• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    X射线散射在地质多孔介质领域的应用与展望

    王齐鸣 胡钦红 张存剑 李秀宏 张涛 赵晨

    王齐鸣, 胡钦红, 张存剑, 李秀宏, 张涛, 赵晨, 2024. X射线散射在地质多孔介质领域的应用与展望. 地球科学, 49(12): 4465-4482. doi: 10.3799/dqkx.2024.028
    引用本文: 王齐鸣, 胡钦红, 张存剑, 李秀宏, 张涛, 赵晨, 2024. X射线散射在地质多孔介质领域的应用与展望. 地球科学, 49(12): 4465-4482. doi: 10.3799/dqkx.2024.028
    Wang Qiming, Hu Qinhong, Zhang Cunjian, Li Xiuhong, Zhang Tao, Zhao Chen, 2024. Applications and Prospective of X-Ray Scattering on Geological Porous Media. Earth Science, 49(12): 4465-4482. doi: 10.3799/dqkx.2024.028
    Citation: Wang Qiming, Hu Qinhong, Zhang Cunjian, Li Xiuhong, Zhang Tao, Zhao Chen, 2024. Applications and Prospective of X-Ray Scattering on Geological Porous Media. Earth Science, 49(12): 4465-4482. doi: 10.3799/dqkx.2024.028

    X射线散射在地质多孔介质领域的应用与展望

    doi: 10.3799/dqkx.2024.028
    基金项目: 

    国家自然科学基金委重点项目 41830431

    国家自然科学基金委青年科学研究项目 42302145

    详细信息
      作者简介:

      王齐鸣(1993-),讲师,博士,主要从事多尺度多手段能源地质多孔介质研究.ORCID:0000-0002-1886-0143.E-mail:wangqm@upc.edu.cn

      通讯作者:

      胡钦红,讲席教授, 主要从事碳管理能源地质研究.ORCID: 0000-0002-4782-319X.E-mail: huqinhong@upc.edu.cn

    • 中图分类号: P585

    Applications and Prospective of X-Ray Scattering on Geological Porous Media

    • 摘要: 能源地质领域多以地质多孔材料(如矿物、岩石、土壤等)为研究对象,应用于常规-非常规油气勘探开发、传统与关键矿物开采、地热能利用、二氧化碳捕集与封存、放射性核废料储存、氢能储存与利用等方向.然而,随着常规研究手段对多孔介质材料性质研究进入理论及技术上的瓶颈期,以X射线散射为代表的高通量大科学装置逐步崭露头角,开辟了地质多孔介质材料无损,从nm至cm级尺寸结构二维、三维表征的新手段.鉴于X射线散射并未在能源地质领域中得到广泛的应用,本文面向能源地质工作者介绍X射线散射的基本原理、在能源地质领域中的应用历程与实例及国内外的同步辐射线站,并对X射线散射在地质多孔介质表征领域的应用前景提出展望,以推动X射线散射在能源地质领域的研究及广泛应用.

       

    • 图  1  X射线散射实验示意图

      Fig.  1.  Illustration of the X⁃ray scattering experiment

      图  2  X射线散射测试流程图

      Fig.  2.  Workflow of X⁃ray scattering experiments

      图  3  X射线散射矢量范围修改自(Wang et al., 2021)

      Fig.  3.  Scattering vector range of X⁃ray scattering (modiflied from Wang et al., 2021)

      图  4  布拉格定律示意图

      Fig.  4.  Illustration of Bragg's law

      图  5  固体样品两相体系示意图

      Fig.  5.  Illustration of soild sample two⁃phase system

      图  6  X射线散射在地质多孔介质上的文章统计及应用历程

      a.1980—2023年X射线散射在地质介质中应用的发文数量;b.各研究主题在1980—2023年文章数量;c.X射线散射在地质多孔介质上的应用历程

      Fig.  6.  Article statistics and application of X⁃ray scattering in geological porous media

      图  7  建有X射线散射线站的同步辐射实验室地图

      a.亚太地区;b.欧洲地区;c.美洲地区

      Fig.  7.  Maps of synchrotron radiation laboratory with X⁃ray scattering beamline

      图  8  小角X射线散射、高压压汞、氮气吸附孔径分布表征对比(Zhang et al., 2021b)

