiO2图解(b)、Th/Ce-SiO2图解(c)和Th-Rb/Sr图解(d)

      a~d底图据 Wang et al.(2006)

      Fig.  13.  Diagrams of MgO-SiO2 (a), Mg#-SiO2 (b), Th/Ce-SiO2 (c) and Th-Rb/Sr (d) for Mailong granodiorite

      图  14  迈龙二长花岗岩及花岗闪长岩构造环境判别图解

      syn-COLG. 同碰撞花岗岩;WPG. 板内花岗岩;VAG. 岛弧花岗岩;ORG. 洋中脊花岗岩. 数据来源和图例同图 6

      Fig.  14.  Discrimination diagrams of tectonic environment of Mailong monzogranite and granodiorite

      图  15  青藏高原北部东昆仑造山带原特提斯洋演化模型图底图据(Fu et al., 2022

      Fig.  15.  Diagrams of the evolution model of the Proto-Tethys Ocean in the East Kunlun Orogen, northern Tibetan Plateau

      图  16  东昆仑造山带地壳厚度变化图(a)和εHft)与岩体结晶年龄的关系图(b)

      本文的εHf(t)和用于计算地壳厚度数据来源于 Zhang et al.(2014)Xiong et al.(2015)Li et al.(2015)Zhou et al.(2016)Dong et al.(2018)Chen et al.(2020)Fu et al.(2022)Zhao et al.(2022)以及本文花岗闪长岩

      Fig.  16.  Variation diagram of crustal thickness (a) and relationship diagram between εHf(t) with rock crystallization age (b) in the East Kunlun orogenic belt

      表  1  迈龙二长花岗岩和花岗闪长岩LA-ICP-MS锆石U-Pb同位素分析结果

      Table  1.   LA-ICP-MS zircon U-Pb analysis data of the granodiorite and monzogranite in the Mailong area

      分析点号 元素含量(10-6 Th/U 同位素比值 同位素年龄(Ma)
      Th232 U238 207Pb/
      206Pb
      207Pb/
      235U
      206Pb/
      238U
      207Pb/
      206Pb
      ±1σ 207Pb/
      235U
      ±1σ 206Pb/
      238U
      ±1σ
      MLHG-3-01 50.00 829 0.06 0.095 52 0.001 51 3.318 53 0.056 74 0.250 74 0.002 31 1 539 30 1 485 13 1 442 12
      MLHG-3-02 490.00 2630 0.19 0.090 62 0.001 22 2.533 47 0.042 01 0.202 08 0.002 24 1 439 26 1 282 12 1 186 12
      MLHG-3-03 45.20 789 0.06 0.093 14 0.001 69 2.511 06 0.045 72 0.194 53 0.001 29 1 500 33 1 275 13 1 146 7
      MLHG-3-04 918.00 1 836 0.50 0.083 39 0.001 29 1.160 43 0.022 19 0.100 01 0.001 04 1 280 31 782 10 614 6
      MLHG-3-05 250.00 894 0.28 0.085 93 0.001 82 1.129 81 0.023 74 0.094 82 0.000 70 1 337 41 768 11 584 4
      MLHG-3-06 182.00 1 644 0.11 0.072 86 0.002 41 0.839 91 0.026 22 0.083 65 0.000 62 1 009 67 619 14 518 4
      MLHG-3-07 498.00 1 546 0.32 0.091 29 0.002 22 0.977 10 0.026 55 0.076 90 0.000 68 1 454 46 692 14 478 4
      MLHG-3-08 288.00 617 0.47 0.061 61 0.001 35 0.603 03 0.012 75 0.070 71 0.000 56 661 46 479 8 440 3
      MLHG-3-09 48.40 1 605 0.03 0.059 69 0.000 96 0.584 01 0.008 84 0.070 69 0.000 45 591 31 467 6 440 3
      MLHG-3-10 914.00 1 940 0.47 0.062 05 0.000 97 0.604 21 0.009 32 0.070 66 0.000 83 676 33 480 6 440 5
      MLHG-3-11 634.00 1 875 0.34 0.059 73 0.001 13 0.582 23 0.013 16 0.070 62 0.001 10 594 41 466 8 440 7
      MLHG-3-12 510.00 3 384 0.15 0.063 14 0.001 00 0.618 92 0.012 67 0.070 57 0.000 68 722 33 489 8 440 4
      MLHG-3-13 4.38 857 0.01 0.056 02 0.000 98 0.546 15 0.009 31 0.070 39 0.000 43 454 44 442 6 439 3
      MLHG-3-14 84.40 3 684 0.02 0.055 29 0.000 79 0.537 09 0.010 31 0.070 33 0.001 10 433 31 437 7 438 7
      MLHG-3-15 136.00 1 431 0.09 0.059 52 0.001 00 0.578 25 0.009 23 0.070 30 0.000 55 587 36 463 6 438 3
      MLHG-3-16 51.70 815 0.06 0.057 42 0.001 01 0.558 87 0.009 49 0.070 29 0.000 46 509 34 451 6 438 3
      MLHG-3-17 74.30 1 014 0.07 0.055 45 0.000 95 0.540 14 0.009 50 0.070 24 0.000 47 432 44 439 6 438 3
      MLHG-3-18 748.00 1 018 0.73 0.056 49 0.001 07 0.549 28 0.011 14 0.070 23 0.000 57 472 47 445 7 438 3
      MLHG-3-19 347.00 1 440 0.24 0.058 99 0.000 91 0.574 93 0.011 04 0.070 22 0.000 85 569 40 461 7 437 5
      MLHG-3-20 109.00 401 0.27 0.058 63 0.001 27 0.567 66 0.012 19 0.070 11 0.000 61 554 53 457 8 437 4
      MLHGSC-3-01 91.40 695 0.13 0.071 24 0.001 28 1.480 47 0.027 09 0.150 34 0.001 05 965 42 922 11 903 6
      MLHGSC-3-02 73.80 877 0.08 0.066 24 0.001 20 1.292 94 0.025 96 0.141 11 0.001 55 813 38 843 12 851 9
      MLHGSC-3-03 155.00 920 0.17 0.064 48 0.001 09 1.101 86 0.024 76 0.123 19 0.001 90 767 36 754 12 749 11
      MLHGSC-3-04 91.80 376 0.24 0.063 27 0.001 19 0.932 01 0.018 31 0.106 60 0.000 82 717 45 669 10 653 5
      MLHGSC-3-05 164.00 846 0.19 0.059 58 0.001 00 0.691 99 0.012 37 0.083 65 0.000 68 587 42 534 7 518 4
      MLHGSC-3-06 519.00 1 600 0.32 0.054 14 0.000 87 0.513 28 0.009 51 0.068 52 0.000 89 376 37 421 6 427 5
      MLHGSC-3-07 197.00 778 0.25 0.056 45 0.001 18 0.536 01 0.013 27 0.068 49 0.000 85 478 42 436 9 427 5
      MLHGSC-3-08 306.00 746 0.41 0.055 13 0.001 10 0.521 68 0.013 12 0.068 46 0.001 19 417 44 426 9 427 7
      MLHGSC-3-19 51.60 745 0.07 0.055 66 0.001 13 0.526 17 0.011 18 0.068 40 0.000 57 439 44 429 7 427 3
      MLHGSC-3-10 264.00 474 0.56 0.055 20 0.001 26 0.524 30 0.012 67 0.068 38 0.000 62 420 55 428 8 426 4
      MLHGSC-3-11 607.00 2 207 0.27 0.053 67 0.000 91 0.509 64 0.008 30 0.068 36 0.000 48 367 39 418 6 426 3
      MLHGSC-3-12 298.00 746 0.40 0.056 35 0.001 15 0.535 39 0.011 08 0.068 35 0.000 73 465 44 435 7 426 4
      MLHGSC-3-13 112.00 952 0.12 0.055 83 0.000 98 0.528 04 0.009 31 0.068 32 0.000 44 456 39 431 6 426 3
      MLHGSC-3-14 206.00 1 855 0.11 0.054 66 0.000 90 0.516 24 0.009 33 0.068 32 0.000 61 398 37 423 6 426 4
      MLHGSC-3-15 239.00 409 0.58 0.055 30 0.001 25 0.522 43 0.011 96 0.068 30 0.000 55 433 50 427 8 426 3
      MLHGSC-3-16 314.00 1 710 0.18 0.057 26 0.001 04 0.539 83 0.011 39 0.068 29 0.000 85 502 41 438 8 426 5
      MLHGSC-3-17 365.00 949 0.38 0.054 89 0.000 97 0.518 41 0.010 07 0.068 26 0.000 52 409 44 424 7 426 3
      MLHGSC-3-18 215.00 532 0.40 0.054 44 0.000 98 0.511 98 0.009 36 0.068 15 0.000 47 391 39 420 6 425 3
      MLHGSC-3-19 180.00 1 310 0.14 0.053 80 0.001 10 0.508 50 0.009 40 0.068 10 0.000 50 365 44 417 6 425 3
      MLHGSC-3-20 148.00 639 0.23 0.054 60 0.001 00 0.514 20 0.009 40 0.068 00 0.000 40 398 43 421 6 424 3
      下载: 导出CSV

