• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    气候变化下高寒区裂隙岩石破裂机制及致灾模式

    陈国庆 许强 杨鑫 孙祥

    陈国庆, 许强, 杨鑫, 孙祥, 2025. 气候变化下高寒区裂隙岩石破裂机制及致灾模式. 地球科学, 50(4): 1585-1598. doi: 10.3799/dqkx.2024.030
    引用本文: 陈国庆, 许强, 杨鑫, 孙祥, 2025. 气候变化下高寒区裂隙岩石破裂机制及致灾模式. 地球科学, 50(4): 1585-1598. doi: 10.3799/dqkx.2024.030
    Chen Guoqing, Xu Qiang, Yang Xin, Sun Xiang, 2025. Fracture Propagation Characteristics and Catastrophic Modes of Fractured Rock in Alpine Region under Climate Change. Earth Science, 50(4): 1585-1598. doi: 10.3799/dqkx.2024.030
    Citation: Chen Guoqing, Xu Qiang, Yang Xin, Sun Xiang, 2025. Fracture Propagation Characteristics and Catastrophic Modes of Fractured Rock in Alpine Region under Climate Change. Earth Science, 50(4): 1585-1598. doi: 10.3799/dqkx.2024.030

    气候变化下高寒区裂隙岩石破裂机制及致灾模式

    doi: 10.3799/dqkx.2024.030
    基金项目: 

    国家自然科学基金项目 W2412153

    国家自然科学基金项目 42372326

    四川省科技计划资助 2025ZNSFSC1208

    详细信息
      作者简介:

      陈国庆(1982-),男,博士,教授,主要从事地质灾害防治和岩石力学方面教学与研究工作. ORCID:0000-0003-0426-2828. E-mail:chgq1982@126.com

      通讯作者:

      杨鑫(1999-),男,工程师,主要从事地质灾害防治和岩石力学研究工作

    • 中图分类号: P694

    Fracture Propagation Characteristics and Catastrophic Modes of Fractured Rock in Alpine Region under Climate Change

    • 摘要: 气候变化下高寒区裂隙岩石受长期冻融循环作用而产生劣化,极易诱发边坡突发失稳.为分析其冻融循环作用下的破裂机制及相应的致灾模式,开展了高寒区现场破坏模式调查及不同裂隙长度的寒区花岗岩与石英砂岩冻融循环试验,借助声发射系统和应变测试系统分析了端部裂隙扩展全过程的声发射和微应变曲线变化规律,基于试验和理论讨论了灾害形成机制.结果表明:高寒区冻融作用下的裂隙岩石致灾模式包含冻胀型、融沉型、冻融循环型三大类.针对于广泛发育的冻胀型模式设计的岩石试验结果显示,随着冻融循环次数的增加,试样的裂纹均从裂隙端部垂直向下扩展,无偏转、次生现象,花岗岩试样初期裂纹扩展更为明显,但石英砂岩裂隙会更早贯通.花岗岩声发射计数突增现象前期出现多,后期出现少,最大微应变呈现台阶式增大现象.石英砂岩声发射计数前期趋于平稳,随冻融次数增多,计数频率迅速增加,最大微应变呈现由初期平稳变化到快速升高趋势.断裂力学分析表明冻融条件下裂隙岩体的扩展特征主要受岩性和裂隙长度的影响,因此高寒区灾害的形成受控于岩性和裂隙扩展.研究结果为寒区裂隙岩体破裂演化及致灾模式提供理论依据.

       

    • 图  1  川西高寒区深切河谷

      a.大渡河“V”型峡谷;b.雅砻江河谷地貌;c.金沙江“V”型深切峡谷

      Fig.  1.  Deep-cut valley area along the West Sichuan alpine region

      图  2  川西高寒区冻融风化现象

      a.冻融形成的镶嵌状岩体(引自,张广泽等,2022);b.浅表层冻融溜滑;c.砂板岩冻融剥离

      Fig.  2.  The phenomenon of freeze-thaw weathering along the West Sichuan alpine region