      Fig.  8.  Comparison of the pore structure results of small⁃angle X⁃ray scattering, mercury intrusion porosimetry and nitrogen adsorption (Zhang et al., 2021b)

      图  9  USAXS⁃SAXS表征岩石多样品尺寸孔径分布(Wang et al., 2023)

      Fig.  9.  Pore diameter characterization of various particle⁃sized rocks by USAXS⁃SAXS (Wang et al., 2023)

      图  10  不同温度下的针硅钙石WAXS曲线和SAXS曲线(Shaw et al., 2000)

      Fig.  10.  WAXS and SAXS curves of hillebrandite under different temperature (Shaw et al., 2000)

      图  11  页岩从室温加热到1 150 ℃的USAXS⁃SAXS散射曲线(Liu and Gadikota, 2018b)

      Fig.  11.  USAXS⁃SAXS curves of shale heated from room temperature to 1 150 ℃ (Liu and Gadikota, 2018b)

      图  12  使用SAXS显微镜研究Opalinus黏土非均质性(Leu et al., 2016)

      Fig.  12.  Using SAXS microscopy to investigate the heterogeneity of Opalinus clay (Leu et al., 2016)

      图  13  Eagle Ford页岩孔隙度和比表面积空间分布(Wang et al., 2023)

      Fig.  13.  Porosity and surface area spatial distribution of Eagle Ford shale (Wang et al., 2023)

      图  14  Eagle Ford页岩WAXS结果(Wang et al., 2023)

      Fig.  14.  WAXS results of Eagle Ford shale (Wang et al., 2023)

