• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于UAV高密度点云的结构面粗糙度分形特征与各向异性

    宋盛渊 刘殿泽 李保天 赵明宇 杨泽 黄迪 王思骢

    宋盛渊, 刘殿泽, 李保天, 赵明宇, 杨泽, 黄迪, 王思骢, 2025. 基于UAV高密度点云的结构面粗糙度分形特征与各向异性. 地球科学, 50(4): 1599-1611. doi: 10.3799/dqkx.2024.029
    引用本文: 宋盛渊, 刘殿泽, 李保天, 赵明宇, 杨泽, 黄迪, 王思骢, 2025. 基于UAV高密度点云的结构面粗糙度分形特征与各向异性. 地球科学, 50(4): 1599-1611. doi: 10.3799/dqkx.2024.029
    Song Shengyuan, Liu Dianze, Li Baotian, Zhao Mingyu, Yang Ze, Huang Di, Wang Sicong, 2025. Structural Surface Roughness Based on UAV High Density Point Cloud Fractal Characteristics and Anisotropy. Earth Science, 50(4): 1599-1611. doi: 10.3799/dqkx.2024.029
    Citation: Song Shengyuan, Liu Dianze, Li Baotian, Zhao Mingyu, Yang Ze, Huang Di, Wang Sicong, 2025. Structural Surface Roughness Based on UAV High Density Point Cloud Fractal Characteristics and Anisotropy. Earth Science, 50(4): 1599-1611. doi: 10.3799/dqkx.2024.029

    基于UAV高密度点云的结构面粗糙度分形特征与各向异性

    doi: 10.3799/dqkx.2024.029
    基金项目: 

    国家自然科学基金项目 42177139

    国家自然科学基金项目 41941017

    吉林省自然科学基金项目 20230101088JC

    吉林省教育厅科学研究项目 JJKH20231182KJ

    详细信息
      作者简介:

      宋盛渊(1987-),男,山西汾阳人,教授,博导,主要从事岩体结构特性及其稳定性研究.E-mail:songshengyuan@jlu.edu.cn

    • 中图分类号: P64

    Structural Surface Roughness Based on UAV High Density Point Cloud Fractal Characteristics and Anisotropy

    • 摘要: 为研究岩体结构面各向异性对粗糙度评价的影响,以藏东南某铁路察达工点高陡斜坡为研究对象,运用无人机综合摄影测量技术,提取研究区结构面高密度点云并剪裁结构面轮廓线,采用修正直边法与盒维数法求算粗糙度系数JRC与分形维数D,拟合JRCD的新公式并利用数字化Barton标准线验证.选取压剪性和拉张性结构面各15个,运用新公式计算各采样方向的JRC.结果表明:压剪性结构面粗糙度各向异性规律显著,整体上JRC由剪切滑动方向至垂直剪切滑动方向递增,呈椭圆状分布;拉张性结构面粗糙度存在各向异性但无明显规律,JRC随采样角度变化波动较大,呈刺状分布.证明不同力学成因的结构面JRC各向异性存在差异,在评价粗糙度时应遵循不同采样规则.

       

    • 图  1  研究区地理位置、地形地貌与斜坡全貌

      a.研究区地理位置图;b.研究区地形地貌图;c.研究区高陡斜坡全貌图

      Fig.  1.  Geographical location, landform and slope overall appearance of the study area

      图  2  多角度贴近摄影测量消除摄影盲区

      Fig.  2.  Multi-angle proximity photogrammetry eliminates photographic blind spots