      表  2  迈龙二长花岗岩和花岗闪长岩主量元素(%)、微量和稀土元素(10-6)分析结果

      Table  2.   Major(%), trace element(10-6) and REE(10-6) compositions of the granodiorite and monzogranite in the Mailong area

      样号 MLHGSC-2 MLHGSC-4 MLHGSC-5 MLHGSC-6 MLHGSC-7 MLHGSC-8 MLHG-1 MLHG-2 MLHG-
      3
      MLHG-
      4
      MLHG-5 MLHG-
      7
      MLHG-
      8
      SiO2 69.91 68.13 70.30 69.73 70.30 69.69 74.37 71.86 73.09 72.65 74.00 72.91 72.86
      TiO2 0.23 0.41 0.24 0.20 0.26 0.29 0.07 0.24 0.18 0.24 0.11 0.21 0.22
      Al2O3 15.93 16.52 16.31 17.12 15.9 16.44 13.75 14.75 13.93 13.98 13.79 13.92 13.84
      Fe2O3T 2.07 3.04 2.09 1.58 2.35 2.45 1.05 1.60 1.75 2.36 1.74 2.15 2.19
      FeOT 1.86 2.74 1.88 1.42 2.11 2.20 0.94 1.44 1.57 2.12 1.57 1.93 1.97
      MnO 0.03 0.04 0.03 0.02 0.03 0.04 0.02 0.02 0.03 0.04 0.06 0.04 0.03
      MgO 0.93 1.12 0.92 0.69 0.97 0.84 0.21 0.49 0.35 0.44 0.20 0.40 0.37
      CaO 3.12 3.56 2.91 3.20 2.94 3.14 1.11 2.00 1.24 1.58 0.96 1.45 1.36
      Na2O 4.86 4.55 5.24 5.12 4.57 4.89 2.83 3.27 2.76 2.75 3.74 2.86 2.8
      K2O 1.55 1.71 1.31 1.69 1.99 1.38 5.64 5.14 5.81 5.37 4.67 5.33 5.51
      P2O5 0.06 0.14 0.07 0.04 0.08 0.09 0.06 0.07 0.06 0.07 0.06 0.07 0.06
      LOI 0.77 0.73 0.50 0.49 0.67 0.65 0.44 0.63 0.41 0.85 0.48 0.73 0.46
      总量 99.46 99.95 99.92 99.88 100.06 99.9 99.55 100.07 99.61 100.33 99.81 100.07 99.70
      A/NK 1.65 1.77 1.62 1.67 1.64 1.72 1.28 1.35 1.29 1.35 1.23 1.33 1.31
      A/CNK 1.04 1.05 1.06 1.07 1.06 1.08 1.08 1.01 1.06 1.06 1.06 1.06 1.06
      Mg# 47 42 46 46 45 40 28 38 28 27 18 27 25
      Li 16.0 36.8 27.2 17.3 39.6 35.7 16.7 7.5 21.9 45.0 18.7 26.0 24.7
      Be 117 206 96 171 261 194 352 922 1 250 1 660 580 1 330 1 390
      Se 3.6 5.5 3.9 3.2 4.4 4.1 2.7 2.1 4.3 4.1 4.3 4.0 4.1
      V 31.0 33.0 17.0 17.0 44.0 28.0 5.0 28.0 12.0 10.0 7.0 14.0 16.0
      Cr 50.0 30.0 30.0 30.0 30.0 20.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0
      Ga 19.2 24.1 20.0 20.5 20.5 19.7 14.9 19.5 16.1 16.2 20.3 16.3 16.4
      Rb 90 100 86 93 101 132 181 194 215 203 224 205 204
      Sr 431.0 432.0 420.0 468.0 403.0 359.0 178.5 366.0 219.0 283.0 117.0 219.0 2210
      Y 10.1 13.0 4.8 8.2 10.3 9.6 5.6 16.2 20.8 14.5 21.6 20.9 19.9
      Zr 124 213 128 83 110 140 63 125 159 245 104 203 198
      Nb 2.8 12.9 3.9 3.4 5.8 4.9 5.2 6.0 17.8 15.7 17.3 18.3 18.0
      Ba 117.0 206.0 95.8 171.0 261.0 194.0 352.0 922.0 1 250.0 1 660.0 580.0 13 30.0 1 390.0
      Hf 3.3 5.4 3.4 2.3 2.8 3.6 2.5 3.7 4.3 6.5 3.2 5.5 5.3
      Ta 0.5 0.6 0.4 0.4 0.8 0.6 0.4 0.8 1.5 0.7 1.8 1.2 1.1
      Pb 15.5 20.0 14.4 28.1 19.2 17.6 50.5 27.3 39.3 33.8 44.3 32.3 33.2
      Th 3.59 19.10 1.70 2.67 6.74 3.91 3.62 9.72 42.20 30.90 16.80 30.00 28.50
      U 1.49 1.60 0.77 0.98 1.24 1.13 1.39 2.48 2.85 2.72 5.76 3.56 3.75
      La 9.6 41.5 7.5 12.7 17.1 13.0 10.6 31.3 63.6 89.5 39.4 80.3 74.6
      Ce 19.2 80.3 15.8 23.0 32.8 26.6 19.7 56.6 108.5 153.5 69.0 138.0 127.0
      Pr 2.32 9.25 1.87 2.51 3.88 3.10 2.12 5.98 11.00 15.05 7.16 13.45 12.45
      Nd 9.1 33.0 7.5 8.8 14.6 12.1 7.5 20.4 36.2 47.0 23.3 42.8 40.6
      Sm 2.03 5.88 1.67 1.73 2.90 2.63 1.66 3.57 6.01 6.55 4.37 6.27 6.07
      Eu 0.70 1.26 0.59 1.20 0.78 0.70 0.57 1.03 0.77 1.05 0.36 0.79 0.82
      Gd 1.90 4.43 1.36 1.49 2.45 2.35 1.36 2.99 4.52 4.23 3.79 4.60 4.32
      Tb 0.30 0.56 0.19 0.23 0.36 0.34 0.20 0.47 0.65 0.53 0.62 0.64 0.61
      Dy 1.76 2.77 1.01 1.36 1.96 1.96 1.15 2.79 3.57 2.73 3.64 3.55 3.39
      Ho 0.34 0.47 0.17 0.27 0.36 0.35 0.20 0.57 0.70 0.51 0.71 0.71 0.67
      Er 0.94 1.19 0.48 0.80 0.96 0.99 0.57 1.57 1.99 1.42 2.11 2.09 1.92
      Tm 0.13 0.16 0.07 0.11 0.13 0.15 0.08 0.23 0.30 0.21 0.34 0.31 0.29
      Yb 0.83 0.95 0.44 0.78 0.80 0.95 0.58 1.44 1.98 1.45 2.30 2.02 1.90
      Lu 0.12 0.15 0.07 0.12 0.12 0.15 0.09 0.21 0.31 0.25 0.35 0.33 0.30
      ∑REE 49.27 181.87 38.72 55.10 79.20 65.37 46.38 129.15 240.10 323.98 157.45 295.86 274.94
      LREE/HREE 6.80 16.03 9.22 9.68 10.09 8.03 9.96 11.58 16.13 27.59 10.36 19.76 19.52
      δEu 1.07 0.72 1.16 2.23 0.87 0.84 1.13 0.94 0.43 0.57 0.26 0.43 0.47
      TZr(℃) 807 857 812 773 798 820 754 808 834 876 796 857 855
      注:Mg#=molar[Mg/(Mg+Fe)]×100;δEu =2×EuN /(SmN +GdN);A/CNK=molar[Al2O3/(CaO+Na2O+K2O)];A/NK=molar [Al2O3/(Na2O+K2O)];计算的锆石饱和温度TZr据(Watson and Harrison 1983);N代表球粒陨石标准化,球粒陨石数据据文献(Sun and McDonough 1989).
      下载: 导出CSV