    • Anovitz, L. M., Cole, D. R., 2015. Characterization and Analysis of Porosity and Pore Structures. Reviews in Mineralogy and Geochemistry, 80(1): 61-164. https://doi.org/10.2138/rmg.2015.80.04
      Bahadur, J., Chandra, D., Das, A., et al., 2023. Pore Anisotropy in Shale and Its Dependence on Thermal Maturity and Organic Carbon Content: A Scanning SAXS Study. International Journal of Coal Geology, 273: 104268. https://doi.org/10.1016/j.coal.2023.104268
      Bale, H. D., Schmidt, P. W., 1984. Small-Angle X-Ray-Scattering Investigation of Submicroscopic Porosity with Fractal Properties. Physical Review Letters, 53(6): 596-599. https://doi.org/10.1103/physrevlett.53.596
      Barré, L., 2015. Contribution of Small-Angle X-Ray and Neutron Scattering (SAXS and SANS) to the Characterization of Natural Nanomaterials. X-Ray and Neutron Techniques for Nanomaterials Characterization. Springer, Berlin, Heidelberg, 665-716. https://doi.org/10.1007/978-3-662-48606-1_12
      Broseta, D., Barré, L., Vizika, O., et al., 2001. Capillary Condensation in a Fractal Porous Medium. Physical Review Letters, 86(23): 5313-5316. https://doi.org/10.1103/PhysRevLett.86.5313
      Chandra, D., Vishal, V., Bahadur, J., et al., 2020. A Novel Approach to Identify Accessible and Inaccessible Pores in Gas Shales Using Combined Low-Pressure Sorption and SAXS/SANS Analysis. International Journal of Coal Geology, 228: 103556. https://doi.org/10.1016/j.coal.2020.103556
      Cherfallot, G. J., Levitz, P. E., Michel, P., et al., 2020. Probing Multiscale Structure of Mineral and Nanoporous Kerogen Phase in Organic-Rich Source Rocks: Quantitative Comparison of Small-Angle X-Ray and Neutron Scattering. Energy & Fuels, 34(8): 9339-9354. https://doi.org/10.1021/acs.energyfuels.0c01146
      Elsayed, M., Isah, A., Hiba, M., et al., 2022. A Review on the Applications of Nuclear Magnetic Resonance (NMR) in the Oil and Gas Industry: Laboratory and Field-Scale Measurements. Journal of Petroleum Exploration and Production Technology, 12(10): 2747-2784. https://doi.org/10.1007/s13202-022-01476-3
      Gadikota, G., Zhang, F., Allen, A., 2017. In-Situ Angstrom-to-Micrometer Characterization of the Structural and Microstructural Changes in Kaolinite on Heating Using Ultra-Small-Angle, Small-Angle, and Wide-Angle X-Ray Scattering (USAXS/SAXS/WAXS). Industrial & Engineering Chemistry Research, 56(41): 11791-11801. https://doi.org/10.1021/acs.iecr.7b02810
      Graewert, M. A., Svergun, D. I., 2013. Impact and Progress in Small and Wide Angle X-Ray Scattering (SAXS and WAXS). Current Opinion in Structural Biology, 23(5): 748-754. https://doi.org/10.1016/j.sbi.2013.06.007
      Henderson, C. M. B., Shaw, S., Clark, S. M., 1998. In Situ Synchrotron Studies of Minerals Crystallization and Dehydration Reactions. Mineral Magazine, 62(1): 604-605.
      Hosseini, M., Arif, M., Keshavarz, A., et al., 2021. Neutron Scattering: A Subsurface Application Review. Earth-Science Reviews, 221: 103755. https://doi.org/10.1016/j.earscirev.2021.103755
      Hu, Q. H., Ewing, R. P., Rowe, H. D., 2015. Low Nanopore Connectivity Limits Gas Production in Barnett Formation. Journal of Geophysical Research: Solid Earth, 120(12): 8073-8087. https://doi.org/10.1002/2015jb012103
      Hu, Q. H., Wang, Q. M., Zhang, T., et al., 2023. Petrophysical Properties of Representative Geological Rocks Encountered in Carbon Storage and Utilization. Energy Reports, 9: 3661-3682. https://doi.org/10.1016/j.egyr.2023.02.020
      Ilavsky, J., Jemian, P. R., Allen, A. J., et al., 2009. Ultra-Small-Angle X-Ray Scattering at the Advanced Photon Source. Journal of Applied Crystallography, 42(3): 469-479. https://doi.org/10.1107/s0021889809008802
