• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    颗粒级配和含水率对含团粒泥炭土导热特性的影响

    石修松 刘素素 陆钊 刘磊磊 张福海

    石修松, 刘素素, 陆钊, 刘磊磊, 张福海, 2025. 颗粒级配和含水率对含团粒泥炭土导热特性的影响. 地球科学, 50(4): 1612-1624. doi: 10.3799/dqkx.2024.032
    引用本文: 石修松, 刘素素, 陆钊, 刘磊磊, 张福海, 2025. 颗粒级配和含水率对含团粒泥炭土导热特性的影响. 地球科学, 50(4): 1612-1624. doi: 10.3799/dqkx.2024.032
    Shi Xiusong, Liu Susu, Lu Zhao, Liu Leilei, Zhang Fuhai, 2025. Effect of Grading and Water Content on Thermal Conductivity of Natural Peat Aggregated Soils. Earth Science, 50(4): 1612-1624. doi: 10.3799/dqkx.2024.032
    Citation: Shi Xiusong, Liu Susu, Lu Zhao, Liu Leilei, Zhang Fuhai, 2025. Effect of Grading and Water Content on Thermal Conductivity of Natural Peat Aggregated Soils. Earth Science, 50(4): 1612-1624. doi: 10.3799/dqkx.2024.032

    颗粒级配和含水率对含团粒泥炭土导热特性的影响

    doi: 10.3799/dqkx.2024.032
    基金项目: 

    国家自然科学基金项目 52278346

    深圳市科技计划项目 KCXFZ20211020163816023

    河套-深圳-香港科技创新合作区项目 HZQB-KCZYB-2020083

    详细信息
      作者简介:

      石修松(1985-),男,教授,博士,主要从事土体基本特性的研究.ORCID:0000-0002-6148-1720. E-mail:qingsongsaint@gmail.com

      通讯作者:

      刘磊磊(1987-),男,副教授,博士,主要从事地质灾害防治与风险控制方面的研究工作.ORCID:0000-0001-7799-6027. E-mail: csulll@foxmail.com

    • 中图分类号: P5

    Effect of Grading and Water Content on Thermal Conductivity of Natural Peat Aggregated Soils

    • 摘要: 地表泥炭土是天然保温材料,对多年冻土保护具有重要意义.自然状态下,泥炭土通常含有粗团粒,且级配具有空间变异性.然而,级配对其导热特性的影响鲜有报道.采用非稳态探针法,对泥炭土开展了66组导热系数试验,以探究粗粒含量Cc、粒径比R和含水率w等因素对导热特性的影响.研究表明:在同一相对密度下,泥炭土的导热系数KCc的增加先增大后减小,在Cc=50%时取到最大值;粗粒主导时,随R的增大而增大,细粒主导时,R变化对其影响不显著.在相同孔隙比下,由于颗粒间接触热阻和配位数随CcR的变化,导热系数随着Cc的增加而增大;细粒主导时随R的增大而增大;粗粒主导时,则随R增大而降低.此外,泥炭土的导热系数随w增加而显著增大,其增长率随试样中团粒内部和团粒间孔隙中的水分分布而变化.

       

    • 图  1  天然泥炭土筛分后不同粒径范围的泥炭土颗粒

      Fig.  1.  Aggregates of natural peat soil with different grain sizes after being sieved

      图  2  天然泥炭土样粒径分布

      Fig.  2.  Particle size distribution of natural peat soil

      图  3  热导率实验装置

      a.导热系数测定装置图;b.试样测试图

      Fig.  3.  Experimental apparatus for thermal conductivity

      图  4  温度-时间关系的典型结果

      Fig.  4.  Typical record of the temperature in the measurement of thermal conductivity

      图  5  不同粗粒及粒径比试样的粒径分布曲线

      a.不同粗粒含量试样粒径分布曲线;b.不同粒径比(Cc=40%)试样粒径分布曲线;c.不同粒径比(Cc=75%)土样粒径分布曲线

      Fig.  5.  Particle size distribution curves of soil samples with different coarse grain and particle size ratio