      表  3  迈龙二长花岗岩和花岗闪长岩锆石Hf同位素分析结果

      Table  3.   Hf isotopic analysis data for zircon of the granodiorite and monzogranite in the Mailong area

      分析点号 t(Ma) 176Hf/177Hf 176Lu/177Hf 176Yb/177Hf εHf(0) εHft TDM1(Ma) TDM2(Ma) fLu/Hf
      MLHGSC-3-01 426 0.282 489 0.000 014 0.000 981 0.000 059 0.033 983 0.001 945 -10.0 -0.9 1 078 1 335 -0.97
      MLHGSC-3-02 426 0.282 422 0.000 020 0.001 979 0.000 033 0.064 796 0.001 047 -12.4 -3.6 1 204 1 483 -0.94
      MLHGSC-3-03 426 0.282 445 0.000 014 0.001 605 0.000 046 0.057 349 0.001 343 -11.6 -2.6 1 160 1 433 -0.95
      MLHGSC-3-04 426 0.282 426 0.000 025 0.003 288 0.000 043 0.113 611 0.001 384 -12.2 -3.8 1 243 1 496 -0.90
      MLHGSC-3-05 426 0.282 379 0.000 013 0.001 469 0.000 017 0.051 859 0.000 657 -13.9 -4.9 1 248 1 559 -0.96
      MLHGSC-3-06 426 0.282 486 0.000 015 0.001 241 0.000 009 0.040 232 0.000 259 -10.1 -1.1 1 090 1 346 -0.96
      MLHGSC-3-07 426 0.282 437 0.000 022 0.001 397 0.000 025 0.046 753 0.000 969 -11.8 -2.9 1 164 1 444 -0.96
      MLHGSC-3-08 426 0.282 464 0.000 011 0.001 452 0.000 020 0.051 395 0.000 773 -10.9 -1.9 1 128 1 393 -0.96
      MLHGSC-3-09 426 0.282 401 0.000 010 0.000 667 0.000 007 0.025 799 0.000 333 -13.1 -4.0 1 192 1 504 -0.98
      MLHGSC-3-10 426 0.282 498 0.000 011 0.001 145 0.000 010 0.039 993 0.000 327 -9.7 -0.7 1 071 1 322 -0.97
      MLHGSC-3-11 426 0.282 442 0.000 012 0.001 970 0.000 010 0.078 712 0.000 488 -11.7 -2.9 1 175 1 444 -0.94
      MLHGSC-3-12 426 0.282 429 0.000 010 0.000 319 0.000 006 0.012 572 0.000 240 -12.1 -2.8 1 143 1 444 -0.99
      MLHGSC-3-13 426 0.282 425 0.000 011 0.000 552 0.000 011 0.020 327 0.000 444 -12.3 -3.1 1 155 1 455 -0.98
      MLHGSC-3-14 426 0.282 483 0.000 010 0.000 919 0.000 005 0.033 261 0.000 248 -10.2 -1.1 1 086 1 348 -0.97
      MLHGSC-3-15 426 0.282 490 0.000 010 0.000 749 0.000 007 0.026 153 0.000 217 -10.0 -0.8 1 070 1 331 -0.98
      MLHG-3-01 438 0.282 825 0.001 051 0.005 214 0.001 643 0.230 270 0.075 238 1.9 10.0 681 740 -0.84
      MLHG-3-02 438 0.282 320 0.000 820 0.000 953 0.000 028 0.036 951 0.000 893 -16.0 -6.6 1 313 1 660 -0.97
      MLHG-3-03 438 0.282 871 0.000 610 0.001 649 0.000 031 0.056 478 0.001 031 3.5 12.7 550 592 -0.95
      MLHG-3-04 438 0.282 792 0.000 513 0.002 123 0.000 027 0.084 073 0.001 123 0.7 9.7 673 755 -0.94
      MLHG-3-05 438 0.282 524 0.000 365 0.001 191 0.000 028 0.041 928 0.000 743 -8.8 0.5 1 035 1 267 -0.96
      MLHG-3-06 438 0.282 491 0.000 336 0.001 138 0.000 084 0.044 163 0.003 403 -9.9 -0.6 1 080 1 330 -0.97
      MLHG-3-07 438 0.282 332 0.000 322 0.001 223 0.000 012 0.042 389 0.000 443 -15.5 -6.3 1 306 1 642 -0.96
      MLHG-3-08 438 0.282 352 0.000 303 0.001 428 0.000 032 0.046 398 0.000 977 -14.9 -5.6 1 286 1 607 -0.96
      MLHG-3-09 438 0.282 665 0.000 284 0.000 885 0.000 011 0.030 297 0.000 261 -3.8 5.6 829 985 -0.97
      MLHG-3-11 438 0.282 488 0.000 306 0.001 467 0.000 523 0.083 381 0.040 892 -10.0 -0.8 1 094 1 341 -0.96
      MLHG-3-12 438 0.282 560 0.000 234 0.000 854 0.000 022 0.032 239 0.000 861 -7.5 1.9 975 1 190 -0.97
      MLHG-3-13 438 0.282 241 0.000 250 0.000 281 0.000 274 0.011 233 0.017 546 -18.8 -9.2 1 400 1 805 -0.99
      下载: 导出CSV
    • Andersen, T., 2002. Correction of Common Lead in U–Pb Analyses That do not Report 204Pb. Chemical Geology, 192(1-2): 59-79. https://doi.org/10.1016/S0009-2541(02)00195-X
      Bi, H. Z., Song, S. G., Yang, L. M., et al., 2020. UHP Metamorphism Recorded by Coesite-Bearing Metapelite in the East Kunlun Orogen (NW China). Geological Magazine, 157(2): 160-172. https://doi.org/10.1017/s0016756819000529
      Bi, H. Z., Whitney, D. L., Song, S. G., et al., 2022. HP-UHP Eclogites in the East Kunlun Orogen, China: P-T Evidence for Asymmetric Suturing of the Proto-Tethys Ocean. Gondwana Research, 104: 199-214. https://doi.org/10.1016/j.gr.2021.04.008
      Castro, A., 2013. Tonalite-Granodiorite Suites as Cotectic Systems: A Review of Experimental Studies with Applications to Granitoid Petrogenesis. Earth-Science Reviews, 124: 68-95. https://doi.org/10.1016/j.earscirev.2013.05.006
      Chen, J. J., Fu, L. B., Wei, J. H., et al., 2016. Geochemical Characteristics of Late Ordovician Granodiorite in Gouli Area, Eastern Kunlun Orogenic Belt, Qinghai Province: Implications on the Evolution of Proto-Tethys Ocean. Earth Science, 41(11): 1863-1882(in Chinese with English abstract).
      Chen, J. J., Fu, L. B., Wei, J. H., et al., 2020. Proto-Tethys Magmatic Evolution along Northern Gondwana: Insights from Late Silurian-Middle Devonian A-Type Magmatism, East Kunlun Orogen, Northern Tibetan Plateau, China. Lithos, 356: 105304. https://doi.org/10.1016/j.lithos.2019.105304