      Ilavsky, J., Zhang, F., Andrews, R. N., et al., 2018. Development of Combined Microstructure and Structure Characterization Facility for in situ and operando Studies at the Advanced Photon Source. Journal of Applied Crystallography, 51(3): 867-882. https://doi.org/10.1107/s160057671800643x
      Jeffries, C. M., Ilavsky, J., Martel, A., et al., 2021. Small-Angle X-Ray and Neutron Scattering. Nature Reviews Methods Primers, 1: 70. https://doi.org/10.1038/s43586-021-00064-9
      Jennings, J., Growney, D. J., Brice, H., et al., 2022. Application of Scattering and Diffraction Techniques for the Morphological Characterization of Asphaltenes. Fuel, 327: 125042. https://doi.org/10.1016/j.fuel.2022.125042
      Katz, A. J., Thompson, A. H., 1985. Fractal Sandstone Pores: Implications for Conductivity and Pore Formation. Physical Review Letters, 54(12): 1325-1328. https://doi.org/10.1103/PhysRevLett.54.1325
      Kikhney, A. G., Svergun, D. I., 2015. A Practical Guide to Small Angle X-Ray Scattering (SAXS) of Flexible and Intrinsically Disordered Proteins. FEBS Letters, 589(19): 2570-2577. https://doi.org/10.1016/j.febslet.2015.08.027
      Kumar, C. S. S. R., 2016. X-Ray and Neutron Techniques for Nanomaterials Characterization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48606-1
      Lee, S., Fischer, T. B., Stokes, M. R., et al., 2014. Dehydration Effect on the Pore Size, Porosity, and Fractal Parameters of Shale Rocks: Ultrasmall-Angle X-Ray Scattering Study. Energy & Fuels, 28(11): 6772-6779. https://doi.org/10.1021/ef501427d
      Leu, L. D., 2017. Small- and Wide-Angle X-Ray Scattering Microscopy Applied to Mudrocks. Doctoral (Dissertation). Imperial College London, London. https://doi.org/10.25560/54754
      Leu, L. D., Georgiadis, A., Blunt, M. J., et al., 2016. Multiscale Description of Shale Pore Systems by Scanning SAXS and WAXS Microscopy. Energy & Fuels, 30(12): 10282-10297. https://doi.org/10.1021/acs.energyfuels.6b02256
      Liu, C. L., Meng, Q. G., 2014. Applications of X-Ray Diffraction in Natural Gas Hydrate Research. Rock and Mineral Analysis, 33(4): 468-479(in Chinese with English abstract).
      Liu, H. M., Zhang, S., Wang, X. J., et al., 2023. Types and Characteristics of Shale Lithofacies Combinations in Continental Faulted Basins: A Case Study from Upper Sub-Member of Es4 in Dongying Sag, Jiyang Depression. Earth Science, 48(1): 30-48(in Chinese with English abstract).
      Liu, K. Q., Jin, Z. J., Zeng, L. B., et al., 2022. Microstructural Analysis of Organic Matter in Shale by SAXS and WAXS Methods. Petroleum Science, 19(3): 979-989. https://doi.org/10.1016/j.petsci.2022.01.012
      Liu, M. S., Gadikota, G., 2018a. Phase Evolution and Textural Changes during the Direct Conversion and Storage of CO2 to Produce Calcium Carbonate from Calcium Hydroxide. Geosciences, 8(12): 445. https://doi.org/10.3390/geosciences8120445
      Liu, M. S., Gadikota, G., 2018b. Probing the Influence of Thermally Induced Structural Changes on the Microstructural Evolution in Shale Using Multiscale X-Ray Scattering Measurements. Energy & Fuels, 32(8): 8193-8201. https://doi.org/10.1021/acs.energyfuels.8b01486
      Liu, T., 2021. Study on Nanopore of Coals and Its Evolution during Adsorption and Desorption Using Small Angle X-Ray Scattering (Dissertation). China University of Mining & Technology, Beijing (in Chinese with English abstract).
      Lü, D., Lu, Y., Meng, Y. F., 2021. Typical Applications of Small-Angle X-Ray Scattering Technique in Polymer Characterization. Acta Polymerica Sinica, 52(7): 822-839(in Chinese with English abstract).