      图  6  泥炭土最大和最小孔隙比与粗粒含量的关系

      Fig.  6.  Relationship between maximum and minimum void ratios and coarse content of peat

      图  7  不同粗粒含量变化下土体微观结构示意图

      a.细粒主导结构;b.过渡粗粒含量;c.粗粒主导结构

      Fig.  7.  Soil structure at various coarse contents

      图  8  泥炭土最大和最小孔隙比与粒径比的关系

      a.细粒主导结构;b.粗粒主导结构

      Fig.  8.  Relationship between maximum and minimum void ratios and particle size ratio of peat

      图  9  不同粒径比下土体微观结构示意图(细粒主导结构)

      a.粒径比=3.8;b.粒径比=10.2

      Fig.  9.  Soil structure with various particle size ratio(fine-grained dominant structure)

      图  10  不同粒径比下土体微观结构示意图(粗粒主导结构)

      a.粒径比=3.8;b.粒径比=10.2

      Fig.  10.  Soil structure with various particle size ratio (coarse-grained dominant structure)

      图  11  泥炭土导热系数与粗粒含量和相对密度的变化

      Fig.  11.  Change of thermal conductivity of peat with coarse grain content and relative density

      图  12  泥炭土导热系数和孔隙比与粗粒含量的变化(Dr=50%)

      Fig.  12.  Change of thermal conductivity and void ratios of peat with coarse particle content (Dr=50%)

      图  13  泥炭土导热系数与孔隙比和粗粒含量的变化

      Fig.  13.  Change of thermal conductivity of peat with coarse grain content and void ratios

      图  14  粒径大小对传热路径的影响

      a.细粒结构中的传热路径;b.粗粒结构中的传热路径

      Fig.  14.  Effect of particle size on heat transfer path

      图  15  导热系数与粒径比和相对密度的变化(细粒主导结构)

      Fig.  15.  Change of thermal conductivity of peat with particle size ratio and relative density (fine-grained dominant structure)

      图  16  导热系数与粒径比和孔隙比的变化(细粒主导结构)

      Fig.  16.  Change of thermal conductivity of peat with particle size ratio and void ratios (fine-grained dominant structure)

      图  17  导热系数与粒径比和相对密度的变化(粗粒主导结构)

      Fig.  17.  Change of thermal conductivity of peat with particle size ratio and relative density (coarse-grained dominant structure)

      图  18  导热系数与粒径比和孔隙比的变化(粗粒主导结构)

      Fig.  18.  Change of thermal conductivity of peat with particle size ratio and void ratios (fine-grained dominant structure)

      图  19  泥炭土导热系数与含水率的变化

      Fig.  19.  Change of thermal conductivity of peat soil with moisture content

      图  20  随含水率变化的泥炭土颗粒结构微观示意图

      Fig.  20.  Microstructure diagram of peat soil particle structure with moisture content change

      表  1  泥炭土基本物理参数

      Table  1.   Basic physical parameters of natural peat soil

      物理参数 参数值
      最优含水率wop(%) 40.10
      最大干密度ρdmax(g/cm3 1.098
      比重Gs 2.33
      塑限wp(%) 47.53
      液限wL(%) 62.82
      塑性指数IP 15.29
      有机质含量(%) 17.42
      下载: 导出CSV

      表  2  粗粒和细粒的基本物理参数表

      Table  2.   Basic physical parameters of coarse and fine particles

      物理参数 粗粒 细粒
      粒径范围(mm) 0.2~2 < 0.2
      平均粒径d50(mm) 0.625 0.064
      不均匀系数Cu 2.907 1.794
      最大干密度ρmax(g/cm3 1.162 1.094
      最小干密度ρmin(g/cm3 0.693 0.744
      最大孔隙比emax 2.354 2.128
      最小孔隙比emin 1.002 1.126
      下载: 导出CSV

      表  4  不同粗粒含量及粒径比干土试样的物理特性参数

      Table  4.   Physical characteristic parameters of dry soil sam- ples with different coarse particle content and particle size ratio

