• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    柴达木盆地典型类火星地貌表层土壤的矿物与元素多谱学表征

    郭雪 申建勋 刘立 黄诚祥 陈妍 林红磊 林巍

    郭雪, 申建勋, 刘立, 黄诚祥, 陈妍, 林红磊, 林巍, 2024. 柴达木盆地典型类火星地貌表层土壤的矿物与元素多谱学表征. 地球科学, 49(7): 2526-2538. doi: 10.3799/dqkx.2024.027
    引用本文: 郭雪, 申建勋, 刘立, 黄诚祥, 陈妍, 林红磊, 林巍, 2024. 柴达木盆地典型类火星地貌表层土壤的矿物与元素多谱学表征. 地球科学, 49(7): 2526-2538. doi: 10.3799/dqkx.2024.027
    Guo Xue, Shen Jianxun, Liu Li, Huang Chengxiang, Chen Yan, Lin Honglei, Lin Wei, 2024. Characterization of Minerals and Elements in Surface Soils from Mars-like Qaidam Landforms through Multi-Spectroscopic Techniques. Earth Science, 49(7): 2526-2538. doi: 10.3799/dqkx.2024.027
    Citation: Guo Xue, Shen Jianxun, Liu Li, Huang Chengxiang, Chen Yan, Lin Honglei, Lin Wei, 2024. Characterization of Minerals and Elements in Surface Soils from Mars-like Qaidam Landforms through Multi-Spectroscopic Techniques. Earth Science, 49(7): 2526-2538. doi: 10.3799/dqkx.2024.027

    柴达木盆地典型类火星地貌表层土壤的矿物与元素多谱学表征

    doi: 10.3799/dqkx.2024.027
    基金项目: 

    国家自然科学基金项目 T2225011

    中国科学院重点部署项目 ZDBS-SSW-TLC001

    国家重点研发计划青年科学家项目 2022YFF0504000

    详细信息
      作者简介:

      郭雪(2000-),女,硕士研究生,主要从事天体生物学研究. ORCID:0009-0008-0185-6296. E-mail:guoxue21@mails.ucas.ac.cn

      通讯作者:

      林巍,ORCID: 0000-0003-4075-7414. E-mail: weilin@mail.iggcas.ac.cn

    • 中图分类号: P691

    Characterization of Minerals and Elements in Surface Soils from Mars-like Qaidam Landforms through Multi-Spectroscopic Techniques

    • 摘要: 火星表面具有丰富的古代水活动历史,可能曾具有较宜居的环境,一直是行星科学和深空探测的研究热点.我国青藏高原东北部的柴达木盆地气候寒冷干旱,地表受到的辐射较强且盐度较高,发育了多种与火星相似的地貌,被认为是开展火星类比研究的理想区域.综合利用短波红外光谱、激光诱导击穿光谱、X射线衍射、X射线荧光光谱等技术手段,结合遥感影像数据,分析了柴达木盆地典型类火星地貌(冲积扇、沙丘、泥石流、冲沟、雅丹、盐滩、多边形等)表层土壤样品的光谱特征以及矿物和元素组成,揭示出柴达木盆地类火星地貌的矿物组成主要包括石英、钠长石、石膏、方解石,以及部分伊利石、绿泥石、微斜长石和岩盐等.其中,雅丹和冲积扇地貌具有较好的碳酸盐、黏土矿物和有机物保存潜力.本研究为从比较行星学角度解译火星古水文地貌的原位光谱数据和地球化学分析提供了参考.

       

    • 图  1  柴达木盆地所处位置(a)及采样点分布(b)

      底图下载自Natural Earth:https://www.naturalearthdata.com/. 1.冲积扇;2.泥石流;3.雅丹;4.沙丘;5.冲沟;6.多边形;7.盐滩

      Fig.  1.  Geographic location of the Qaidam Basin (a) and spatial distribution of sampling sites (b)

      图  2  柴达木盆地典型类火星地貌表层土壤样品的元素组成及含量

      Fig.  2.  Elemental compositions and contents of surface soil samples from representative Mars-like landforms in the Qaidam Basin

      图  3  MarSCoDe备份件在实验室模拟火星环境中测量得到的柴达木盆地类火星地貌表层土壤样品的LIBS光谱(a~c)和基于LIBS结果的代表性类火星地貌表层土壤中主量元素相对于氧信号的相对丰度(d)

      a. 紫外(240~340 nm);b.可见光(340~540 nm);c.近红外(540~850 nm)