      Chen, J. J., Wei, J. H., Fu, L. B., et al., 2017. Multiple Sources of the Early Mesozoic Gouli Batholith, Eastern Kunlun Orogenic Belt, Northern Tibetan Plateau: Linking Continental Crustal Growth with Oceanic Subduction. Lithos, 292: 161-178. https://doi.org/10.1016/j.lithos.2017.09.006
      Chen, Y. X., Pei, X. Z., Li, R. B., et al., 2011. Zircon U-Pb Age of Xiaomiao Formation of Proterozoic in the Eastern Section of the East Kunlun Orogenic Belt. Geoscience, 25(3): 510-521(in Chinese with English abstract). doi: 10.3969/j.issn.1000-8527.2011.03.013
      Clemens, J. D., Stevens, G., Farina, F., 2011. The Enigmatic Sources of I-Type Granites: The Peritectic Connexion. Lithos, 126(3-4): 174-181. https://doi.org/10.1016/j.lithos.2011.07.004
      Condie, K. C., 2005. TTGS and Adakites: Are They Both Slab Melts? Lithos, 80(1-4): 33-44. http://www.w3.org/1999/xlink" xlink:href="https://doi.org/10.1016/j.lithos.2003.11.001">https://doi.org/10.1016/j.lithos.2003.11.001
      Cui, M. H., Meng, F. C., Wu, X. K., 2011. Early Ordovician Island Arc of Qimantag Mountain, Eastern Kunlun: Evidences from Geochemistry, Sm-Nd Isotope and Geochronology of Intermediate-Basic Igneous Rocks. Acta Petrologica Sinica, 27(11): 3365-3379(in Chinese with English abstract).
      Defant, M. J., Drummond, M. S., 1990. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347(6294): 662-665. https://doi.org/10.1038/347662a0
      Dokuz, A., 2011. A Slab Detachment and Delamination Model for the Generation of Carboniferous High-Potassium I-Type Magmatism in the Eastern Pontides, NE Turkey: The Köse Composite Pluton. Gondwana Research, 19(4): 926-944. https://doi.org/10.1016/j.gr.2010.09.006
      Dong, G. C., Luo, M. F., Mo, X. X., et al., 2018. Petrogenesis and Tectonic Implications of Early Paleozoic Granitoids in East Kunlun Belt: Evidences from Geochronology, Geochemistry and Isotopes. Geoscience Frontiers, 9(5): 1383-1397. https://doi.org/10.1016/j.gsf.2018.03.003
      Dong, Y. P., Sun, S. S., He, D. F., et al., 2024. Early Paleozoic Back-Arc Basin in the East Kunlun Orogen, Northern Tibetan Plateau: Insight from the Wutumeiren Ophiolitic Mélange. Lithos, 464: 107460. https://doi.org/10.1016/j.lithos.2023.107460
      Eby, G. N., 1992. Chemical Subdivision of the A-Type Granitoids: Petrogenetic and Tectonic Implications. Geology, 20(7): 641-644. https://doi.org/10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2 doi: 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2
      Feng, D., Wang, C., Song, S. G., et al., 2023. Tracing Tectonic Processes from Proto- to Paleo-Tethys in the East Kunlun Orogen by Detrital Zircons. Gondwana Research, 115: 1-16. https://doi.org/10.1016/j.gr.2022.11.003
      Frost, B. R., Barnes, C. G., Collins, W. J., et al., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11): 2033-2048. https://doi.org/10.1093/petrology/42.11.2033
      Fu, L. B., Bagas, L., Wei, J. H., et al., 2022. Growth of Early Paleozoic Continental Crust Linked to the Proto-Tethys Subduction and Continental Collision in the East Kunlun Orogen, Northern Tibetan Plateau. Geological Society of America Bulletin, 135(7-8): 1709-1733.
      Fu, L. B., Wei, J. H., Tan, J., et al., 2016. Magma Mixing in the Kalaqin Core Complex, Northern North China Craton: Linking Deep Lithospheric Destruction and Shallow Extension. Lithos, 260: 390-412. https://doi.org/10.1016/j.lithos.2016.06.018
      Gao, X. F., Xiao, P. X., Xie, C. R., et al., 2010. Zircon LA-ICP-MS U-Pb Dating and Geological Significance of Bashierxi Granite in the Eastern Kunlun Area, China. Geological Bulletin of China, 29(7): 1001-1008(in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2010.07.005
      Guo, F., Wang, P. X., Bian, X. D., et al., 2020. Geochronological and Geochemical Characteristics and Geological Significance of the Monzogranite in Xiarihamu Area of East Kunlun. Geological Survey of China, 7(6): 51-60(in Chinese with English abstract).
      Guo, X. Z., Jia, Q. Z., Li, J. C., et al., 2018. Zircon U-Pb Geochronology and Geochemistry and Their Geological Significances of Eclogites from East Kunlun High-Pressure Metamorphic Belt. Earth Science, 43(12): 4300-4318(in Chinese with English abstract).
      Han, Z. H., Sun, F. Y., Tian, N., et al., 2021. Zircon U-Pb Geochronology, Geochemistry and Geological Implications of the Early Paleozoic Wulanwuzhuer Granites in the Qimantag, East Kunlun, China. Earth Science, 46(1): 13-30(in Chinese with English abstract).