      Mazumder, S., Sen, D., Patra, A. K., 2004. Characterization of Porous Materials by Small-Angle Scattering. Pramana, 63(1): 165-173. https://doi.org/10.1007/bf02704063
      Melnichenko, Y. B., 2016. Small-Angle Scattering from Confined and Interfacial Fluids: Applications to Energy Storage and Environmental Science. ChamSpringer International Publishing, Springer, Berlin, Heidelberg. 10.1007/978-3-319-01104-2
      Mildner, D. F. R., Rezvani, R., Hall, P. L., et al., 1986. Small-Angle Scattering of Shaley Rocks with Fractal Pore Interfaces. Applied Physics Letters, 48(19): 1314-1316. https://doi.org/10.1063/1.96964
      Murshed, M. M., Klapp, S. A., Enzmann, F., et al., 2008. Natural Gas Hydrate Investigations by Synchrotron Radiation X-Ray Cryo-Tomographic Microscopy (SRXCTM). Geophysical Research Letters, 35(23). https://doi.org/10.1029/2008gl035460
      Okolo, G. N., Everson, R. C., Neomagus, H. W. J. P., et al., 2015. Comparing the Porosity and Surface Areas of Coal as Measured by Gas Adsorption, Mercury Intrusion and SAXS Techniques. Fuel, 141: 293-304. https://doi.org/10.1016/j.fuel.2014.10.046
      Peng, L., Chen, B., 2020. Calculation of Swelling Deformation of Gaomiaozi Bentonite Based on Fractal Dimension Measured by Synchrotron Radiation SAXS and Liquid Nitrogen Adsorption. Rock and Soil Mechanics, 41(8): 2712-2721 (in Chinese with English abstract).
      Pernyeszi, T., Dékány, I., 2003. Surface Fractal and Structural Properties of Layered Clay Minerals Monitored by Small-Angle X-Ray Scattering and Low-Temperature Nitrogen Adsorption Experiments. Colloid and Polymer Science, 281(1): 73-78. https://doi.org/10.1007/s00396-002-0758-0
      Radliński, A. P., 2006. Small-Angle Neutron Scattering and the Microstructure of Rocks. Reviews in Mineralogy and Geochemistry, 63(1): 363-397. https://doi.org/10.2138/rmg.2006.63.14
      Radliński, A. P., Boreham, C. J., Lindner, P., et al., 2000. Small Angle Neutron Scattering Signature of Oil Generation in Artificially and Naturally Matured Hydrocarbon Source Rocks. Organic Geochemistry, 31(1): 1-14. https://doi.org/10.1016/s0146-6380(99)00128-x
      Radliński, A. P., Boreham, C. J., Wignall, G. D., et al., 1996. Microstructural Evolution of Source Rocks during Hydrocarbon Generation: A Small-Angle-Scattering Study. Physical Review B, 53(21): 14152-14160. https://doi.org/10.1103/physrevb.53.14152
      Radliński, A. P., Busbridge, T. L., Mac A Gray, E., et al., 2009. Small Angle X-Ray Scattering Mapping and Kinetics Study of Sub-Critical CO2 Sorption by Two Australian Coals. International Journal of Coal Geology, 77(1-2): 80-89. https://doi.org/10.1016/j.coal.2008.09.015
      Radliński, A. P., Mastalerz, M., Hinde, A. L., et al., 2004. Application of SAXS and SANS in Evaluation of Porosity, Pore Size Distribution and Surface Area of Coal. International Journal of Coal Geology, 59(3-4): 245-271. https://doi.org/10.1016/j.coal.2004.03.002
      Radliński, A. P., Radliński, E. Z., Agamalian, M., et al., 1999. Fractal Geometry of Rocks. Physical Research Letter, 82(15): 3078-3081. https://doi.org/10.1103/physrevlett.82.3078
      Reich, M. H., Russo, S. P., Snook, I. K., et al., 1990. The Application of SAXS to Determine the Fractal Properties of Porous Carbon-Based Materials. Journal of Colloid and Interface Science, 135(2): 353-362. https://doi.org/10.1016/0021-9797(90)90005-9
      Schrank, C. E., Gioseffi, K., Blach, T., et al., 2020. Tracking Metamorphic Dehydration Reactions in Real Time with Transmission Small- and Wide-Angle Synchrotron X-Ray Scattering: The Case of Gypsum Dehydration. Journal of Petrology, 61(6): egaa041. https://doi.org/10.1093/petrology/egaa041