      图  3  冻融致灾模式的几种基本类型

      Fig.  3.  Several basic types of freeze-thaw disaster patterns

      图  4  试验试样及试验方法

      a.预制裂隙试样(图左两个样为石英砂岩,其余为花岗岩);b.方法;c.冻融冰箱;d.声发射系统

      Fig.  4.  Test samples and test methods

      图  5  环向微应变-时间曲线

      Fig.  5.  Circumferential micro strain time curve

      图  6  不同冻融周期下最大微应变曲线

      Fig.  6.  Maximum microstrain curves under different freeze-thaw cycles

      图  7  时间-振铃计数、累计能量及裂纹扩展

      a. 裂隙长7 cm(花岗岩);b.裂隙长10 cm(花岗岩);c.裂隙长10 cm(石英砂岩)

      Fig.  7.  AE count, energy rate and crack propagation changes with time

      图  8  振铃计数、累计能量与微应变-时间曲线

      a.裂隙长7 cm(花岗岩);b.裂隙长10 cm(花岗岩);c.裂隙长10 cm(石英砂岩)

      Fig.  8.  AE count, energy rate and micro strain changes with time

      图  9  冻融作用下裂隙尖端应力场示意图

      Fig.  9.  Stress field diagram of crack tip under freeze-thaw action

      表  1  冻融条件下的致灾模式及地质特征

      Table  1.   Disaster patterns and geological characteristics under freeze-thaw conditions

      类型 机制及地质特征 典型点位
      冻胀型 冻胀-劈裂-滑移型 顺层结构面坡体,在长期卸荷作用下形成大量平行于坡面的竖向裂隙,在冻胀作用下,后缘裂隙劈裂,进一步扩展,前缘滑移,形成统一的滑面下滑.通常表现为后缘陡壁,滑面光滑,滑出一定距离的特征
      康定瓦斯沟
      冻胀-劈裂-坠落型 反倾向或横向结构坡体,在长期卸荷作用下形成大量平行于坡面的竖向裂隙,在冻胀作用下,后缘裂隙劈裂,进一步扩展,并向临空面挤压,产生倾倒破坏.通常表现为后缘陡壁,岩层中上部被折断、倾倒,未倾倒岩体可见清晰张性折断面的特征
      康定新都桥
      冻胀-劈裂-倾倒型 反倾向或横向结构坡体,在长期卸荷作用下形成大量平行于坡面的竖向裂隙,在冻胀作用下,后缘裂隙劈裂,进一步扩展,产生贯通型裂隙,从而直接坠落.通常表现为后缘陡壁,堆积坡脚的特征
      理塘所底村
      融沉型 融沉-滑移型 横向结构坡体结构面的软硬岩互层坡体或含软弱夹层坡体,在热融作用下,软弱层产生压缩变形,向临空面挤出,直接导致上覆岩体产生滑移.通常表现为滑面光滑的特征
      雅安红层区
      融沉-塑流-拉裂型 水平层面或横向结构面的软硬岩互层坡体或含软弱夹层坡体,在热融作用下,软弱层产生压缩变形,向临空面挤出,导致上部硬层从下往上的拉裂解体.通常表现为多级滑动的特征
      巴塘列衣乡
      融沉-弯曲-拉裂型 反倾向结构面的软硬岩互层坡体或含软弱夹层坡体,在热融作用下,软弱层产生压缩变形,向临空面挤出,导致上覆较硬层弯曲拉裂,解体,产生倾倒破坏.通常表现为后缘多级的弯曲拉裂,岩层中上部被折断、倾倒,未倾倒岩体可见清晰张性折断面的特征
      雅安大鱼溪
      冻融循环型 冻融循环-剥蚀型 表层没有明显的卸荷裂隙,在长期的冻融循环下岩体强度降低,岩体碎裂化,从而产生破表的剥蚀剥离
      雅江雅砻江
      下载: 导出CSV

      表  2  随冻融次数增加裂隙端部裂纹扩展特征描述

      Table  2.   Description of crack growth characteristics with increasing freeze-thaw cycles