      试样编号 粗粒含量Cc(%) 粒径比R 相对密度Dr(%) emin emax
      1~3 0 - 30, 50, 75 1.126 2.128
      4~6 25 10.2 30, 50, 75 1.088 1.963
      7~9 40 3.8 30, 50, 75 0.980 1.847
      10~12 40 4.9 30, 50, 75 0.975 1.822
      13~15 40 5.7 30, 50, 75 0.958 1.825
      16~18 40 6.9 30, 50, 75 0.973 1.809
      19~21 40 8.0 30, 50, 75 0.964 1.788
      22~24 40 10.2 30, 50, 75 0.995 1.829
      25~27 50 10.2 30, 50, 75 0.932 1.780
      28~30 65 10.2 30, 50, 75 0.941 1.771
      31~33 75 3.8 30, 50, 75 1.051 2.184
      34~36 75 4.4 30, 50, 75 1.058 2.145
      37~39 75 5.2 30, 50, 75 1.052 2.115
      40~42 75 10.2 30, 50, 75 0.945 1.840
      43~45 85 10.2 30, 50, 75 0.964 1.956
      46~48 100 - 30, 50, 75 1.002 2.354
      下载: 导出CSV

      表  5  不同含水率试验方案

      Table  5.   Different water content test scheme

      试样编号 干密度ρd(g/cm3 含水率w(%)
      49~54 1.098 0, 10, 20, 30, 40, 48
      55~60 0.988 0, 10, 20, 30, 40, 48
      61~66 0.879 0, 10, 20, 30, 40, 48
      下载: 导出CSV
    • Basiri Parsa, S., Maleki, M., 2023. Factors Affecting Small-Strain Shear Modulus of Sand-Silt Mixture Considering Different Moisture Contents. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 47(1): 479-490. https://doi.org/10.1007/s40996-022-01018-1
      Bian, X., Ren, Z. L., Zeng, L. L., et al., 2024. Effects of Biochar on the Compressibility of Soil with High Water Content. Journal of Cleaner Production, 434: 140032. https://doi.org/10.1016/j.jclepro.2023.140032
      Cai, G. Q., Wu, T. C., Wang, Y. N., et al., 2020. Model of the Microstructure Evolution of Unsaturated Compacted Soils with Double-Pore Structure. Rock and Soil Mechanics, 41(11): 3583-3590(in Chinese with English abstract).
      Carminati, A., Kaestner, A., Lehmann, P., et al., 2008. Unsaturated Water Flow across Soil Aggregate Contacts. Advances in Water Resources, 31(9): 1221-1232. https://doi.org/10.1016/j.advwatres.2008.01.008
      Che, L. N., Zhang, H. H., Wan, L. H., 2023. Spatial Distribution of Permafrost Degradation and Its Impact on Vegetation Phenology from 2000 to 2020. Science of the Total Environment, 877: 162889. https://doi.org/10.1016/j.scitotenv.2023.162889
      Chen, H., Wu, N., Wang, Y. F., et al., 2021. A Historical Overview about Basic Issues and Studies of Mires. Scientia Sinica (Terrae), 51(1): 15-26(in Chinese).
      Chen, S. X., 2008. Thermal Conductivity of Sands. Heat and Mass Transfer, 44(10): 1241-1246. https://doi.org/10.1007/s00231-007-0357-1
      Cheng, G. D., He, P., 2001. Linearity Engineering in Permafrost Areas. Journal of Glaciolgy and Geocryology, 23(3): 213-217(in Chinese with English abstract).
      Chu, Z. X., Zhou, G. Q., Rao, Z. H., et al., 2020. Predicting Correlation and Evolution Mechanisms of the Effective Thermal Conductivity of Granular Geomaterials. Chinese Journal of Rock Mechanics and Engineering, 39(2): 384-397(in Chinese with English abstract).
      Côté, J., Konrad, J. M., 2005. A Generalized Thermal Conductivity Model for Soils and Construction Materials. Canadian Geotechnical Journal, 42(2): 443-458. https://doi.org/10.1139/t04-106
