Effect of Grading and Water Content on Thermal Conductivity of Natural Peat Aggregated Soils
-
摘要: 地表泥炭土是天然保温材料,对多年冻土保护具有重要意义.自然状态下,泥炭土通常含有粗团粒,且级配具有空间变异性.然而,级配对其导热特性的影响鲜有报道.采用非稳态探针法,对泥炭土开展了66组导热系数试验,以探究粗粒含量Cc、粒径比R和含水率w等因素对导热特性的影响.研究表明:在同一相对密度下,泥炭土的导热系数K随Cc的增加先增大后减小,在Cc=50%时取到最大值;粗粒主导时,随R的增大而增大,细粒主导时,R变化对其影响不显著.在相同孔隙比下,由于颗粒间接触热阻和配位数随Cc和R的变化,导热系数随着Cc的增加而增大;细粒主导时随R的增大而增大;粗粒主导时,则随R增大而降低.此外,泥炭土的导热系数随w增加而显著增大,其增长率随试样中团粒内部和团粒间孔隙中的水分分布而变化.Abstract: Peat soil is a natural insulation material, which has a significant effect on the underlying frozen soil layer. Natural peat soil usually exists in the form of aggregates, and its particle size distribution has a spatial variability. However, the effect of gradings on the thermal conductivity is rarely reported. In this work, 66 laboratory tests were conducted on the peat soil to investigate the effects of coarse content, particle size ratio and water content on its thermal conductivity by a non-steady-state probe method.The results show that under the same relative density, the thermal conductivity of peat soil first increases and then decreases with the increase of coarse content, and reaches the peak value when the coarse content reaches 50%. For the peat soil with coarse dominated structure, the thermal conductivity increases distinctly with the increase of particle size ratio. However, the effect of particle size ratio reduces in the fine dominated structure. For a given void ratio, the thermal conductivity increases with the rising coarse content due to the thermal resistance and the particle contacts which are affected by particle size distribution; it increases with increasing particle size ratio in fine grain dominated structure but decreases in coarse grain dominated structure. In addition, the thermal conductivity of peat soil increases significantly with increasing water content, and the growth rate varies with the internal pores and the water distribution in the pores.
-
表 1 泥炭土基本物理参数
Table 1. Basic physical parameters of natural peat soil
物理参数 参数值 最优含水率wop(%) 40.10 最大干密度ρdmax(g/cm3) 1.098 比重Gs 2.33 塑限wp(%) 47.53 液限wL(%) 62.82 塑性指数IP 15.29 有机质含量(%) 17.42 表 2 粗粒和细粒的基本物理参数表
Table 2. Basic physical parameters of coarse and fine particles
物理参数 粗粒 细粒 粒径范围(mm) 0.2~2 < 0.2 平均粒径d50(mm) 0.625 0.064 不均匀系数Cu 2.907 1.794 最大干密度ρmax(g/cm3) 1.162 1.094 最小干密度ρmin(g/cm3) 0.693 0.744 最大孔隙比emax 2.354 2.128 最小孔隙比emin 1.002 1.126 表 4 不同粗粒含量及粒径比干土试样的物理特性参数
Table 4. Physical characteristic parameters of dry soil sam- ples with different coarse particle content and particle size ratio
试样编号 粗粒含量Cc(%) 粒径比R 相对密度Dr(%) emin emax 1~3 0 - 30, 50, 75 1.126 2.128 4~6 25 10.2 30, 50, 75 1.088 1.963 7~9 40 3.8 30, 50, 75 0.980 1.847 10~12 40 4.9 30, 50, 75 0.975 1.822 13~15 40 5.7 30, 50, 75 0.958 1.825 16~18 40 6.9 30, 50, 75 0.973 1.809 19~21 40 8.0 30, 50, 75 0.964 1.788 22~24 40 10.2 30, 50, 75 0.995 1.829 25~27 50 10.2 30, 50, 75 0.932 1.780 28~30 65 10.2 30, 50, 75 0.941 1.771 31~33 75 3.8 30, 50, 75 1.051 2.184 34~36 75 4.4 30, 50, 75 1.058 2.145 37~39 75 5.2 30, 50, 75 1.052 2.115 40~42 75 10.2 30, 50, 75 0.945 1.840 43~45 85 10.2 30, 50, 75 0.964 1.956 46~48 100 - 30, 50, 75 1.002 2.354 表 5 不同含水率试验方案
Table 5. Different water content test scheme
试样编号 干密度ρd(g/cm3) 含水率w(%) 49~54 1.098 0, 10, 20, 30, 40, 48 55~60 0.988 0, 10, 20, 30, 40, 48 61~66 0.879 0, 10, 20, 30, 40, 48 -