      图  3  无人机摄影航线设计图与高精度三维模型

      a.无人机摄影测量航线设计图;b.研究区高精度三维模型

      Fig.  3.  UAV photography route design diagram and high-precision 3D model

      图  4  不同出露形式结构面解译示意图

      a.线状出露结构面;b.面状出露结构面;c.阶梯式出露结果;d.混合式出露结构面

      Fig.  4.  Interpretation diagram of different exposure structures

      图  5  结构面优势分组结果

      Fig.  5.  Grouping results of structural plane dominance

      图  6  线状结构面测量示意图

      Fig.  6.  Schematic diagram of linear structural plane measurement

      图  7  高密度点云提取过程

      Fig.  7.  High density point cloud extraction process

      图  8  盒维数法原理示意图

      Fig.  8.  Schematic diagram of the box dimension method

      图  9  结构面起伏度获取原理

      Fig.  9.  Schematic diagram of obtaining structural plane relief

      图  10  JRCD关系曲线

      Fig.  10.  Relation curve between JRC and D

      图  11  Barton标准剖面线验算结果

      Fig.  11.  Barton standard profile check results

      图  12  压剪性与拉张性结构面成因示意图

      a.压剪性结构面;b.拉张性结构面

      Fig.  12.  Genetic diagram of compressive shear and tensile structural plane

      图  13  结构面各向轮廓线获取示意图

      Fig.  13.  Structure plane anisotropic contour acquisition diagram

      图  14  拉张性结构面L1各向轮廓线

      Fig.  14.  Tensile structural plane L1 isotropic contour

      图  15  压剪性与拉张性结构面粗糙度各向异性图

      a.压剪性结构面J1~J15;b.拉张性结构面L1~L15

      Fig.  15.  Anisotropy of compressive shear and tensile structural planes

      图  16  结构面JRC各向异性统计直方图

      a.JRC平均值;b.JRC方差;c.JRC极差;d.JRC平均变化量

      Fig.  16.  Statistical histograms of structural plane JRC anisotropy

      表  1  无人机和相机相关参数

      Table  1.   UAV and camera related parameters

      大疆M300-RTK无人机 禅思P1相机
      无人机总重(kg) 6.3 重量(g) 800
      最大飞行时长(min) 55 相机尺寸(mm) 198×166×129
      最大可承受风速(m/s) 15 传感器面积(mm2) 35.9×24
      RTK垂直精度 1.5 cm+1 ppm 镜头焦距(mm) 35
      RTK水平精度 1.0 cm+1 ppm 工作温度(℃) -20~50
      下载: 导出CSV

      表  2  研究区结构面优势分组统计

      Table  2.   Grouping statistics of structural plane dominance in the study area

      组号 平均倾向(°) 平均倾角(°) 结构面数
      1 128 76 354
      2 242 69 408
      3 197 82 278
      4 216 7 455
      下载: 导出CSV

      表  3  分形维数D与粗糙度系数JRC计算结果

      Table  3.   Calculation results of fractal dimension D and roughness coefficient JRC