      Ding, Y. J., Mu, C. C., Wu, T. H., et al., 2021. Increasing Cryospheric Hazards in a Warming Climate. Earth-Science Reviews, 213: 103500. https://doi.org/10.1016/j.earscirev.2020.103500
      Gui, Y., Xie, Z. P., Gao, Y. F., 2023. Influence and Mechanism of Organic Matter on Thermal Conductivity of Cohesive Soil. Rock and Soil Mechanics, 44(S1): 154-162(in Chinese with English abstract).
      He, H., He, Y., Cai, G. J., et al., 2022. Influence of Particle Size and Packing on the Thermal Conductivity of Carbonate Sand. Granular Matter, 24(4): 117. https://doi.org/10.1007/s10035-022-01277
      Lee, C., Suh, H. S., Yoon, B., et al., 2017. Particle Shape Effect on Thermal Conductivity and Shear Wave Velocity in Sands. Acta Geotechnica, 12(3): 615-625. https://doi.org/10.1007/s11440-017-0524-6
      Leng, Y. F., 2011. Experimental Study on Physical and Mechanical Properties and Numerical Analysis of Temperature Field of Permafrost in Sino-Russian Oil Pipeline(Dissertation). Jilin University, Changchun (in Chinese with English abstract).
      Lin, J. Z., Shi, X. S., Zeng, Y. W., et al., 2023. Estimating the Thermal Conductivity of Granular Soils Based on a Simplified Homogenization Method. Cold Regions Science and Technology, 211: 103855. https://doi.org/10.1016/j.coldregions.2023.103855
      Liu, G. M., Zhang, B., Wang, L., et al., 2023. Permafrost Region and Permafrost Area in Globe and China. Earth Science, 48(12): 4689-4698(in Chinese with English abstract).
      Liu, Y. L., Wang, P., Wang, J. K., 2023. Formation and Stability Mechanism of Soil Aggregates: Progress and Prospect. Acta Pedologica Sinica, 60(3): 627-643(in Chinese with English abstract).
      Lu, N., Dong, Y., 2015. Closed-Form Equation for Thermal Conductivity of Unsaturated Soils at Room Temperature. Journal of Geotechnical and Geoenvironmental Engineering, 141(6): 04015016. https://doi.org/10.1061/(asce)gt.1943-5606.0001295
      Luo, D. L., Liu, J., Chen, F. F., et al., 2024. Research Progress and Prospect of Transition Zone in Permafrost. Earth Science, 49(11): 4063-4081(in Chinese with English abstract).
      Mustamo, P., Ronkanen, A. K., Berglund, Ö., et al., 2019. Thermal Conductivity of Unfrozen and Partially Frozen Managed Peat Soils. Soil and Tillage Research, 191: 245-255. https://doi.org/10.1016/j.still.2019.02.017
      Nan, B. W., 2019. Experimental Study on the Influence of Particle Gradation and Shape and Thermal Characteristics of Particles on Thermal Conductivity of Soil (Dissertation). Chongqing University, Chongqing (in Chinese with English abstract).
      Nan F. S., Li Z. X., Zhang X. P., et al., 2023. Particle Size Fractal Characteristics of Soils in Desert-Steppe Transition Zone along the Northern Bank of Yellow River Basin in Lanzhou. Earth Science, 48(3): 1195-1204(in Chinese with English abstract).