Basiri Parsa, S., Maleki, M., 2023. Factors Affecting Small-Strain Shear Modulus of Sand-Silt Mixture Considering Different Moisture Contents. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 47(1): 479-490. https://doi.org/10.1007/s40996-022-01018-1 Bian, X., Ren, Z. L., Zeng, L. L., et al., 2024. Effects of Biochar on the Compressibility of Soil with High Water Content. Journal of Cleaner Production, 434: 140032. https://doi.org/10.1016/j.jclepro.2023.140032 Cai, G. Q., Wu, T. C., Wang, Y. N., et al., 2020. Model of the Microstructure Evolution of Unsaturated Compacted Soils with Double-Pore Structure. Rock and Soil Mechanics, 41(11): 3583-3590(in Chinese with English abstract). Carminati, A., Kaestner, A., Lehmann, P., et al., 2008. Unsaturated Water Flow across Soil Aggregate Contacts. Advances in Water Resources, 31(9): 1221-1232. https://doi.org/10.1016/j.advwatres.2008.01.008 Che, L. N., Zhang, H. H., Wan, L. H., 2023. Spatial Distribution of Permafrost Degradation and Its Impact on Vegetation Phenology from 2000 to 2020. Science of the Total Environment, 877: 162889. https://doi.org/10.1016/j.scitotenv.2023.162889 Chen, H., Wu, N., Wang, Y. F., et al., 2021. A Historical Overview about Basic Issues and Studies of Mires. Scientia Sinica (Terrae), 51(1): 15-26(in Chinese). Chen, S. X., 2008. Thermal Conductivity of Sands. Heat and Mass Transfer, 44(10): 1241-1246. https://doi.org/10.1007/s00231-007-0357-1 Cheng, G. D., He, P., 2001. Linearity Engineering in Permafrost Areas. Journal of Glaciolgy and Geocryology, 23(3): 213-217(in Chinese with English abstract). Chu, Z. X., Zhou, G. Q., Rao, Z. H., et al., 2020. Predicting Correlation and Evolution Mechanisms of the Effective Thermal Conductivity of Granular Geomaterials. Chinese Journal of Rock Mechanics and Engineering, 39(2): 384-397(in Chinese with English abstract). Côté, J., Konrad, J. M., 2005. A Generalized Thermal Conductivity Model for Soils and Construction Materials. Canadian Geotechnical Journal, 42(2): 443-458. https://doi.org/10.1139/t04-106 Ding, Y. J., Mu, C. C., Wu, T. H., et al., 2021. Increasing Cryospheric Hazards in a Warming Climate. Earth-Science Reviews, 213: 103500. https://doi.org/10.1016/j.earscirev.2020.103500 Gui, Y., Xie, Z. P., Gao, Y. F., 2023. Influence and Mechanism of Organic Matter on Thermal Conductivity of Cohesive Soil. Rock and Soil Mechanics, 44(S1): 154-162(in Chinese with English abstract). He, H., He, Y., Cai, G. J., et al., 2022. Influence of Particle Size and Packing on the Thermal Conductivity of Carbonate Sand. Granular Matter, 24(4): 117. https://doi.org/10.1007/s10035-022-01277 Lee, C., Suh, H. S., Yoon, B., et al., 2017. Particle Shape Effect on Thermal Conductivity and Shear Wave Velocity in Sands. Acta Geotechnica, 12(3): 615-625. https://doi.org/10.1007/s11440-017-0524-6 Leng, Y. F., 2011. Experimental Study on Physical and Mechanical Properties and Numerical Analysis of Temperature Field of Permafrost in Sino-Russian Oil Pipeline(Dissertation). Jilin University, Changchun (in Chinese with English abstract). Lin, J. Z., Shi, X. S., Zeng, Y. W., et al., 2023. Estimating the Thermal Conductivity of Granular Soils Based on a Simplified Homogenization Method. Cold Regions Science and Technology, 211: 103855. https://doi.org/10.1016/j.coldregions.2023.103855 Liu, G. M., Zhang, B., Wang, L., et al., 2023. Permafrost Region and Permafrost Area in Globe and China. Earth Science, 48(12): 4689-4698(in Chinese with English abstract). Liu, Y. L., Wang, P., Wang, J. K., 2023. Formation and Stability Mechanism of Soil Aggregates: Progress and Prospect. Acta Pedologica Sinica, 60(3): 627-643(in Chinese with English abstract). Lu, N., Dong, Y., 