      He, D. F., Dong, Y. P., Liu, X. M., et al., 2016. Tectono-Thermal Events in East Kunlun, Northern Tibetan Plateau: Evidence from Zircon U-Pb Geochronology. Gondwana Research, 30: 179-190. https://doi.org/10.1016/j.gr.2015.08.002
      He, D. F., Dong, Y. P., Liu, X. M., et al., 2018. Zircon U-Pb Geochronology and Hf Isotope of Granitoids in East Kunlun: Implications for the Neoproterozoic Magmatism of Qaidam Block, Northern Tibetan Plateau. Precambrian Research, 314: 377-393. https://doi.org/10.1016/j.precamres.2018.06.017
      Hoskin, P. W. O., Schaltegger, U., 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27-62. https://doi.org/10.2113/0530027
      Hu, Y. M., Li, X. W., Mo, X. X., et al., 2023. Early Paleozoic Subduction Imprints of the Proto-Tethys Ocean: Evidence from the Appinite-Diorite-Granodiorite Complex in East Kunlun, Northern Tibet. Lithos, 452-453: 107215. https://doi.org/10.1016/j.lithos.2023.107215
      Hu, Z. C., Liu, Y. S., Gao, S., et al., 2012. Improved In Situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27(9): 1391-1399. https://doi.org/10.1039/C2JA30078H
      Huang, F., Li, S. G., Dong, F., et al., 2008. High-Mg Adakitic Rocks in the Dabie Orogen, Central China: Implications for Foundering Mechanism of Lower Continental Crust. Chemical Geology, 255(1-2): 1-13. https://doi.org/10.1016/j.chemgeo.2008.02.014
      Jenkyns, H. C., Forster, A., Schouten, S., et al., 2004. High Temperatures in the Late Cretaceous Arctic Ocean. Nature, 432(7019): 888-892. https://doi.org/10.1038/nature03143
      Jia, L. H., Meng, F. C., Feng, H. B., 2014. Fluid Activity during Eclogite-Facies Peak Metamorphism: Evidence from a Quartz Vein in Eclogite in the East Kunlun, NW China. Acta Petrologica Sinica, 30(8): 2339-2350(in Chinese with English abstract).
      Li, J. W., Zhao, X. F., Zhou, M. F., et al., 2009. Late Mesozoic Magmatism from the Daye Region, Eastern China: U-Pb Ages, Petrogenesis, and Geodynamic Implications. Contributions to Mineralogy and Petrology, 157(3): 383-409. https://doi.org/10.1007/s00410-008-0341-x
      Li, R. B., Pei, X. Z., Li, Z. C., et al., 2015. Geochemistry and Zircon U–Pb Geochronology of Granitic Rocks in the Buqingshan Tectonic Mélange Belt, Northern Tibet Plateau, China and Its Implications for Prototethyan Evolution. Journal of Asian Earth Sciences, 105: 374-389. https://doi.org/10.1016/j.jseaes.2015.02.004
      Li, R. B., Pei, X. Z., Li, Z. C., et al., 2018. Cambrian (~510 Ma) Ophiolites of the East Kunlun Orogen, China: A Case Study from the Acite Ophiolitic Tectonic Mélange. International Geology Review, 60(16): 2063-2083. https://doi.org/10.1080/00206814.2017.1405366
      Li, R. B., Pei, X. Z., Li, Z. C., et al., 2020. Late Silurian to Early Devonian Volcanics in the East Kunlun Orogen, Northern Tibetan Plateau: Record of Postcollisional Magmatism Related to the Evolution of the Proto-Tethys Ocean. Journal of Geodynamics, 140: 101780. https://doi.org/10.1016/j.jog.2020.101780
      Li, R. B., Pei, X. Z., Wei, B., et al., 2019. Constraints of Late Cambrian Mafic Rocks from the Qushi'ang Ophiolite on a Back-Arc System in a Continental Margin, East Kunlun Orogen, Western China. Journal of Asian Earth Sciences, 169: 117-129. https://doi.org/10.1016/j.jseaes.2018.08.006
      Li, Y. J., Gao, Y. J., Zhou, H., et al., 2023. Early Paleozoic Collision-Related Structures in the Tarim Craton, NW China: Implications for the Proto-Tethys Evolution. Journal of Asian Earth Sciences, 241: 105458. https://doi.org/10.1016/j.jseaes.2022.105458
      Liu, B., Ma, C. Q., Jiang, H. A., et al., 2013. Early Paleozoic Tectonic Transition from Ocean Subduction to Collisional Orogeny in the Eastern Kunlun Region: Evidence from Huxiaoqin Mafic Rocks. Acta Petrologica Sinica, 29(6): 2093-2106(in Chinese with English abstract).
      Liu, B., Wu, L. H., Ma, C. Q., et al., 2023. Petrogenesis and Tectonic Implications of Silurian to Devonian Intermediate Rocks from East Part of East Kunlun Orogenic Belt. Earth Science, 48(6): 2398-2414(in Chinese with English abstract).
      Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
      Martin, H., 1999. Adakitic Magmas: Modern Analogues of Archaean Granitoids. Lithos, 46(3): 411-429. https://doi.org/10.1016/S0024-4937(98)00076-0
      Meng, F. C., Cui, M. H., Jia, L. H., et al., 2015. Paleozoic Continental Collision of the East Kunlun Orogen: Evidence from Protoliths of the Eclogites. Acta Petrologica Sinica, 31(12): 3581-3594(in Chinese with English abstract).
      Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3/4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9