      Fig.  3.  LIBS spectra of surface soil samples from the Qaidam Basin measured by the MarSCoDe prototype in a simulated Martian environment (a~c) and relative compositional ratios of major elements to oxygen in surface soils of Mars-like landforms based on LIBS results (d)

      图  4  柴达木盆地典型类火星地貌表层土壤样品的XRD结果

      Fig.  4.  XRD-based mineral compositions of surface soil samples in the Qaidam Basin

      图  5  柴达木盆地典型类火星地貌表层土壤样品(a)SWIR光谱与(b)伊利石、石膏、绿泥石、方解石、石英和岩盐的实验室光谱的比较

      图b数据来源于USGS光谱库 http://speclab.cr.usgs.gov/spectral-lib.html. 为了更好地展示和比较,对光谱进行了排序和垂向偏移

      Fig.  5.  SWIR spectra of (a) surface soil samples in the Qaidam Basin and (b) laboratory-measured illite, gypsum, chlorite, calcite, quartz, and halite

      图  6  柴达木盆地典型类火星地貌表层土壤样品的碳酸盐含量

      Fig.  6.  Carbonate contents in surface soil samples of Mars-like landforms in the Qaidam Basin

      图  7  柴达木盆地典型类火星地貌表层土壤样品采样点地区基于遥感分析得到的碳酸盐矿物分布

      Fig.  7.  Distributions of carbonate minerals in Mars-like surface soil samples across the Qaidam Basin based on remote sensing analyses

      表  1  柴达木盆地典型类火星地貌表层土壤样品的元素组成及含量

      Table  1.   Elemental compositions of surface soil samples from representative Mars-like landforms in the Qaidam Basin

      样品名称 SiO2
      (%)
      TiO2
      (%)
      Al2O3
      (%)
      TFe2O3
      (%)
      MnO
      (%)
      MgO
      (%)
      CaO
      (%)
      Na2O
      (%)
      K2O
      (%)
      P2O5
      (%)
      LOI
      (%)
      TOTAL
      (%)
      冲积扇 54.58 0.61 13.03 5.12 0.09 3.30 8.12 2.27 2.78 0.14 9.36 99.40
      沙丘 72.57 0.27 10.93 1.83 0.03 1.19 3.64 2.83 2.90 0.07 3.22 99.49
      泥石流 68.73 0.39 9.48 2.83 0.05 1.80 5.73 2.39 2.04 0.09 5.86 99.39
      冲沟 67.25 0.24 11.34 1.66 0.04 0.99 6.26 2.92 3.18 0.07 3.96 97.90
      雅丹 38.38 0.45 9.25 3.79 0.06 8.48 11.50 3.54 3.14 0.13 21.67 100.38
      盐滩 48.12 0.39 7.07 2.02 0.04 3.00 14.22 1.91 1.66 0.09 8.99 87.51
      多边形 20.15 0.19 3.91 1.28 0.03 2.65 23.28 5.01 0.85 0.06 15.16 72.56
      样品名称 SO3
      (%)
      Ba
      (10‒6)
      Co
      (10‒6)
      Cr
      (10‒6)
      Cu
      (10‒6)
      Ni
      (10‒6)
      Rb
      (10‒6)
      Sr
      (10‒6)
      V
      (10‒6)
      Zr
      (10‒6)
      Zn
      (10‒6)
      冲积扇 0.41 565.3 14.1 72.2 26.6 30.7 131.9 244.3 85.9 143.7 82.4
      沙丘 0.20 594.6 11.9 37.5 3.4 2.4 133.2 209.8 37.1 102.6 27.6
      泥石流 1.19 459.8 14.4 136.7 7.9 32.7 91.2 238.6 49.7 123.6 40.9
      冲沟 ~2.29 680.7 2.5 70.7 -0.4 7.3 125.4 301.4 23.0 97.4 25.6
      雅丹 1.87 567.1 12.5 70.5 21.5 25.8 95.7 589.3 71.5 122.8 55.4
      盐滩 ~11.27 496.5 1.7 35.5 3.7 -0.2 95.5 587.9 34.6 300.4 24.9
      多边形 ~27.30 259.5 6.4 55.5 4.2 13.9 51.8 1050.5 23.5 83.2 19.3
      下载: 导出CSV