2015. Closed-Form Equation for Thermal Conductivity of Unsaturated Soils at Room Temperature. Journal of Geotechnical and Geoenvironmental Engineering, 141(6): 04015016. https://doi.org/10.1061/(asce)gt.1943-5606.0001295 Luo, D. L., Liu, J., Chen, F. F., et al., 2024. Research Progress and Prospect of Transition Zone in Permafrost. Earth Science, 49(11): 4063-4081(in Chinese with English abstract). Mustamo, P., Ronkanen, A. K., Berglund, Ö., et al., 2019. Thermal Conductivity of Unfrozen and Partially Frozen Managed Peat Soils. Soil and Tillage Research, 191: 245-255. https://doi.org/10.1016/j.still.2019.02.017 Nan, B. W., 2019. Experimental Study on the Influence of Particle Gradation and Shape and Thermal Characteristics of Particles on Thermal Conductivity of Soil (Dissertation). Chongqing University, Chongqing (in Chinese with English abstract). Nan F. S., Li Z. X., Zhang X. P., et al., 2023. Particle Size Fractal Characteristics of Soils in Desert-Steppe Transition Zone along the Northern Bank of Yellow River Basin in Lanzhou. Earth Science, 48(3): 1195-1204(in Chinese with English abstract). Peth, S., Nellesen, J., Fischer, G., et al., 2010. Non-Invasive 3D Analysis of Local Soil Deformation under Mechanical and Hydraulic Stresses by μCT and Digital Image Correlation. Soil and Tillage Research, 111(1): 3-18. https://doi.org/10.1016/j.still.2010.02.007 Qin, C., Zhou, J., 2023. On the Seismic Stability of Soil Slopes Containing Dual Weak Layers: True Failure Load Assessment by Finite-Element Limit-Analysis. Acta Geotechnica, 18(6): 3153-3175. https://doi.org/10.1007/s11440-022-01730-2 Schweizer, S. A., Bucka, F. B., Graf-Rosenfellner, M., et al., 2019. Soil Microaggregate Size Composition and Organic Matter Distribution as Affected by Clay Content. Geoderma, 355: 113901. https://doi.org/10.1016/j.geoderma.2019.113901 Shi, X. S., Herle, I., Muir Wood, D., 2018. A Consolidation Model for Lumpy Composite Soils in Open-Pit Mining. Géotechnique, 68(3): 189-204. https://doi.org/10.1680/jgeot.16.p.054 Shi, X. S., Nie, J. Y., Zhao, J. D., et al., 2020. A Homogenization Equation for the Small Strain Stiffness of Gap-Graded Granular Materials. Computers and Geotechnics, 121: 103440. https://doi.org/10.1016/j.compgeo.2020.103440 Shi, X. S., Zhao, J. D., 2020. Practical Estimation of Compression Behavior of Clayey/Silty Sands Using Equivalent Void-Ratio Concept. Journal of Geotechnical and Geoenvironmental Engineering, 146(6): 04020046. https://doi.org/10.1061/(asce)gt.1943-5606.0002267 Shi, X. S., Zhao, J. D., Gao, Y. F., 2021. A Homogenization-Based State-Dependent Model for Gap-Graded Granular Materials with Fine-Dominated Structure. International Journal for Numerical and Analytical Methods in Geomechanics, 45(8): 1007-1028. https://doi.org/10.1002/nag.3189 Shi, Y., Jia, X. L., Lü, G. E., et al., 2023. Determination of Maximum and Minimum Void Ratios of Calcareous Sand Considering Various Influence Factors. Journal of Ground Improvement, 5(4): 293-298(in Chinese with English abstract). Tan, W. F., Xu, Y., Shi, Z. H., et al., 2023. The Formation Process and Stabilization Mechanism of Soil Aggregates Driven by Binding Materials. Acta Pedologica Sinica, 60(5): 1297-1308(in Chinese with English abstract). Tang, P. P., Xu, J., Lu, Y. H., 2019. Experimental Study on Effects of Water Content and Temperature on Thermal Conductivity of Unsaturated Soils. Journal of Disaster Prevention and Mitigation Engineering, 39(4): 678-683(in Chinese with English abstract). Usowicz, B., Lipiec, J., Usowicz, J. B., et