      Mo, X. X., Luo, Z. H., Deng, J. F., et al., 2007. Granitoids and Crustal Growth in the East-Kunlun Orogenic Belt. Geological Journal of China Universities, 13(3): 403-414(in Chinese with English abstract). doi: 10.3969/j.issn.1006-7493.2007.03.010
      Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/BF00384745
      Peng, B., Sun, F. Y., Li, B. L., et al., 2016. The Geochemistry and Geochronology of the Xiarihamu II Mafic-Ultramafic Complex, Eastern Kunlun, Qinghai Province, China: Implications for the Genesis of Magmatic Ni-Cu Sulfide Deposits. Ore Geology Reviews, 73: 13-28. https://doi.org/10.1016/j.oregeorev.2015.10.014
      Petford, N., Atherton, M., 1996. Na-Rich Partial Melts from Newly Underplated Basaltic Crust: The Cordillera Blanca Batholith, Peru. Journal of Petrology, 37(6): 1491-1521. https://doi.org/10.1093/petrology/37.6.1491
      Profeta, L., Ducea, M. N., Chapman, J. B., et al., 2015. Quantifying Crustal Thickness over Time in Magmatic Arcs. Scientific Reports, 5: 17786. https://doi.org/10.1038/srep17786
      Qi, X. P., Fan, X. G., Yang, J., et al., 2016. The Discovery of Early Paleozoic Eclogite in the Upper Reaches of Langmuri in Eastern East Kunlun Mountains and Its Significance. Geological Bulletin of China, 35(11): 1771-1783(in Chinese with English abstract).
      Ren, J. H., Liu, Y. Q., Feng, Q., et al., 2009. LA-ICP-MS U-Pb Zircon Dating and Geochemical Characteristics of Diabase-Dykes from the Qingshuiquan Area, Eastern Kunlun Orogenic Belt. Acta Petrologica Sinica, 25(5): 1135-1145(in Chinese with English abstract).
      Rudnick, R., Gao, S., 2003. The Role of Lower Crustal Recycling in Continent Formation. Geochimica et Cosmochimica Acta Supplement, 67(18): 403.
      Schiano, P., Monzier, M., Eissen, J. P., et al., 2010. Simple Mixing as the Major Control of the Evolution of Volcanic Suites in the Ecuadorian Andes. Contributions to Mineralogy and Petrology, 160(2): 297-312. https://doi.org/10.1007/s00410-009-0478-2
      Song, S. G., Bi, H. Z., Qi, S. S., et al., 2018. HP-UHP Metamorphic Belt in the East Kunlun Orogen: Final Closure of the Proto-Tethys Ocean and Formation of the Pan-North-China Continent. Journal of Petrology, 59(11): 2043-2060. https://doi.org/10.1093/petrology/egy089
      Song, S. G.; Wang, M. J., Wang, C., et al., 2015. Magmatism during Continental Collision, Subduction, Exhumation and Mountain Collapse in Collisional Orogenic Belts and Continental Net Growth: A Perspective. Scientia Sinica (Terrae), 45(7): 916-940(in Chinese). doi: 10.1360/zd-2015-45-7-916
      Stern, C. R., Kilian, R., 1996. Role of the Subducted Slab, Mantle Wedge and Continental Crust in the Generation of Adakites from the Andean Austral Volcanic Zone. Contributions to Mineralogy and Petrology, 123(3): 263-281. https://doi.org/10.1007/s004100050155
      Sun, J., Qian, Y., Li, Y., et al., 2021. Intermittent Subduction of the Paleo-Tethys Ocean in the Middle-Late Permian: Evidence from the Mafic-Intermediate Intrusive Rocks in the East Kunlun Orogenic Belt. Australian Journal of Earth Sciences, 68(2): 229-244. https://doi.org/10.1080/08120099.2020.1764623
      Sun, J. F., Yang, J. H., Wu, F. Y., et al., 2010. Magma Mixing Controlling the Origin of the Early Cretaceous Fangshan Granitic Pluton, North China Craton: In Situ U-Pb Age and Sr-, Nd-, Hf- and O-Isotope Evidence. Lithos, 120(3/4): 421-438. https://doi.org/10.1016/j.lithos.2010.09.002
      Sun, L. Q., Ling, H. F., Shen, W. Z., et al., 2017. Petrogenesis of Two Triassic A-Type Intrusions in the Interior of South China and Their Implications for Tectonic Transition. Lithos, 284-285: 642-653. https://doi.org/10.1016/j.lithos.2017.05.006
      Sun, S. S., McDonough, W. F., et al., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
      Tong, H. K., Long, L. L., Wang, Y. W., et al., 2023. Metallogenic Characteristics of Langmuri Copper Polymetallic Deposit in East Kunlun and Its Ore Prospecting Enlightenment. Earth Science, 48(12): 4349-4369(in Chinese with English abstract).
      Vermeesch, P., 2018. IsoplotR: A Free and Open Toolbox for Geochronology. Geoscience Frontiers, 9(5): 1479-1493. https://doi.org/10.1016/j.gsf.2018.04.001
      Wang, B. Z., Zhang, J. M., Li, W. F., et al., 2023. Discovery of Two Stages of the Early Paleozoic Adakitic Intrusive Rocks in the Kunlun River Area, East Kunlun: Implications for Collisional Orogenic Processes. Acta Petrologica Sinica, 39(3): 763-784(in Chinese with English abstract). doi: 10.18654/1000-0569/2023.03.09