      编号 分形维数D JRC 编号 分形维数D JRC
      1 1.010 6 5.339 2 26 1.017 9 11.836 7
      2 1.011 5 5.715 3 27 1.018 2 12.024 6
      3 1.012 2 5.966 7 28 1.0184 12.327 3
      4 1.013 1 6.322 9 29 1.018 4 12.119 3
      5 1.013 3 7.129 5 30 1.018 6 13.376 4
      6 1.013 9 7.658 0 31 1.018 8 12.958 8
      7 1.014 1 7.925 4 32 1.018 8 13.112 7
      8 1.014 2 8.394 2 33 1.019 1 13.813 9
      9 1.014 2 7.862 1 34 1.019 1 14.199 2
      10 1.014 3 8.567 6 35 1.019 3 14.219 6
      11 1.014 5 8.482 7 36 1.018 9 14.403 8
      12 1.014 6 8.601 4 37 1.019 8 15.002 2
      13 1.015 3 9.183 5 38 1.019 9 14.892 8
      14 1.015 5 9.956 5 39 1.020 5 15.383 5
      15 1.015 5 10.039 8 40 1.020 7 15.402 3
      16 1.015 7 9.822 4 41 1.020 9 15.118 9
      17 1.016 2 10.054 7 42 1.021 2 15.944 7
      18 1.015 5 10.139 6 43 1.021 5 16.325 7
      19 1.015 9 10.336 2 44 1.022 8 17.286 4
      20 1.015 8 10.932 0 45 1.023 3 18.863 0
      21 1.016 5 11.122 4 46 1.023 6 19.005 3
      22 1.016 7 11.197 1 47 1.023 6 19.553 7
      23 1.017 0 12.335 4 48 1.023 7 18.726 5
      24 1.017 3 11.446 5 49 1.024 1 19.865 7
      25 1.017 6 11.638 1 50 1.024 3 19.066 2
      下载: 导出CSV
    • Barton, N., 1973. Review of a New Shear-Strength Criterion for Rock Joints. Engineering Geology, 7(4): 287-332. https://doi.org/10.1016/0013-7952(73)90013-6
      Barton, N., Bandis, S., 1982. Effects of Block Size on the Shear Behavior of Jointed Rock. The 23rd US Symposium on Rock Mechanics, Berkeley, 739-760.
      Barton, N., Choubey, V., 1977. The Shear Strength of Rock Joints in Theory and Practice. Rock Mechanics and Rock Engineering, 10(1): 1-54. https://doi.org/10.1007/BF01261801
      Belem, T., Homand-Etienne, F., Souley, M., 2000. Quantitative Parameters for Rock Joint Surface Roughness. Rock Mechanics and Rock Engineering, 33(4): 217-242. https://doi.org/10.1007/s006030070001
      Chai, B., Shi, X. S., Du, J., et al., 2022. How to Realize Elaborated Analysis of Regional Rock Mass Structure? A Review and Idea. Earth Science, 47(12): 4629-4646(in Chinese with English abstract).
      Chen, S. J., Zhu, W. C., Zhang, M. S., et al., 2012. Fractal Description of Rock Joints Based on Digital Image Processing Technique. Chinese Journal of Geotechnical Engineering, 34(11): 2087-2092(in Chinese with English abstract).
      Cui, W., Gao, D. Y., Wang, X. H., et al., 2023. Identification of Rocky Ledge on Steep and High Slopes Based on Aerial Photogrammetry. Earth Science, 48(9): 3378-3388 (in Chinese with English abstract).
      Du, S. G., 1992. Simple Profile Instrument and Its Application on Studying Joint Roughness Coefficient of Rock. Geological Science and Technology Information, 11(3): 91-95(in Chinese with English abstract).
      Du, S. G., 1997. The Practicability of Fractal Methods on Estimating Rock Joint Roughness Coefficient. Earth Science, 22(6): 665-668(in Chinese with English abstract).
      Du, S. G., Chen, Y., Fan, L. B., 1996. Maethematical Expression of JRC Modified Straight Edge. Journal of Engineering Geology, 4(2): 36-43(in Chinese with English abstract).
      Du, S. G., Tang, H. M., 1993. A Study on the Anisotropy of Joint Roughness Coefficient in Rock Mass. Journal of Engineering Geology, 1(2): 32-42(in Chinese with English abstract).
      El-Soudani, S. M., 1978. Profilometric Analysis of Fractures. Metallography, 11(3): 247-336. https://doi.org/10.1016/0026-0800(78)90045-9
      Ge, Y. F., Chen, Y., Wang, L. Q., et al., 2017. Estimation of 3D Joint Matching Coefficient of Rock Discontinuities Using Point Cloud Data Alignment Technology. Rock and Soil Mechanics, 38(11): 3385-3393(in Chinese with English abstract).