      Shaw, S., Henderson, C. M. B., Komanschek, B. U., 2000. Dehydration/Recrystallization Mechanisms, Energetics, and Kinetics of Hydrated Calcium Silicate Minerals: an in Situ TGA/DSC and Synchrotron Radiation SAXS/WAXS Study. Chemical Geology, 167(1-2): 141-159. https://doi.org/10.1016/s0009-2541(99)00206-5
      Song, P. Q., Zhang, J. Q., Li, Y. W., et al., 2022. Solution Small-Angle Scattering in Soft Matter: Application and Prospective. Acta Chimica Sinica, 80(5): 690-702(in Chinese with English abstract).
      Song, X. X., Tang, Y. G., Li, W., et al., 2014. Pore Structure in Tectonically Deformed Coals by Small Angle X-Ray Scattering. Journal of China Coal Society, 39(4): 719-724(in Chinese with English abstract).
      Sun, M. D., Zhang, L. H., Zhao, X., et al., 2021. Application of Small Angle Scattering Technique in Shale Oil and Gas Reservoir Characterization. Science Press, Beijing (in Chinese).
      Sun, Y. F., Zhao, Y. X., Wang, X., et al., 2019. Synchrotron Radiation Facility-Based Quantitative Evaluation of Pore Structure Heterogeneity and Anisotropy in Coal. Petroleum Exploration and Development, 46(6): 1195-1205. https://doi.org/10.1016/s1876-3804(19)60273-9
      Suzzoni, A., Barre, L., Kohler, E., et al., 2018. Interactions between Kaolinite Clay and AOT. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 556: 309-315. https://doi.org/10.1016/j.colsurfa.2018.07.049
      Tian, Q., Yan, G. Y., Bai, L. F., et al., 2019. Progress in the Applied Research of Small-Angle Scattering Technique in Polymer Bonded Explosives. Chinese Journal of Energetic Materials, 27(5): 434-444 (in Chinese with English abstract).
      Tobler, D. J., Shaw, S., Benning, L. G., 2009. Quantification of Initial Steps of Nucleation and Growth of Silica Nanoparticles: An In-Situ SAXS and DLS Study. Geochimica et Cosmochimica Acta, 73(18): 5377-5393. https://doi.org/10.1016/j.gca.2009.06.002
      Tolbert, S. H., Alivisatos, A. P., 1995. The Wurtzite to Rock Salt Structural Transformation in CdSe Nanocrystals under High Pressure. Journal of Chemical Physics, 102(11): 4642-4656. https://doi.org/10.1063/1.469512
      Wang, Q. M., Hu, Q. H., Ning, X. W., et al., 2021. Spatial Heterogeneity Analyses of Pore Structure and Mineral Composition of Barnett Shale Using X-Ray Scattering Techniques. Marine and Petroleum Geology, 134: 105354. https://doi.org/10.1016/j.marpetgeo.2021.105354
      Wang, Q. M., Hu, Q. H., Zhao, C., et al., 2022. Micro- to Nano-Scale Areal Heterogeneity in Pore Structure and Mineral Compositions of a Sub-Decimeter-Sized Eagle Ford Shale. International Journal of Coal Geology, 261: 104093. https://doi.org/10.1016/j.coal.2022.104093
      Wang, Q. M., Hu, Q. H., Zhao, C., et al., 2023. Sample Size Effects on Petrophysical Characterization and Fluid-to-Pore Accessibility of Natural Rocks. Nanomaterials, 13(10): 1651. https://doi.org/10.3390/nano13101651
      Wang, Y., Cheng, H. F., 2023. Advances in Microscopic Pore Structure Characterization of Fine-Grained Mudrocks. Energy & Fuels, 37(3): 1495-1510. https://doi.org/10.1021/acs.energyfuels.2c03144
      Weber, J., Starchenko, V., Ilavsky, J., et al., 2023. Grain Boundary Widening Controls Siderite (FeCO3) Replacement of Limestone (CaCO3). Scientific Reports, 13: 4581. https://doi.org/10.1038/s41598-023-30757-y
      Xi, K. L., Li, K., Cao, Y. C., et al., 2020. Laminae Combination and Shale Oil Enrichment Patterns of Chang 73 Sub-Member Organic-Rich Shales in the Triassic Yanchang Formation, Ordos Basin, NW China. Petroleum Exploration and Development, 47(6): 1244-1255(in Chinese with English abstract).
      Xiao, P., Zhang, S. J., Li, D. F., et al., 2020. Study on Pore Structural Changes of Coal Carbonization by Small Angle X-Ray Scattering Technology. The Journal of Light Scattering, 32(1): 90-94 (in Chinese with English abstract).