    • Bazai, N. A., Cui, P., Carling, P. A., et al., 2021. Increasing Glacial Lake Outburst Flood Hazard in Response to Surge Glaciers in the Karakoram. Earth-Science Reviews, 212: 103432. https://doi.org/10.1016/j.earscirev.2020.103432
      Christiansen, H. H., 2005. Thermal Regime of Ice-Wedge Cracking in Adventdalen, Svalbard. Permafrost and Periglacial Processes, 16(1): 87-98. https://doi.org/10.1002/ppp.523
      Coe, J. A., Bessette-Kirton, E. K., Geertsema, M., 2018. Increasing Rock-Avalanche Size and Mobility in Glacier Bay National Park and Preserve, Alaska Detected from 1984 to 2016 Landsat Imagery. Landslides, 15(3): 393-407. https://doi.org/10.1007/s10346-017-0879-7
      Cui, P., Dang, C., Cheng, Z. L., et al., 2010. Debris Flows Resulting from Glacial-Lake Outburst Floods in Tibet, China. Physical Geography, 31: 508-527. https://doi.org/10.2747/0272-3646.31.6.508
      Cui, P., Zhou, G. G. D., Zhu, X. H., et al., 2013. Scale Amplification of Natural Debris Flows Caused by Cascading Landslide Dam Failures. Geomorphology, 182: 173-189. https://doi.org/10.1016/j.geomorph.2012.11.009
      Davidson, G. P., Nye, J. F., 1985. A Photoelastic Study of Ice Pressure in Rock Cracks. Cold Regions Science and Technology, 11(2): 141-153. https://doi.org/10.1016/0165-232X(85)90013-8
      Fan, X. M., Yunus, A. P., Yang, Y. H., et al., 2022. Imminent Threat of Rock-Ice Avalanches in High Mountain Asia. Science of the Total Environment, 836: 155380. https://doi.org/10.1016/j.scitotenv.2022.155380
      Huang, R. Q., 2008. Geodynamical Process and Stability Control of High Rock Slope Development. Chinese Journal of Rock Mechanics and Engineering, 27(8): 1525-1544(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2008.08.002
      Huang, R. Q., 2009. Mechanism of Landslide Disaster Triggered by Wenchuan Magnitude 8.0 Earthquake and Its Geomechanical Model. Chinese Journal of Rock Mechanics and Engineering, 28(6): 1239-1249(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2009.06.021
      Huang, Y., 2012. Research on Freeze-Thaw Mechanical Behavior and Collapse Mechanism of Rock Mass in Alpine Mountainous Areas: Taking Tianshan Highway Slope as an Example. Chengdu University of Technology, Chengdu (in Chinese with English abstract).
      IPCC (Intergovernmental Panel on Climate Change), 2022. Ocean and Cryosphere in a Changing Climate: Special Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.
      IPCC (Intergovernmental Panel on Climate Change), 2023. Climate Change 2021: The Physical Science Basis: Working Group Ⅰ Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.
      Ishikawa, M., Kurashige, Y., Hirakawa, K., 2004. Analysis of Crack Movements Observed in an Alpine Bedrock Cliff. Earth Surface Processes and Landforms, 29(7): 883-891. https://doi.org/10.1002/esp.1076
      Jia, H. L., Xiang, W., Tan, L., et al., 2016. Theoretical Analysis and Experimental Verifications of Frost Damage Mechanism of Sandstone. Chinese Journal of Rock Mechanics and Engineering, 35(5): 879-895(in Chinese with English abstract).