      Peth, S., Nellesen, J., Fischer, G., et al., 2010. Non-Invasive 3D Analysis of Local Soil Deformation under Mechanical and Hydraulic Stresses by μCT and Digital Image Correlation. Soil and Tillage Research, 111(1): 3-18. https://doi.org/10.1016/j.still.2010.02.007
      Qin, C., Zhou, J., 2023. On the Seismic Stability of Soil Slopes Containing Dual Weak Layers: True Failure Load Assessment by Finite-Element Limit-Analysis. Acta Geotechnica, 18(6): 3153-3175. https://doi.org/10.1007/s11440-022-01730-2
      Schweizer, S. A., Bucka, F. B., Graf-Rosenfellner, M., et al., 2019. Soil Microaggregate Size Composition and Organic Matter Distribution as Affected by Clay Content. Geoderma, 355: 113901. https://doi.org/10.1016/j.geoderma.2019.113901
      Shi, X. S., Herle, I., Muir Wood, D., 2018. A Consolidation Model for Lumpy Composite Soils in Open-Pit Mining. Géotechnique, 68(3): 189-204. https://doi.org/10.1680/jgeot.16.p.054
      Shi, X. S., Nie, J. Y., Zhao, J. D., et al., 2020. A Homogenization Equation for the Small Strain Stiffness of Gap-Graded Granular Materials. Computers and Geotechnics, 121: 103440. https://doi.org/10.1016/j.compgeo.2020.103440
      Shi, X. S., Zhao, J. D., 2020. Practical Estimation of Compression Behavior of Clayey/Silty Sands Using Equivalent Void-Ratio Concept. Journal of Geotechnical and Geoenvironmental Engineering, 146(6): 04020046. https://doi.org/10.1061/(asce)gt.1943-5606.0002267
      Shi, X. S., Zhao, J. D., Gao, Y. F., 2021. A Homogenization-Based State-Dependent Model for Gap-Graded Granular Materials with Fine-Dominated Structure. International Journal for Numerical and Analytical Methods in Geomechanics, 45(8): 1007-1028. https://doi.org/10.1002/nag.3189
      Shi, Y., Jia, X. L., Lü, G. E., et al., 2023. Determination of Maximum and Minimum Void Ratios of Calcareous Sand Considering Various Influence Factors. Journal of Ground Improvement, 5(4): 293-298(in Chinese with English abstract).
      Tan, W. F., Xu, Y., Shi, Z. H., et al., 2023. The Formation Process and Stabilization Mechanism of Soil Aggregates Driven by Binding Materials. Acta Pedologica Sinica, 60(5): 1297-1308(in Chinese with English abstract).
      Tang, P. P., Xu, J., Lu, Y. H., 2019. Experimental Study on Effects of Water Content and Temperature on Thermal Conductivity of Unsaturated Soils. Journal of Disaster Prevention and Mitigation Engineering, 39(4): 678-683(in Chinese with English abstract).
      Usowicz, B., Lipiec, J., Usowicz, J. B., et al., 2013. Effects of Aggregate Size on Soil Thermal Conductivity: Comparison of Measured and Model-Predicted Data. International Journal of Heat and Mass Transfer, 57(2): 536-541. https://doi.org/10.1016/j.ijheatmasstransfer.2012.10.067
      Wang, T., Wang, X. Y., Liu, D., et al., 2023. The Current and Future of Terrestrial Carbon Balance over the Tibetan Plateau. Scientia Sinica (Terrae), 53(7): 1506-1516(in Chinese).
      Wu, Q. B., Zhang, Z. Q., Gao, S. R., et al., 2016. Thermal Impacts of Engineering Activities and Vegetation Layer on Permafrostin Different Alpine Ecosystems of the Qinghai–Tibet Plateau, China. The Cryosphere, 10(4): 1695-1706. https://doi.org/10.5194/tc-10-1695-2016