      Wang, Q., Wyman, D. A., Xu, J. F., et al., 2007. Partial Melting of Thickened or Delaminated Lower Crust in the Middle of Eastern China: Implications for Cu-Au Mineralization. Journal of Geology, 115(2): 149-161. https://doi.org/10.1086/510643
      Wang, Q., Xu, J. F., Jian, P., et al., 2006. Petrogenesis of Adakitic Porphyries in an Extensional Tectonic Setting, Dexing, South China: Implications for the Genesis of Porphyry Copper Mineralization. Journal of Petrology, 47(1): 119-144. https://doi.org/10.1093/petrology/egi070
      Wang, X. S., Bi, X. W., Leng, C. B., et al., 2014. Geochronology and Geochemistry of Late Cretaceous Igneous Intrusions and Mo-Cu-(W) Mineralization in the Southern Yidun Arc, SW China: Implications for Metallogenesis and Geodynamic Setting. Ore Geology Reviews, 61: 73-95. https://doi.org/10.1016/j.oregeorev.2014.01.006
      Wang, X. X., Hu, N. G., Wang, T., et al., 2012. Late Ordovician Wanbaogou Granitoid Pluton from the Southern Margin of the Qaidam Basin: Zircon SHRIMP U-Pb Age, Hf Isotope and Geochemistry. Acta Petrologica Sinica, 28(9): 2950-2962(in Chinese with English abstract).
      Wang, Y. L., Xue, S. C., Wang, X. M., et al., 2023. PGE Geochemical and Os-S-Sr-Nd Isotopic Constraints on the Genesis of the Shitoukengde Magmatic Sulfide Deposit in the East Kunlun Orogenic Belt, NW China. Ore Geology Reviews, 156: 105396. https://doi.org/10.1016/j.oregeorev.2023.105396
      Watson, E. B., Harrison, T. M., 1983. Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth and Planetary Science Letters, 64(2): 295-304. https://doi.org/10.1016/0012-821X(83)90211-X
      Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/BF00402202
      Wu, F. Y., Sun, D. Y., Li, H. M., et al., 2002. A-Type Granites in Northeastern China: Age and Geochemical Constraints on Their Petrogenesis. Chemical Geology, 187(1-2): 143-173. https://doi.org/10.1016/S0009-2541(02)00018-9
      Wu, F. Y., Li, X. H., Zheng, Y. F., et al., 2007. Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2): 185-220(in Chinese with English abstract).
      Wu, F. Y., Liu, X. C., Ji, W. Q., et al., 2017. Highly Fractionated Granites: Recognition and Research. Scientia Sinica (Terrae), 47(7): 745-765(in Chinese). doi: 10.1360/N072016-00139
      Xiong, F. H., Ma, C. Q., Wu, L., et al., 2015. Geochemistry, Zircon U-Pb Ages and Sr-Nd-Hf Isotopes of an Ordovician Appinitic Pluton in the East Kunlun Orogen: New Evidence for Proto-Tethyan Subduction. Journal of Asian Earth Sciences, 111: 681-697. https://doi.org/10.1016/j.jseaes.2015.05.025
      Xiong, F. H., Ma, C. Q., Zhang, J. Y., et al., 2014. Reworking of Old Continental Lithosphere: An Important Crustal Evolution Mechanism in Orogenic Belts, as Evidenced by Triassic I-Type Granitoids in the East Kunlun Orogen, Northern Tibetan Plateau. Journal of the Geological Society, 171(6): 847-863. https://doi.org/10.1144/jgs2013-038
      Xiong, X. L., 2006. Trace Element Evidence for Growth of Early Continental Crust by Melting of Rutile-Bearing Hydrous Eclogite. Geology, 34(11): 945. https://doi.org/10.1130/g22711a.1
      Xu, Z. H., Xin, W., Zhou, X. D., et al., 2023. Triassic Granitoids in the East Kunlun Orogenic Belt, Northwestern China: Magmatic Source and Implications for Geodynamic Evolution. International Geology Review, 65(7): 983-999. https://doi.org/10.1080/00206814.2020.1848647
      Xu, Z. Q., Yang, J. S., Wu, C. L., et al., 2006. Timing and Mechanism of Formation and Exhumation of the Northern Qaidam Ultrahigh-Pressure Metamorphic Belt. Journal of Asian Earth Sciences, 28(2/3): 160-173. https://doi.org/10.1016/j.jseaes.2005.09.016
      Xu, Z. Q., Yang, J. S., Li, H. B., et al., 2006. The Qinghai-Tibet Plateau and Continental Dynamics: A Review on Terrain Tectonics, Collisional Orogenesis, and Processes and Mechanisms for the Rise of the Plateau. Geology in China, 33(2): 221-238(in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2006.02.001
      Yan, J. M., Sun, G. S., Sun, F. Y., et al., 2019. Geochronology, Geochemistry, and Hf Isotopic Compositions of Monzogranites and Mafic-Ultramafic Complexes in the Maxingdawannan Area, Eastern Kunlun Orogen, Western China: Implications for Magma Sources, Geodynamic Setting, and Petrogenesis. Journal of Earth Science, 30(2): 335-347. https://doi.org/10.1007/s12583-018-1203-8
      Yang, J. S., Robinson, P. T., Jiang, C. F., et al., 1996. Ophiolites of the Kunlun Mountains, China and Their Tectonic Implications. Tectonophysics, 258(1-4): 215-231. https://doi.org/10.1016/0040-1951(95)00199-9