      Jiang, D. Y., Zhang, S. L., Chen, J., et al., 2019. Low Filed NMR and Acoustic Emission Probability Density Study of Freezing and Thawing Cycles Damage for Sandstone. Rock and Soil Mechanics, 40(2): 436-444(in Chinese with English abstract).
      Lacelle, D., Brooker, A., Fraser, R. H., et al., 2015. Distribution and Growth of Thaw Slumps in the Richardson Mountains–Peel Plateau Region, Northwestern Canada. Geomorphology, 235: 40-51. https://doi.org/10.1016/j.geomorph.2015.01.024
      Li, J. L., Zhu, L. Y., Zhou, K. P., et al., 2019. Damage Characteristics of Sandstone Pore Structure under Freeze-Thaw Cycles. Rock and Soil Mechanics, 40(9): 3524-3532(in Chinese with English abstract).
      Li, Q. F., Zhu, S. F., 2008. Fracture Mechanics and Its Engineering Application (2nd ed. ). Harbin Engineering University Press, Harbin, 9-13(in Chinese).
      Li, X. P., Lu, Y. N., Wang, Y. J., 2013. Research on Damage Model of Single Jointed Rock Masses under Coupling Action of Freeze-Thaw and Loading. Chinese Journal of Rock Mechanics and Engineering, 32(11): 2307-2315(in Chinese with English abstract).
      Liu, H., Yang, G. S., Ren, J. X., 2007. Numerical Analysis Method for Temperature Field of Freezing-Thawing Shale Based on Digital Image Processing. Chinese Journal of Rock Mechanics and Engineering, 26(8): 1678-1683(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2007.08.019
      Liu, Q. S., Kang, Y. S., Liu, X. Y., 2011. Analysis of Stress Field and Coupled Thermo-Mechanical Simulation of Single-Fracture Freezed Rock Masses. Chinese Journal of Rock Mechanics and Engineering, 30(2): 217-223(in Chinese with English abstract).
      Lu, Y. N., Li, X. P., Xiao, J. S., 2014. Experimental Analysis on Mechanical Characteristic of Single Cracked Rock Mass under Freeze-Thaw Condition. Chinese Journal of Underground Space and Engineering, 10(3): 593-598, 649(in Chinese with English abstract).
      Long, X. Y., Hu, Y. X., Gan, B. R., et al., 2024. Numerical Simulation of the Mass Movement Process of the 2018 Sedongpu Glacial Debris Flow by Using the Fluid-Solid Coupling Method. Journal of Earth Science, 35(2): 583-596. https://doi.org/10.1007/s12583-022-1625-1
      Lyu, Y., Ma, R. X., Wang, Z. P., et al., 2025. A Study on the Genetic Dynamics and Development Characteristics of Granitic Rock Avalanches in the Northern Qinling Mountains, China. Journal of Earth Science, 36(2): 737-749. https://doi.org/10.1007/s12583-024-0016-1
      Moon, T., Oh, J., 2012. A Study of Optimal Rock-Cutting Conditions for Hard Rock TBM Using the Discrete Element Method. Rock Mechanics and Rock Engineering, 45(5): 837-849. https://doi.org/10.1007/s00603-011-0180-3
      Mu, J. Q., Pei, X. J., Huang, R. Q., et al., 2017. Degradation Characteristics of Shear Strength of Joints in Three Rock Types Due to Cyclic Freezing and Thawing. Cold Regions Science and Technology, 138: 91-97. https://doi.org/10.1016/j.coldregions.2017.03.011
      Mu, J. Q., 2013. Study on Damage and Deterioration Characteristics of Rock Mass and Its Disaster-Causing Effect under Cyclic Freeze-Thaw Conditions (Dissertation). Chengdu University of Technology, Chengdu(in Chinese with English abstract).