      Xu, S., Gou, Q. Y., 2023. The Importance of Laminae for China Lacustrine Shale Oil Enrichment: A Review. Energies, 16(4): 1661. https://doi.org/10.3390/en16041661
      Yang, C. M., Hong, C. X., Zhou, P., et al., 2021. Synchrotron Radiation Small Angle X-Ray Scattering in Materials Research. Materials China, 40(2): 112-119(in Chinese with English abstract).
      Yuan, X. Q., Hu, Q. H., Lin, X., et al., 2023. Pore Connectivity Influences Mass Transport in Natural Rocks: Pore Structure, Gas Diffusion and Batch Sorption Studies. Journal of Hydrology, 618: 129172. https://doi.org/10.1016/j.jhydrol.2023.129172
      Zhang, L. H., Deng, Z., Sun, M. D., et al., 2021a. Characterization of Closed Pores in Longmaxi Shale by Synchrotron Small-Angle X-Ray Scattering. Energy & Fuels, 35(8): 6738-6754. https://doi.org/10.1021/acs.energyfuels.1c00190
      Zhang, L. H., Sun, M. D., Lv, Q., et al., 2021b. Evolution of Shale Microstructure under in Situ Heat Treatment: Synchrotron Small-Angle X-Ray Scattering. Energy & Fuels, 35(5): 4345-4357. https://doi.org/10.1021/acs.energyfuels.1c00091
      Zhao, C., Hu, Q. H., Wang, Q. M., et al., 2022. Multiple Experimental Studies of Pore Structure and Mineral Grain Sizes of the Woodford Shale in Southern Oklahoma, USA. Frontiers in Earth Science, 10: 1019951. https://doi.org/10.3389/feart.2022.1019951
      Zhao, X. Z., Chen, C. W., Song, S. Y., et al., 2023. Shale Oil Reservoir Structure Characteristics of the Second Member of Kongdian Formation in Cangdong Sag, Bohai Bay Basin. Earth Science, 48(1): 63-76 (in Chinese with English abstract).
      Zhao, Y. X., Guo, X. D., Tai, Z. Y., et al., 2023. Evolution of Anthracite Nanopores with CO2 Adsorption at Different Pressures by Synchrotron Radiation Small Angle X-Ray Scattering. Fuel, 345: 128261. https://doi.org/10.1016/j.fuel.2023.128261
      Zhao, Y. X., Liu, S. M., Elsworth, D., et al., 2014. Pore Structure Characterization of Coal by Synchrotron Small-Angle X-Ray Scattering and Transmission Electron Microscopy. Energy & Fuels, 28(6): 3704-3711. https://doi.org/10.1021/ef500487d
      Zhao, Y. X., Peng, L., 2017. Investigation on the Size and Fractal Dimension of Nano-Pore in Coals by Synchrotron Small Angle X-Ray Scattering. China Science Bulletin, 26(21): 2416-2427(in Chinese).
      刘昌岭, 孟庆国, 2014. X射线衍射法在天然气水合物研究中的应用. 岩矿测试, 33(4): 468-479.
      刘惠民, 张顺, 王学军, 等, 2023. 陆相断陷盆地页岩岩相组合类型及特征: 以济阳坳陷东营凹陷沙四上亚段页岩为例. 地球科学, 48(1): 30-48. doi: 10.3799/dqkx.2022.183
      刘通, 2021. 煤纳米孔隙及其吸附解吸演化规律的小角X射线散射研究(博士学位论文). 北京: 中国矿业大学.
      吕冬, 卢影, 门永锋, 2021. 小角X射线散射技术在高分子表征中的应用. 高分子学报, 52(7): 822-839.
      彭磊, 陈兵, 2020. 基于同步辐射小角X射线散射和液氮吸附所测分维计算高庙子膨润土膨胀变形. 岩土力学, 41(8): 2712-2721.
      宋攀奇, 张建桥, 李怡雯, 等, 2022. 溶液小角散射技术在软物质研究中的应用与展望. 化学学报, 80(5): 690-702.
      宋晓夏, 唐跃刚, 李伟, 等, 2014. 基于小角X射线散射构造煤孔隙结构的研究. 煤炭学报, 39(4): 719-724.
      孙梦迪, 张林浩, 赵翔, 等, 2021. 小角散射技术在页岩油气储层表征中的应用. 北京: 科学出版社.
      田强, 闫冠云, 白亮飞, 等, 2019. 小角散射技术在高聚物粘结炸药中的应用研究进展. 含能材料, 27(5): 434-444.
      葸克来, 李克, 操应长, 等, 2020. 鄂尔多斯盆地三叠系延长组长73亚段富有机质页岩纹层组合与页岩油富集模式. 石油勘探与开发, 47(6): 1244-1255.
      肖鹏, 张淑娇, 李东风, 等, 2020. 利用小角X射线散射技术研究煤干馏过程中的孔隙结构变化. 光散射学报, 32(1): 90-94.
      杨春明, 洪春霞, 周平, 等, 2021. 同步辐射小角X射线散射及其在材料研究中的应用. 中国材料进展, 40(2): 112-119.
      赵贤正, 陈长伟, 宋舜尧, 等, 2023. 渤海湾盆地沧东凹陷孔二段页岩层系不同岩性储层结构特征. 地球科学, 48(1): 63-76. doi: 10.3799/dqkx.2022.212
      赵毅鑫, 彭磊, 2017. 煤纳米孔径与分型特征的同步辐射小角散射. 科学通报, 26(21): 2416-2427.
    • 加载中
    图(14)
    计量
    • 文章访问数:  327
    • HTML全文浏览量:  127
    • PDF下载量:  55
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-12-05
    • 网络出版日期:  2025-01-09
    • 刊出日期:  2024-12-25

    目录

      /

      返回文章
      返回