al., 2013. Effects of Aggregate Size on Soil Thermal Conductivity: Comparison of Measured and Model-Predicted Data. International Journal of Heat and Mass Transfer, 57(2): 536-541. https://doi.org/10.1016/j.ijheatmasstransfer.2012.10.067 Wang, T., Wang, X. Y., Liu, D., et al., 2023. The Current and Future of Terrestrial Carbon Balance over the Tibetan Plateau. Scientia Sinica (Terrae), 53(7): 1506-1516(in Chinese). Wu, Q. B., Zhang, Z. Q., Gao, S. R., et al., 2016. Thermal Impacts of Engineering Activities and Vegetation Layer on Permafrostin Different Alpine Ecosystems of the Qinghai–Tibet Plateau, China. The Cryosphere, 10(4): 1695-1706. https://doi.org/10.5194/tc-10-1695-2016 Wu, Q., Chen, G. X., Zhou, Z. L., et al., 2018. Experimental Investigation on Liquefaction Resistance of Fine-Coarse-Grained Soil Mixtures Based on Theory of Intergrain Contact State. Chinese Journal of Geotechnical Engineering, 40(3): 475-485(in Chinese with English abstract). Xiao, Y., Liu, H. L., Nan, B. W., et al., 2018. Gradation-Dependent Thermal Conductivity of Sands. Journal of Geotechnical and Geoenvironmental Engineering, 144(9): 06018010. https://doi.org/10.1061/(asce)gt.1943-5606.0001943 Xu, X. T., Zhang, W. D., Fan, C. X., et al., 2020. Effects of Temperature, Dry Density and Water Content on the Thermal Conductivity of Genhe Silty Clay. Results in Physics, 16: 102830. https://doi.org/10.1016/j.rinp.2019.102830 Xu, Y. S., Zhou, X. Y., Sun, D. A., et al., 2022. Thermal Properties of GMZ Bentonite Pellet Mixtures Subjected to Different Temperatures for High-Level Radioactive Waste Repository. Acta Geotechnica, 17(3): 981-992. https://doi.org/10.1007/s11440-021-01244-3 Yang, Y. L., Zhang, T., Reddy, K. R., et al., 2022. Thermal Conductivity of Scrap Tire Rubber-Sand Composite as Insulating Material: Experimental Investigation and Predictive Modeling. Construction and Building Materials, 332: 127387. https://doi.org/10.1016/j.conbuildmat.2022.127387 Yang, Z. W., 2018. Experimental Study on Thermal Conductivity of Typical Soils in Northeastern Inner Mongolia during Freezing/Thawing Process (Dissertation). Inner Mongolia University, Hohhot (in Chinese with English abstract). Zhang, X. R., Kong, G. Q., Wang, L. H., et al., 2020. Measurement and Prediction on Thermal Conductivity of Fused Quartz. Scientific Reports, 10(1): 6559. https://doi.org/10.1038/s41598-020-62299-y 蔡国庆, 吴天驰, 王亚南, 等, 2020. 双孔结构非饱和压实土微观结构演化模型. 岩土力学, 41(11): 3583-3590. 陈槐, 吴宁, 王艳芬, 等, 2021. 泥炭沼泽湿地研究的若干基本问题与研究简史. 中国科学: 地球科学, 51(1): 15-26. 程国栋, 何平, 2001. 多年冻土地区线性工程建设. 冰川冻土, 23(3): 213-217. 褚召祥, 周国庆, 饶中浩, 等, 2020. 颗粒岩土介质热导率预测关联式及其演化机制. 岩石力学与工程学报, 39(2): 384-397. 桂跃, 谢正鹏, 高玉峰, 2023. 有机质对黏性土热传导系数的影响与机制. 岩土力学, 44(增刊1): 154-162. 冷毅飞, 2011. 中俄石油管道多年冻土物理力学性质试验研究及温度场数值分析(硕士学位论文). 长春: 吉林大学. 刘桂民, 张博, 王莉, 等, 2023. 全球和我国多年冻土分布范围和实际面积研究进展. 地球科学, 48(12): 4689-4698. 刘亚龙, 王萍, 汪景宽, 2023. 土壤团聚体的形成和稳定机制: 研究进展与展望. 土壤学报, 60(3): 627-643. 罗栋梁, 刘佳, 陈方方, 等, 2024. 多年冻土过渡带研究进展与展望. 地球科学, 49(11): 4063-4081. 南博文, 2019. 颗粒级配和形状及颗粒热特性对土体导热系数影响的试验研究(硕士学位论文). 重庆: 重庆大学. 南富森, 李宗省, 张小平, 等, 2023. 黄河北岸兰州段荒漠-草原过渡带土壤粒径分形特征. 地球科学, 48(3): 1195-1204. 施勇, 贾献林, 吕国儿, 等, 2023. 钙质砂最大最小孔隙比的确定及其影响因素分析. 地基处理, 5(4): 293-298. 谭文峰, 许运, 史志华, 等, 2023. 胶结物质驱动的土壤团聚体形成过程与稳定机制. 土壤学报, 60(5): 1297-1308. 唐盼盼, 徐洁, 卢永洪, 2019. 含水率及温度影响非饱和土导热系数的试验研究. 防灾减灾工程学报, 39(4): 678-683. 汪涛, 王晓昳, 刘丹, 等, 2023. 青藏高原碳汇现状及其未来趋势. 中国科学: 地球科学, 53(7): 1506-1516. 吴琪, 陈国兴, 周正龙, 等, 2018. 基于颗粒接触状态理论的粗细粒混合料液化强度试验研究. 岩土工程学报, 40(3): 475-485. 杨宗维, 2018. 冻/融过程中内蒙古东北部典型土体导热系数的试验研究(硕士学位论文). 呼和浩特: 内蒙古大学. -