      Ge, Y. F., Tang, H. M., Wang, L. Q., et al., 2016. Anisotropy, Scale and Interval Effects of Natural Rock Discontinuity Surface Roughness. Chinese Journal of Geotechnical Engineering, 38(1): 170-179(in Chinese with English abstract).
      Gu, D. Z., 1979. Foundation of Rock Mass Engineering Geomechanics. Science Press, Beijing (in Chinese).
      Guo, C. B., Wu, R. A., Zhong, N., et al., 2024. Large Landslides along Active Tectonic Zones of Eastern Tibetan Plateau: Background and Mechanism of Landslide Formation. Earth Science, 49(12): 4635-4658(in Chinese with English abstract).
      Hong, C. J., Huang, M., Xia, C. C., et al., 2020. Study of Size Effect on the Anisotropic Variation Coefficient of Rock Joints. Rock and Soil Mechanics, 41(6): 2098-2109(in Chinese with English abstract).
      Kulatilake, P. H. S. W., Um, J., 1999. Requirements for Accurate Quantification of Self-Affine Roughness Using the Roughness-Length Method. International Journal of Rock Mechanics and Mining Sciences, 36(1): 5-18. https://doi.org/10.1016/S0148-9062(98)00170-3
      Kulatilake, P. H. S. W., Um, J., Pan, G., 1997. Requirements for Accurate Estimation of Fractal Parameters for Self-Affine Roughness Profiles Using the Line Scaling Method. Rock Mechanics and Rock Engineering, 30(4): 181-206. https://doi.org/10.1007/BF01045716
      Luo, Z. J., Zhang, Q. Z., Shi, Z. M., et al., 2022. Shear Creep Characteristics of Red Sandstone Discontinuities Considering Different Morphologies. Earth Science, 47(12): 4484-4497(in Chinese with English abstract).
      Mandelnorot, B. B., 1982. The Fractal Geometry of Nature. Freeman, New York.
      Pan, X. J., Zhang, W., Sun, Q., et al., 2024. Complex Structural Plane Distribution of High⁃Steep Rock Slope and Division of Statistical Homogeneous Zones. Earth Science, 49(9): 3334-3346(in Chinese with English abstract).
      Song, S. Y., Huang, D., Sui, J. X., et al., 2024. Analysis of Size Effect for Shear Characteristics of Rock Mass Based on 3D Fracture Network. Journal of Harbin Institute of Technology, 56(3): 9-18(in Chinese with English abstract).
      Song, S. Y., Wang, Q., Chen, J. P., et al., 2015. A Method for Multivariate Parameter Dominant Partitioning of Discontinuities of Rock Masses. Rock and Soil Mechanics, 36(7): 2041-2048(in Chinese with English abstract).
      Song, S. Y., Zhao, M. Y., Zhang, W., et al., 2024. Research on Fine Collection and Interpretation Methods of Discontinuities on High-Steep Rock Slopes Based on UAV Multi-Angle Nap-of-the-Object Photogrammetry. Bulletin of Engineering Geology and the Environment, 83(4): 142. https://doi.org/10.1007/s10064-024-03646-5
      Tse, R., Cruden, D. M., 1979. Estimating Joint Roughness Coefficients. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 16(5): 303-307. https://doi.org/10.1016/0148-9062(79)90241-9
      Walsh, J. J., Watterson, J., 1993. Fractal Analysis of Fracture Patterns Using the Standard Box-Counting Technique: Valid and Invalid Methodologies. Journal of Structural Geology, 15(12): 1509-1512. https://doi.org/10.1016/0191-8141(93)90010-8
      Wang, F. Y., Chen, J. P., Yang, G. D., et al., 2012. Solution Models of Geometrical Information of Rock Mass Discontinuities Based on Digital Close Range Photogrammetry. Journal of Jilin University (Earth Science Edition), 42(6): 1839-1846(in Chinese with English abstract).
      Wang, S. H., Hou, Q. K., Yong, R., et al., 2023. The Effectiveness of Sample Selection Methods in Study of Shear Strength Anisotropy of Rock Joints. Engineering Mechanics, 40(1): 168-179(in Chinese with English abstract).