      Peng, J. B., Zhang, Y. S., Huang, D., et al., 2023. Interaction Disaster Effects of the Tectonic Deformation Sphere, Rock Mass Loosening Sphere, Surface Freeze-Thaw Sphere and Engineering Disturbance Sphere on the Tibetan Plateau. Earth Science, 48(8): 3099-3114(in Chinese with English abstract).
      Qi, J. L., Ma, W., 2010. State-of-Art of Research on Mechanical Properties of Frozen Soils. Rock and Soil Mechanics, 31(1): 133-143(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2010.01.025
      Qiao, C., 2023. Study on Damage Evolution Law and Disaster-Causing Mechanism of Rock Slope with Locked Segment Subjected to Freeze-Thaw Cycles (Dissertation). University of Science and Technology Beijing, Beijing(in Chinese with English abstract).
      Ravanel, L., Deline, P., 2011. Climate Influence on Rockfalls in High-Alpine Steep Rockwalls: The North Side of the Aiguilles de Chamonix (Mont Blanc Massif) since the End of the 'Little Ice Age'. The Holocene, 21(2): 357-365. https://doi.org/10.1177/0959683610374887
      Shugar, D. H., Jacquemart, M., Shean, D., et al., 2021. A Massive Rock and Ice Avalanche Caused the 2021 Disaster at Chamoli, Indian Himalaya. Science, 373(6552): 300-306. https://doi.org/10.1126/science.abh4455
      Sun, Z. Q., Rao, Q. H., Wang, G. Y., 2002. Study on Determination of Shear Fracture Toughness(KIIc). Chinese Journal of Rock Mechanics and Engineering, 21(2): 199-203(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2002.02.009
      Tang, M. G., Xu, Q., Deng, W. F., et al., 2022. Degradation Law of Mechanical Properties of Typical Rock in Sichuan-Tibet Traffic Corridor under Freeze-Thaw and Unloading Conditions. Earth Science, 47(6): 1917-1931(in Chinese with English abstract).
      Wen, L., Li, X. B., Chen, G. H., et al., 2014. The Effect of Freeze-Thaw Cycles on the Durability of Hard Rocks of Slope in Metal Mine. Mining and Metallurgical Engineering, 34(6): 10-13(in Chinese with English abstract). doi: 10.3969/j.issn.0253-6099.2014.06.003
      Wen, L., Li, X. B., Yin, Y. B., et al., 2014. Study of Physico-Mechanical Properties of Granite Porphyry and Limestone in Slopes of Open-Pit Metal Mine under Freezing-Thawing Cycles and Their Application. Journal of Glaciology and Geocryology, 36(3): 632-639(in Chinese with English abstract).
      Wu, G. J., Yao, T. D., Wang, W. C., et al., 2019. Glacial Hazards on Tibetan Plateau and Surrounding Alpines. Bulletin of Chinese Academy of Sciences, 34(11): 1285-1292(in Chinese with English abstract).
      Xu, G. M., Liu, Q. S., 2005. Analysis of Mechanism of Rock Failure Due to Freeze-Thaw Cycling and Mechanical Testing Study on Frozen-Thawed Rocks. Chinese Journal of Rock Mechanics and Engineering, 24(17): 3076-3082(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2005.17.012
      Xu, Z. X., Zhang, L. G., Jiang, L. W., et al., 2021. Engineering Geological Environment and Main Engineering Geological Problems of Ya'an-Linzhi Section of the Sichuan-Tibet Railway. Advanced Engineering Sciences, (3): 29-42(in Chinese with English abstract).