      Yu, M., Feng, C. Y., Santosh, M., et al., 2017. The Qiman Tagh Orogen as a Window to the Crustal Evolution in Northern Qinghai-Tibet Plateau. Earth-Science Reviews, 167: 103-123. https://doi.org/10.1016/j.earscirev.2017.02.008
      Zhang, J. Y., Lei, H. L., Ma, C. Q., et al., 2021. Silurian-Devonian Granites and Associated Intermediate-Mafic Rocks along the Eastern Kunlun Orogen, Western China: Evidence for a Prolonged Post-Collisional Lithospheric Extension. Gondwana Research, 89: 131-146. https://doi.org/10.1016/j.gr.2020.08.019
      Zhang, J. Y., Ma, C. Q., Xiong, F. H., et al., 2014. Early Paleozoic High-Mg Diorite-Granodiorite in the Eastern Kunlun Orogen, Western China: Response to Continental Collision and Slab Break-off. Lithos, 210: 129-146. https://doi.org/10.1016/j.lithos.2014.10.003
      Zhang, Z. W., Tang, Q. Y., Li, C. S., et al., 2017. Sr-Nd-Os-S Isotope and PGE Geochemistry of the Xiarihamu Magmatic Sulfide Deposit in the Qinghai-Tibet Plateau, China. Mineralium Deposita, 52(1): 51-68. https://doi.org/10.1007/s00126-016-0645-0
      Zhao, X., Fu, L. B., Santosh, M., et al., 2022. The Growth and Evolution of Continental Crust Contributed by Multiple Sources in the East Kunlun Orogen during Early Paleozoic. Earth-Science Reviews, 233: 104190. https://doi.org/10.1016/j.earscirev.2022.104190
      Zhao, X., Wei, J. H., Fu, L. B., et al., 2020. Multi-Stage Crustal Melting from Late Permian Back-Arc Extension through Middle Triassic Continental Collision to Late Triassic Post-Collisional Extension in the East Kunlun Orogen. Lithos, 360: 105446. https://doi.org/10.1016/j.lithos.2020.105446
      Zhou, B., Dong, Y. P., Zhang, F. F., et al., 2016. Geochemistry and Zircon U-Pb Geochronology of Granitoids in the East Kunlun Orogenic Belt, Northern Tibetan Plateau: Origin and Tectonic Implications. Journal of Asian Earth Sciences, 130: 265-281. https://doi.org/10.1016/j.jseaes.2016.08.011
      Zhou, H. Z., Wei, J. H., Shi, W. J., et al., 2020. Late Triassic Post-Collision Extension at Elashan Magmatic Belt, East Kunlun Orogenic Belt: Insights from Suolagou Highly Fractionated I-Type Granite. Bulletin of Geological Science and Technology, 39(4): 150-164(in Chinese with English abstract).
      陈加杰, 付乐兵, 魏俊浩, 等, 2016. 东昆仑沟里地区晚奥陶世花岗闪长岩地球化学特征及其对原特提斯洋演化的制约. 地球科学, 41(11): 1863-1882. doi: 10.3799/dqkx.2016.129
      陈有炘, 裴先治, 李瑞保, 等, 2011. 东昆仑造山带东段元古界小庙岩组的锆石U-Pb年龄. 现代地质, 25(3): 510-521. doi: 10.3969/j.issn.1000-8527.2011.03.013
      崔美慧, 孟繁聪, 吴祥珂, 2011. 东昆仑祁漫塔格早奥陶世岛弧: 中基性火成岩地球化学、Sm-Nd同位素及年代学证据. 岩石学报, 27(11): 3365-3379.
      高晓峰, 校培喜, 谢从瑞, 等, 2010. 东昆仑阿牙克库木湖北巴什尔希花岗岩锆石LA-ICP-MS U-Pb定年及其地质意义. 地质通报, 29(7): 1001-1008. doi: 10.3969/j.issn.1671-2552.2010.07.005
      郭峰, 王盘喜, 卞孝东, 等, 2020. 东昆仑夏日哈木地区二长花岗岩年代学、地球化学特征及地质意义. 中国地质调查, 7(6): 51-60.
      国显正, 贾群子, 李金超, 等, 2018. 东昆仑高压变质带榴辉岩年代学、地球化学及其地质意义. 地球科学, 43(12): 4300-4318. doi: 10.3799/dqkx.2018.142
      韩志辉, 孙丰月, 田楠, 等, 2021. 东昆仑祁漫塔格地区乌兰乌珠尔早古生代花岗岩锆石U-Pb年代学、地球化学及其地质意义. 地球科学, 46(1): 13-30. doi: 10.3799/dqkx.2020.067
      贾丽辉, 孟繁聪, 冯惠彬, 2014. 榴辉岩相峰期流体活动: 来自东昆仑榴辉岩石英脉的证据. 岩石学报, 30(8): 2339-2350.
      刘彬, 马昌前, 蒋红安, 等, 2013. 东昆仑早古生代洋壳俯冲与碰撞造山作用的转换: 来自胡晓钦镁铁质岩石的证据. 岩石学报, 29(6): 2093-2106.
      刘彬, 伍炼华, 马昌前, 等, 2023. 东昆仑造山带东段志留纪-泥盆纪中性岩的成因及其构造意义. 地球科学, 48(6): 2398-2414. doi: 10.3799/dqkx.2022.188
      孟繁聪, 崔美慧, 贾丽辉, 等, 2015. 东昆仑造山带早古生代的大陆碰撞: 来自榴辉岩原岩性质的证据. 岩石学报, 31(12): 3581-3594.
      莫宣学, 罗照华, 邓晋福, 等, 2007. 东昆仑造山带花岗岩及地壳生长. 高校地质学报, 13(3): 403-414. doi: 10.3969/j.issn.1006-7493.2007.03.010
      祁晓鹏, 范显刚, 杨杰, 等, 2016. 东昆仑东段浪木日上游早古生代榴辉岩的发现及其意义. 地质通报, 35(11): 1771-1783.
      任军虎, 柳益群, 冯乔, 等, 2009. 东昆仑清水泉辉绿岩脉地球化学及LA-ICP-MS锆石U-Pb定年. 岩石学报, 25(5): 1135-1145.
      宋述光, 王梦珏, 王潮, 等, 2015. 大陆造山带碰撞-俯冲-折返-垮塌过程的岩浆作用及大陆地壳净生长. 中国科学: 地球科学, 45(7): 916-940.
      童海奎, 龙灵利, 王玉往, 等, 2023. 东昆仑浪木日铜多金属矿床成矿特征及找矿启示. 地球科学, 48(12): 4349-4369. doi: 10.3799/dqkx.2023.028
      王秉璋, 张金明, 李五福, 等, 2023. 昆仑河早古生代两期埃达克质侵入岩的发现及其对东昆仑碰撞造山过程的启示. 岩石学报, 39(3): 763-784.
      王晓霞, 胡能高, 王涛, 等, 2012. 柴达木盆地南缘晚奥陶世万宝沟花岗岩: 锆石SHRIMP U-Pb年龄、Hf同位素和元素地球化学. 岩石学报, 28(9): 2950-2962.
      吴福元, 李献华, 郑永飞, 等, 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185-220.
      吴福元, 刘小驰, 纪伟强, 等, 2017. 高分异花岗岩的识别与研究. 中国科学: 地球科学, 47(7): 745-765.
      许志琴, 杨经绥, 李海兵, 等, 2006. 青藏高原与大陆动力学: 地体拼合、碰撞造山及高原隆升的深部驱动力. 中国地质, 33(2): 221-238.
      周红智, 魏俊浩, 石文杰, 等, 2020. 东昆仑鄂拉山岩浆带晚三叠世后碰撞伸展: 来自索拉沟高分异I型花岗岩的证据. 地质科技通报, 39(4): 150-164.
    • 加载中
    图(16) / 表(3)
    计量
    • 文章访问数:  28
    • HTML全文浏览量:  15
    • PDF下载量:  7
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-10-09
    • 网络出版日期:  2025-05-10
    • 刊出日期:  2025-04-25

    目录

      /

      返回文章
      返回