      Wang, S. J., 1990. Engineering Geomechanics Analysis of Dam Foundation Rock Mass. Science Press, Beijing (in Chinese).
      Wu, F. Q., Wu, J., 2022. Theory and Application of Statistical Rock Mechanics. Science Press, Beijing (in Chinese).
      Xie, H. P., 1995. Fractal Description of Rock Joints. Chinese Journal of Geotechnical Engineering, 17(1): 18-23(in Chinese with English abstract).
      Xie, H. P., Wang, J. N., 1999. Direct Fractal Measurement of Fracture Surfaces. International Journal of Solids and Structures, 36(20): 3073-3084. https://doi.org/10.1016/S0020-7683(98)00141-3
      Yang, Z., Li, B. T., Song, S. Y., et al., 2023. Quantitative Analysis of Structural Surface Roughness Based on UAV Point Cloud and Improved RS Characterization Method. Journal of Harbin Institute of Technology, 55(11): 72-81(in Chinese with English abstract).
      You, Z. C., Wang, L. Q., Yang, Y. X., et al., 2014. Anisotropic Research on Shear Strength Parameters of Discontinuity Based on Three-Dimensional Laser Scanning Technology. Chinese Journal of Rock Mechanics and Engineering, 33(S1): 3003-3008(in Chinese with English abstract).
      Zhang, Z. F., Huang, M., Tang, Z. C., 2024. Peak Shear Strength Criterion for Discontinuities with Different Rock Types Based on Revisiting Frictional Angle. Earth Science, 49(8): 2826-2838(in Chinese with English abstract).
      Zhao, M. Y., Chen, J. P., Song, S. Y., et al., 2023. Proposition of UAV Multi-Angle Nap-of-the-Object Image Acquisition Framework Based on a Quality Evaluation System for a 3D Real Scene Model of a High-Steep Rock Slope. International Journal of Applied Earth Observation and Geoinformation, 125: 103558. https://doi.org/10.1016/j.jag.2023.103558
      柴波, 史绪山, 杜娟, 等, 2022. 如何实现区域岩体结构精细化分析?综述与设想. 地球科学, 47(12): 4629-4646.
      陈世江, 朱万成, 张敏思, 等, 2012. 基于数字图像处理技术的岩石节理分形描述. 岩土工程学报, 34(11): 2087-2092.
      崔溦, 高德宇, 王轩毫, 等, 2023. 基于航空影像的高陡边坡突岩识别方法. 地球科学, 48(9): 3378-3388.
      杜时贵, 1992. 简易纵剖面仪及其在岩体结构面粗糙度系数研究中的应用. 地质科技情报, 11(3): 91-95.
      杜时贵, 1997. JRC分形估测方法的实用性. 地球科学, 22(6): 665-668.
      杜时贵, 陈禹, 樊良本, 1996. JRC修正直边法的数学表达. 工程地质学报, 4(2): 36-43.
      杜时贵, 唐辉明, 1993. 岩体断裂粗糙度系数的各向异性研究. 工程地质学报, 1(2): 32-42.
      葛云峰, 陈勇, 王亮清, 等, 2017. 基于点云数据对齐技术的岩体结构面三维吻合度求取. 岩土力学, 38(11): 3385-3393.
      葛云峰, 唐辉明, 王亮清, 等, 2016. 天然岩体结构面粗糙度各向异性、尺寸效应、间距效应研究. 岩土工程学报, 38(1): 170-179.
      谷德振, 1979. 岩体工程地质力学基础. 北京: 科学出版社.
      郭长宝, 吴瑞安, 钟宁, 等, 2024. 青藏高原东部活动构造带大型滑坡成灾背景与灾变机制. 地球科学, 49(12): 4635-4658.
      洪陈杰, 黄曼, 夏才初, 等, 2020. 岩体结构面各向异性变异系数的尺寸效应研究. 岩土力学, 41(6): 2098-2109.
      罗泽军, 张清照, 石振明, 等, 2022. 考虑表面形貌特征的岩体结构面蠕变特性. 地球科学, 47(12): 4484-4497.
      潘晓娟, 张文, 孙琦, 等, 2024. 高陡岩质斜坡复杂结构面分布规律及统计均质区划分. 地球科学, 49(9): 3334-3346.
      宋盛渊, 黄迪, 隋佳轩, 等, 2024. 基于三维裂隙网络的岩体剪切特性尺寸效应分析. 哈尔滨工业大学学报, 56(3): 9-18.
      宋盛渊, 王清, 陈剑平, 等, 2015. 岩体结构面的多参数优势分组方法研究. 岩土力学, 36(7): 2041-2048.
      王凤艳, 陈剑平, 杨国东, 等, 2012. 基于数字近景摄影测量的岩体结构面几何信息解算模型. 吉林大学学报(地球科学版), 42(6): 1839-1846.
      王述红, 侯钦宽, 雍睿, 等, 2023. 结构面抗剪强度各向异性研究中试样获取方法有效性分析. 工程力学, 40(1): 168-179.
      王思敬, 1990. 坝基岩体工程地质力学分析. 北京: 科学出版社.
      伍法权, 伍劼, 2022. 统计岩体力学理论与应用. 北京: 科学出版社.
      谢和平, 1995. 岩石节理的分形描述. 岩土工程学报, 17(1): 18-23.
      杨泽, 李保天, 宋盛渊, 等, 2023. 基于无人机点云与改进RS表征法的结构面粗糙度定量分析. 哈尔滨工业大学学报, 55(11): 72-81.
      游志诚, 王亮清, 杨艳霞, 等, 2014. 基于三维激光扫描技术的结构面抗剪强度? 参数各向异性研究. 岩石力学与工程学报, 33(增刊1): 3003-3008.
      张志飞, 黄曼, 唐志成, 2024. 基于摩擦角修正的异性岩石结构面抗剪强度准则. 地球科学, 49(8): 2826-2838.
    • 加载中
    图(16) / 表(3)
    计量
    • 文章访问数:  27
    • HTML全文浏览量:  6
    • PDF下载量:  2
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-11-19
    • 网络出版日期:  2025-05-10
    • 刊出日期:  2025-04-25

    目录

      /

      返回文章
      返回