      表  2  利用SPCA方法计算碳酸盐矿物在ASTER 10、13和14波段的特征向量矩阵

      Table  2.   Eigenvector matrix of carbonate minerals calculated using the selective principal components analysis (SPCA) method for the selected Bands 10, 13 and 14 of ASTER data

      特征向量 10波段 13波段 14波段
      PC1 -0.654 594 -0.545 488 -0.523 402
      1 PC2 -0.741 474 0.328 284 0.585 190
      PC3 0.147 389 -0.771 150 0.619 357
      PC1 -0.594 574 -0.574 426 -0.562 598
      2 PC2 -0.743 077 0.125 307 0.657 369
      PC3 0.307 113 -0.808 908 0.501 347
      下载: 导出CSV
    • Abrams, M., 2000. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER): Data Products for the High Spatial Resolution Imager on NASA's Terra Platform. International Journal of Remote Sensing, 21(5): 847-859. https://doi.org/10.1080/014311600210326
      Amao, A. O., Al-Otaibi, B., Al-Ramadan, K., 2022. High-Resolution X-Ray Diffraction Datasets: Carbonates. Data Brief, 42: 108204. https://doi.org/10.1016/j.dib.2022.108204
      Anglés, A., Li, Y. L., 2017. The Western Qaidam Basin as a Potential Martian Environmental Analogue: An Overview. Journal of Geophysical Research: Planets, 122(5): 856-888. https://doi.org/10.1002/2017je005293
      Bishop, J. L., Pieters, C. M., Edwards, J. O., 1994. Infrared Spectroscopic Analyses on the Nature of Water in Montmorillonite. Clays and Clay Minerals, 42(6): 702-716. https://doi.org/10.1346/ccmn.1994.0420606
      Bosak, T., Moore, K. R., Gong, J., et al., 2021. Searching for Biosignatures in Sedimentary Rocks from Early Earth and Mars. Nature Reviews Earth & Environment, 2(7): 490-506. https://doi.org/10.1038/s43017-021-00169-5
      Cardenas, B. T., Stacey, K., 2023. Landforms Associated with the Aspect-Controlled Exhumation of Crater-Filling Alluvial Strata on Mars. Geophysical Research Letters, 50(15): e2023GL103618. https://doi.org/10.1029/2023gl103618
      Chen, K. Z., Bowler, J. M., 1986. Late Pleistocene Evolution of Salt Lakes in the Qaidam Basin, Qinghai Province, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 54(1-4): 87-104. https://doi.org/10.1016/0031-0182(86)90119-7
      Chen, Q., Zhao, Z. F., Zhou, J. X., et al., 2022a. ASTER and GF-5 Satellite Data for Mapping Hydrothermal Alteration Minerals in the Longtoushan Pb-Zn Deposit, SW China. Remote Sensing, 14(5): 1253. https://doi.org/10.3390/rs14051253
      Chen, Y., Shen, J. X., Liu, L., et al., 2022b. Preservation of Organic Matter in Aqueous Deposits and Soils across the Mars-Analog Qaidam Basin, NW China: Implications for Biosignature Detection on Mars. Journal of Geophysical Research: Planets, 127(12): e2022JE007418. https://doi.org/https://doi.org/10.1029/2022JE007418
      Chung, F. H., 1974. Quantitative Interpretation of X-Ray Diffraction Patterns of Mixtures. Ⅰ. Matrix-Flushing Method for Quantitative Multicomponent Analysis. Journal of Applied Crystallography, 7(6): 519-525. https://doi.org/10.1107/s0021889874010375
      Cloutis, E. A., Hawthorne, F. C., Mertzman, S. A., et al., 2006. Detection and Discrimination of Sulfate Minerals Using Reflectance Spectroscopy. Icarus, 184(1): 121-157. https://doi.org/10.1016/j.icarus.2006.04.003
      Crowley, J. K., 1991. Visible and Near-Infrared (0.4-2.5 μm) Reflectance Spectra of Playa Evaporite Minerals. Journal of Geophysical Research: Solid Earth, 96(B10): 16231-16240. https://doi.org/10.1029/91jb01714