      Yan, X. D., Liu, H. Y., Xing, C. F., et al., 2015. Constitutive Model Research on Freezing-Thawing Damage of Rock Based on Deformation and Propagation of Microcracks. Rock and Soil Mechanics, 36(12): 3489-3499(in Chinese with English abstract).
      Yang, F., 2017. Preliminary Study on Classification and Identification Map of Large Landslides in Western Mountainous Areas (Dissertation). Chengdu University of Technology, Chengdu (in Chinese with English abstract).
      Yang, R., Fellin, M. G., Herman, F., et al., 2016. Spatial and Temporal Pattern of Erosion in the Three Rivers Region, Southeastern Tibet. Earth and Planetary Science Letters, 433: 10-20. https://doi.org/10.1016/j.epsl.2015.10.032
      Yin, Y. P., 2000. Rapid Huge Landslide and Hazard Reduction of Yigong River in the Bomi, Tibet. Hydrogeology & Engineering Geology, 27(4): 8-11(in Chinese with English abstract). doi: 10.3969/j.issn.1000-3665.2000.04.003
      Zhang, E. F., Yang, G. S., Liu, H., 2018. Experimental Study on Meso-Damage Evolution of Sandstone under Freeze-Thaw Cycles. Coal Engineering, 50(10): 50-55(in Chinese with English abstract).
      Zhang, G. Z., Chen, G. Q, Wang, Z. W, et al., 2022. Development Characteristics and Rapid Evaluation of High-Steep Unstable Rock in Ya'an-Changdu Section of Sichuan-Tibet Railway. Advanced Engineering Sciences, 54(2): 1-11(in Chinese).
      Zhang, H. P., Oskin, M., Jing, L. Z., et al., 2016. Pulsed Exhumation of Interior Eastern Tibet: Implications for Relief Generation Mechanisms and the Origin of High-Elevation Planation Surfaces. Earth and Planetary Science Letters, 449: 176-185. https://doi.org/10.1016/J.EPSL.2016.05.048
      Zhang, J. Z., Miao, L. C., Yang, Z. F., 2008. Research on Rock Degradation and Deterioration Mechanisms and Mechanical Characteristics under Cyclic Freezing-Thawing. Chinese Journal of Rock Mechanics and Engineering, 27(8): 1688-1694(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2008.08.020
      Zhang, N., 2023. Study on Size Effect of Physical and Mechanical Characteristics of Intact Rock (Dissertation). Changan University, Xi'an(in Chinese with English abstract).
      Zhang, P. S., Xu, D. Q., Li, T. H., et al., 2023. Experimental Study of Seepage Characteristics before and after Grouting and Mechanical Characteristics after Grouting of Fractured Sandstone. Rock and Soil Mechanics, 44(S1): 12-26(in Chinese with English abstract).
      Zhang, S. J., Lai, Y. M., Su, X. M., et al., 2004. A Laboratory Study on the Damage Propagation of Rocks under Freeze-Thaw Cycle Condition. Chinese Journal of Rock Mechanics and Engineering, 23(24): 4105-4111(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2004.24.002
      Zhang, Y. Z., Du, Y. L., Sun, B. C., et al., 2014. Roadbed Deformation of High-Speed Railway Due to Freezing-Thawing Process in Seasonally Frozen Regions. Chinese Journal of Rock Mechanics and Engineering, 33(12): 2546-2553(in Chinese with English abstract).
      Zhu, Y. J., Ren, H., Wang, P., et al., 2022. Grouting Test and Reinforcement Mechanism Analysis of Rock with Single Penetrated Fracture Surface. Rock and Soil Mechanics, 43(12): 3221-3230(in Chinese with English abstract).