      Crowley, J. K., Hook, S. J., 1996. Mapping Playa Evaporite Minerals and Associated Sediments in Death Valley, California, with Multispectral Thermal Infrared Images. Journal of Geophysical Research: Solid Earth, 101(B1): 643-660. https://doi.org/10.1029/95jb02813
      Cui, Z. C., Jia, L. C., Li, L. N., et al., 2022. A Laser-Induced Breakdown Spectroscopy Experiment Platform for High-Degree Simulation of MarSCoDe In Situ Detection on Mars. Remote Sensing, 14(9): 1954. https://doi.org/10.3390/rs14091954
      Des Marais, D. J., Nuth, J. A. Ⅲ, Allamandola, L. J., et al., 2008. The NASA Astrobiology Roadmap. Astrobiology, 8(4): 715-730. https://doi.org/10.1089/ast.2008.0819
      Ehlmann, B. L., Edwards, C. S., 2014. Mineralogy of the Martian Surface. Annual Review of Earth and Planetary Sciences, 42: 291-315. https://doi.org/10.1146/annurev-earth-060313-055024
      Gendrin, A., Mangold, N., Bibring, J. P., et al., 2005. Sulfates in Martian Layered Terrains: The OMEGA/Mars Express View. Science, 307(5715): 1587-1591. https://doi.org/10.1126/science.1109087
      He, Z. P., Xu, R., Li, C. L., et al., 2021. Mars Mineralogical Spectrometer (MMS) on the Tianwen-1 Mission. Space Science Reviews, 217(2): 27. https://doi.org/10.1007/s11214-021-00804-z
      Horneck, G., Walter, N., Westall, F., et al., 2016. AstRoMap European Astrobiology Roadmap. Astrobiology, 16(3): 201-243. https://doi.org/10.1089/ast.2015.1441
      Hu, B., Zhang, C. X., Wu, H. B., et al., 2019. Clay Mineralogy of an Eocene Fluvial-Lacustrine Sequence in Xining Basin, Northwest China, and Its Paleoclimatic Implications. Science China Earth Sciences, 62(3): 571-584. https://doi.org/10.1007/s11430-018-9282-8
      Huang, Q., Han, F. Q., 2007. Salt Lake Evolution and Paleoclimate Fluctuation in Qaidam Basin. Science Press, Beijing (in Chinese).
      Kong, F. J., Zheng, M. P., Hu, B., et al., 2018. Dalangtan Saline Playa in a Hyperarid Region on Tibet Plateau: Ⅰ. Evolution and Environments. Astrobiology, 18(10): 1243-1253. https://doi.org/10.1089/ast.2018.1830
      Langevin, Y., Poulet, F., Bibring, J. P., et al., 2005. Sulfates in the North Polar Region of Mars Detected by OMEGA/Mars Express. Science, 307(5715): 1584-1586. https://doi.org/10.1126/science.1109091
      Li, L. L., Dong, Z. B., Li, C., et al., 2018. Comparison of Yardang Morphology on the Earth and the Mars: Taking the Elysium Planitia and the Qaidam Basin for an Example. Journal of Desert Research, 38(4): 716-723 (in Chinese with English abstract).
      Lin, H. L., Xu, R., Lin, Y. T., et al., 2023. In-Flight Calibration of Near-Infrared Reflectance Spectra Measured by the Zhurong Mars Rover. Earth and Space Science, 10(2): e2022EA002624. https://doi.org/10.1029/2022ea002624
      Lin, W., Li, Y. L., Wang, G. H., et al., 2020. Overview and Perspectives of Astrobiology. Chinese Science Bulletin, 65(5): 380-391 (in Chinese).
      Lin, W., Shen, J. X., Pan, Y. X., 2022. On Astrobiological Research in China. Earth Science, 47(11): 4108-4113 (in Chinese with English abstract).
      Liu, C. Q., Ling, Z. C., Wu, Z. C., et al., 2022a. Aqueous Alteration of the Vastitas Borealis Formation at the Tianwen-1 Landing Site. Communications Earth & Environment, 3(1): 280. https://doi.org/10.1038/s43247-022-00614-3
      Liu, Y., Wu, X., Zhao, Y. S., et al., 2022b. Zhurong Reveals Recent Aqueous Activities in Utopia Planitia, Mars. Science Advances, 8(19): eabn8555. https://doi.org/10.1126/sciadv.abn8555
      Liu, Z. Y., Li, L. N., Xu, W. M., et al., 2023. Investigation into the Affect of Chemometrics and Spectral Data Preprocessing Approaches upon Laser-Induced Breakdown Spectroscopy Quantification Accuracy Based on MarSCoDe Laboratory Model and MarSDEEP Equipment. Remote Sensing, 15(13): 3311. https://doi.org/10.3390/rs15133311
      Martins, Z., Cottin, H., Kotler, J. M., et al., 2017. Earth as a Tool for Astrobiology—A European Perspective. Space Science Reviews, 209(1-4): 43-81. https://doi.org/10.1007/s11214-017-0369-1
      McKeown, N. K., Bishop, J. L., Noe Dobrea, E. Z., et al., 2009. Characterization of Phyllosilicates Observed in the Central Mawrth Vallis Region, Mars, Their Potential Formational Processes, and Implications for Past Climate. Journal of Geophysical Research: Planets, 114(E2): E00D10. https://doi.org/10.1029/2008je003301
      Ralchenko, Y., Kramida, A., 2020. Development of NIST Atomic Databases and Online Tools. Atoms, 8(3): 56. https://doi.org/10.3390/atoms8030056
      Rieser, A. B., Bojar, A. V., Neubauer, F., et al., 2009. Monitoring Cenozoic Climate Evolution of Northeastern Tibet: Stable Isotope Constraints from the Western Qaidam Basin, China. International Journal of Earth Sciences, 98(5): 1063-1075. https://doi.org/10.1007/s00531-008-0304-5
      Rohrmann, A., Heermance, R., Kapp, P., et al., 2013. Wind as the Primary Driver of Erosion in the Qaidam Basin, China. Earth and Planetary Science Letters, 374: 1-10. https://doi.org/10.1016/j.epsl.2013.03.011
      Rotz, R., 2020. Geomorphic-Geologic Indicators of Zones of Hydrologic Flux in Drylands on Earth and Mars (Dissertation). University of Georgia, Georgia.
      Shen, J., Zerkle, A. L., Stueeken, E., et al., 2019. Nitrates as a Potential N Supply for Microbial Ecosystems in a Hyperarid Mars Analog System. Life-Basel, 9(4): E79. https://doi.org/10.3390/life9040079
      Shen, J. X., Chen, Y., Sun, Y., et al., 2022. Detection of Biosignatures in Terrestrial Mars Analogs: Strategical and Technical Assessments. Earth and Planetary Physics, 6: 431-450. https://doi.org/10.26464/epp2022042
      Singh, M., Sarkar, A., 2021. Laser Induced Breakdown Spectroscopic Measurements of Oxygen to Metal (O/M) Ratio in Metal Oxides Samples. Spectrochimica Acta Part B: Atomic Spectroscopy, 179: 106106. https://doi.org/10.1016/j.sab.2021.106106
      Sobron, P., Wang, A., Mayer, D. P., et al., 2018. Dalangtan Saline Playa in a Hyperarid Region of Tibet Plateau: Ⅲ. Correlated Multiscale Surface Mineralogy and Geochemistry Survey. Astrobiology, 18(10): 1277-1304. https://doi.org/10.1089/ast.2017.1777
      Sun, Y., Li, Y. L., Zhang, C. Q., et al., 2022. Weathering of Chlorite Illite Deposits in the Hyperarid Qaidam Basin: Implications to Post-Depositional Alteration on Martian Clay Minerals. Frontiers in Astronomy and Space Sciences, 9: 875547. https://doi.org/10.3389/fspas.2022.875547
      Viviano-Beck, C. E., Seelos, F. P., Murchie, S. L., et al., 2014. Revised Crism Spectral Parameters and Summary Products Based on the Currently Detected Mineral Diversity on Mars. Journal of Geophysical Research: Planets, 119(6): 1403-1431. https://doi.org/10.1002/2014je004627