      黄润秋, 2008. 岩石高边坡发育的动力过程及其稳定性控制. 岩石力学与工程学报, 27(8): 1525-1544. doi: 10.3321/j.issn:1000-6915.2008.08.002
      黄润秋, 2009. 汶川8.0级地震触发崩滑灾害机制及其地质力学模式. 岩石力学与工程学报, 28(6): 1239-1249. doi: 10.3321/j.issn:1000-6915.2009.06.021
      黄勇, 2012. 高寒山区岩体冻融力学行为及崩塌机制研究: 以天山公路边坡为例(博士学位论文). 成都: 成都理工大学.
      贾海梁, 项伟, 谭龙, 等, 2016. 砂岩冻融损伤机制的理论分析和试验验证. 岩石力学与工程学报, 35(5): 879-895.
      姜德义, 张水林, 陈结, 等, 2019. 砂岩循环冻融损伤的低场核磁共振与声发射概率密度研究. 岩土力学, 40(2): 436-444.
      李杰林, 朱龙胤, 周科平, 等, 2019. 冻融作用下砂岩孔隙结构损伤特征研究. 岩土力学, 40(9): 3524-3532.
      李庆芬, 朱世范, 2008. 断裂力学及其工程应用(2版). 哈尔滨: 哈尔滨工程大学出版社, 9-13.
      李新平, 路亚妮, 王仰君, 2013. 冻融荷载耦合作用下单裂隙岩体损伤模型研究. 岩石力学与工程学报, 32(11): 2307-2315.
      刘慧, 杨更社, 任建喜, 2007. 基于数字图像处理的冻融页岩温度场的数值分析方法. 岩石力学与工程学报, 26(8): 1678-1683. doi: 10.3321/j.issn:1000-6915.2007.08.019
      刘泉声, 康永水, 刘小燕, 2011. 冻结岩体单裂隙应力场分析及热-力耦合模拟. 岩石力学与工程学报, 30(2): 217-223.
      路亚妮, 李新平, 肖家双, 2014. 单裂隙岩体冻融力学特性试验分析. 地下空间与工程学报, 10(3): 593-598, 649.
      母剑桥, 2013. 循环冻融条件下岩体损伤劣化特性及其致灾效应研究(硕士学位论文). 成都: 成都理工大学.
      彭建兵, 张永双, 黄达, 等, 2023. 青藏高原构造变形圈-岩体松动圈-地表冻融圈-工程扰动圈互馈灾害效应. 地球科学, 48(8): 3099-3114. doi: 10.3799/dqkx.2023.137
      齐吉琳, 马巍, 2010. 冻土的力学性质及研究现状. 岩土力学, 31(1): 133-143. doi: 10.3969/j.issn.1000-7598.2010.01.025
      乔趁, 2023. 冻融循环作用下锁固型边坡损伤演化规律及致灾机制研究(博士学位论文). 北京: 北京科技大学.
      孙宗颀, 饶秋华, 王桂尧, 2002. 剪切断裂韧度(KIIc)确定的研究. 岩石力学与工程学报, 21(2): 199-203. doi: 10.3321/j.issn:1000-6915.2002.02.009
      汤明高, 许强, 邓文锋, 等, 2022. 冻融及加卸荷条件下川藏交通廊道典型岩石力学特性的劣化规律. 地球科学, 47(6): 1917-1931. doi: 10.3799/dqkx.2021.260
      闻磊, 李夕兵, 陈光辉, 等, 2014. 冻融循环作用下金属矿山边坡硬岩耐久性研究. 矿冶工程, 34(6): 10-13. doi: 10.3969/j.issn.0253-6099.2014.06.003
      闻磊, 李夕兵, 尹彦波, 等, 2014. 冻融循环作用下花岗斑岩和灰岩物理力学性质对比分析及应用研究. 冰川冻土, 36(3): 632-639.
      邬光剑, 姚檀栋, 王伟财, 等, 2019. 青藏高原及周边地区的冰川灾害. 中国科学院院刊, 34(11): 1285-1292.
      徐光苗, 刘泉声, 2005. 岩石冻融破坏机理分析及冻融力学试验研究. 岩石力学与工程学报, 24(17): 3076-3082. doi: 10.3321/j.issn:1000-6915.2005.17.012
      徐正宣, 张利国, 蒋良文, 等, 2021. 川藏铁路雅安至林芝段工程地质环境及主要工程地质问题. 工程科学与技术, (3): 29-42.
      阎锡东, 刘红岩, 邢闯锋, 等, 2015. 基于微裂隙变形与扩展的岩石冻融损伤本构模型研究. 岩土力学, 36(12): 3489-3499.
      杨帆, 2017. 西部山区大型滑坡分类及识别图谱初步研究(硕士学位论文). 成都: 成都理工大学.
      殷跃平, 2000. 西藏波密易贡高速巨型滑坡特征及减灾研究. 水文地质工程地质, 27(4): 8-11.
      张二锋, 杨更社, 刘慧, 2018. 冻融循环作用下砂岩细观损伤演化规律试验研究. 煤炭工程, 50(10): 50-55.
      张广泽, 陈国庆, 王哲威, 等, 2022. 川藏铁路雅安至昌都段高陡危岩发育特征与快速评价. 工程科学与技术, 54(2): 1-11.
      张继周, 缪林昌, 杨振峰, 2008. 冻融条件下岩石损伤劣化机制和力学特性研究. 岩石力学与工程学报, 27(8): 1688-1694. doi: 10.3321/j.issn:1000-6915.2008.08.020
      张宁, 2023. 完整岩石物理力学特征的尺寸效应研究(博士学位论文). 西安: 长安大学.
      张培森, 许大强, 李腾辉, 等, 2023. 裂隙砂岩注浆前后渗流特性及注浆后力学特性试验研究. 岩土力学, 44(增刊1): 12-26. doi: 10.16285/j.rsm.2022.0670
      张淑娟, 赖远明, 苏新民, 等, 2004. 风火山隧道冻融循环条件下岩石损伤扩展室内模拟研究. 岩石力学与工程学报, 23(24): 4105-4111.
      张玉芝, 杜彦良, 孙宝臣, 等, 2014. 季节性冻土地区高速铁路路基冻融变形规律研究. 岩石力学与工程学报, 33(12): 2546-2553.
      朱永建, 任恒, 王平, 等, 2022. 含单一贯通破裂面岩石注浆试验及加固机制分析. 岩土力学, 43(12): 3221-3230.
    • 加载中
    图(9) / 表(2)
    计量
    • 文章访问数:  26
    • HTML全文浏览量:  8
    • PDF下载量:  4
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-07-03
    • 网络出版日期:  2025-05-10
    • 刊出日期:  2025-04-25

    目录

      /

      返回文章
      返回