      Wang, J., Wang, Y. J., Liu, Z. C., et al., 1999. Cenozoic Environmental Evolution of the Qaidam Basin and Its Implications for the Uplift of the Tibetan Plateau and the Drying of Central Asia. Palaeogeography, Palaeoclimatology, Palaeoecology, 152(1-2): 37-47. https://doi.org/10.1016/S0031-0182(99)00038-3
      Wang, J., Xiao, L., Reiss, D., et al., 2018. Geological Features and Evolution of Yardangs in the Qaidam Basin, Tibetan Plateau (NW China): A Terrestrial Analogue for Mars. Journal of Geophysical Research: Planets, 123(9): 2336-2364. https://doi.org/10.1029/2018je005719
      Wu, W. R., Wang, C., Liu, Y., et al., 2023. Frontier Scientific Questions in Deep Space Exploration. Chinese Science Bulletin, 68(6): 606-627 (in Chinese). doi: 10.1360/TB-2022-0667
      Xia, W. C., Zhang, N., Yuan, X. P., et al., 2001. Cenozoic Qaidam Basin, China: A Stronger Tectonic Inversed, Extensional Rifted Basin. AAPG Bulletin, 85(4): 715-736. https://doi.org/https://doi.org/10.1306/8626C98D-173B-11D7-8645000102C1865D
      Xiao, L., Huang, J., Kusky, T., et al., 2023. Evidence for Marine Sedimentary Rocks in Utopia Planitia: Zhurong Rover Observations. National Science Review, 10(9): nwad137. https://doi.org/10.1093/nsr/nwad137
      Xiao, L., Wang, J., Dang, Y. N., et al., 2017. A New Terrestrial Analogue Site for Mars Research: The Qaidam Basin, Tibetan Plateau (NW China). Earth-Science Reviews, 164: 84-101. https://doi.org/10.1016/j.earscirev.2016.11.003
      Xu, W. M., Liu, X. F., Yan, Z. X., et al., 2021. The MarSCoDe Instrument Suite on the Mars Rover of China's Tianwen-1 Mission. Space Science Reviews, 217(5): 1-58. https://doi.org/10.1007/s11214-021-00836-5
      Xue, D. S., Su, B. X., Zhang, D. P., et al., 2020. Quantitative Verification of 1 : 100 Diluted Fused Glass Beads for X-Ray Fluorescence Analysis of Geological Specimens. Journal of Analytical Atomic Spectrometry, 35(12): 2826-2833. https://doi.org/10.1039/d0ja00273a
      Yin, A., Dang, Y. Q., Wang, L. C., et al., 2008. Cenozoic Tectonic Evolution of Qaidam Basin and Its Surrounding Regions (Part 1): The Southern Qilian Shan-Nan Shan Thrust Belt and Northern Qaidam Basin. Geological Society of America Bulletin, 120(7-8): 813-846. https://doi.org/10.1130/b26180.1
      Yong, C. Z., Fang, Z. Y., Zhang, C. C., et al., 2023. Constraints on Water Activity at the Zhurong Landing Site in Utopia Planitia, Mars. Earth and Planetary Physics, 7(3): 356-370. https://doi.org/10.26464/epp2023036
      Zhao, Y. S., Yu, J., Wei, G. F., et al., 2023. In Situ Analysis of Surface Composition and Meteorology at the Zhurong Landing Site on Mars. National Science Review, 10(6): nwad056. https://doi.org/10.1093/nsr/nwad056
      黄麒, 韩凤清, 2007. 柴达木盆地盐湖演化与古气候波动. 北京: 科学出版社.
      李露露, 董治宝, 李超, 等, 2018. 火星和地球雅丹形态学类比分析——以埃律西昂平原和柴达木盆地为例. 中国沙漠, 38(4): 716-723. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSS201804005.htm
      林巍, 李一良, 王高鸿, 等, 2020. 天体生物学研究进展和发展趋势. 科学通报, 65(5): 380-391. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202005009.htm
      林巍, 申建勋, 潘永信, 2022. 关于我国天体生物学研究的思考. 地球科学, 47(11): 4108-4113. doi: 10.3799/dqkx.2022.883
      吴伟仁, 王赤, 刘洋, 等, 2023. 深空探测之前沿科学问题探析. 科学通报, 68(6): 606-627. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202306005.htm
    • 加载中
    图(7) / 表(2)
    计量
    • 文章访问数:  401
    • HTML全文浏览量:  211
    • PDF下载量:  70
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-11-21
    • 网络出版日期:  2024-08-03
    • 刊出日期:  2024-07-25

    目录

      /

      返回文章
      返回