      Wu, Q., Chen, G. X., Zhou, Z. L., et al., 2018. Experimental Investigation on Liquefaction Resistance of Fine-Coarse-Grained Soil Mixtures Based on Theory of Intergrain Contact State. Chinese Journal of Geotechnical Engineering, 40(3): 475-485(in Chinese with English abstract).
      Xiao, Y., Liu, H. L., Nan, B. W., et al., 2018. Gradation-Dependent Thermal Conductivity of Sands. Journal of Geotechnical and Geoenvironmental Engineering, 144(9): 06018010. https://doi.org/10.1061/(asce)gt.1943-5606.0001943
      Xu, X. T., Zhang, W. D., Fan, C. X., et al., 2020. Effects of Temperature, Dry Density and Water Content on the Thermal Conductivity of Genhe Silty Clay. Results in Physics, 16: 102830. https://doi.org/10.1016/j.rinp.2019.102830
      Xu, Y. S., Zhou, X. Y., Sun, D. A., et al., 2022. Thermal Properties of GMZ Bentonite Pellet Mixtures Subjected to Different Temperatures for High-Level Radioactive Waste Repository. Acta Geotechnica, 17(3): 981-992. https://doi.org/10.1007/s11440-021-01244-3
      Yang, Y. L., Zhang, T., Reddy, K. R., et al., 2022. Thermal Conductivity of Scrap Tire Rubber-Sand Composite as Insulating Material: Experimental Investigation and Predictive Modeling. Construction and Building Materials, 332: 127387. https://doi.org/10.1016/j.conbuildmat.2022.127387
      Yang, Z. W., 2018. Experimental Study on Thermal Conductivity of Typical Soils in Northeastern Inner Mongolia during Freezing/Thawing Process (Dissertation). Inner Mongolia University, Hohhot (in Chinese with English abstract).
      Zhang, X. R., Kong, G. Q., Wang, L. H., et al., 2020. Measurement and Prediction on Thermal Conductivity of Fused Quartz. Scientific Reports, 10(1): 6559. https://doi.org/10.1038/s41598-020-62299-y
      蔡国庆, 吴天驰, 王亚南, 等, 2020. 双孔结构非饱和压实土微观结构演化模型. 岩土力学, 41(11): 3583-3590.
      陈槐, 吴宁, 王艳芬, 等, 2021. 泥炭沼泽湿地研究的若干基本问题与研究简史. 中国科学: 地球科学, 51(1): 15-26.
      程国栋, 何平, 2001. 多年冻土地区线性工程建设. 冰川冻土, 23(3): 213-217.
      褚召祥, 周国庆, 饶中浩, 等, 2020. 颗粒岩土介质热导率预测关联式及其演化机制. 岩石力学与工程学报, 39(2): 384-397.
      桂跃, 谢正鹏, 高玉峰, 2023. 有机质对黏性土热传导系数的影响与机制. 岩土力学, 44(增刊1): 154-162.
      冷毅飞, 2011. 中俄石油管道多年冻土物理力学性质试验研究及温度场数值分析(硕士学位论文). 长春: 吉林大学.
      刘桂民, 张博, 王莉, 等, 2023. 全球和我国多年冻土分布范围和实际面积研究进展. 地球科学, 48(12): 4689-4698.
      刘亚龙, 王萍, 汪景宽, 2023. 土壤团聚体的形成和稳定机制: 研究进展与展望. 土壤学报, 60(3): 627-643.
      罗栋梁, 刘佳, 陈方方, 等, 2024. 多年冻土过渡带研究进展与展望. 地球科学, 49(11): 4063-4081.
      南博文, 2019. 颗粒级配和形状及颗粒热特性对土体导热系数影响的试验研究(硕士学位论文). 重庆: 重庆大学.
      南富森, 李宗省, 张小平, 等, 2023. 黄河北岸兰州段荒漠-草原过渡带土壤粒径分形特征. 地球科学, 48(3): 1195-1204.
      施勇, 贾献林, 吕国儿, 等, 2023. 钙质砂最大最小孔隙比的确定及其影响因素分析. 地基处理, 5(4): 293-298.
      谭文峰, 许运, 史志华, 等, 2023. 胶结物质驱动的土壤团聚体形成过程与稳定机制. 土壤学报, 60(5): 1297-1308.
      唐盼盼, 徐洁, 卢永洪, 2019. 含水率及温度影响非饱和土导热系数的试验研究. 防灾减灾工程学报, 39(4): 678-683.
      汪涛, 王晓昳, 刘丹, 等, 2023. 青藏高原碳汇现状及其未来趋势. 中国科学: 地球科学, 53(7): 1506-1516.
      吴琪, 陈国兴, 周正龙, 等, 2018. 基于颗粒接触状态理论的粗细粒混合料液化强度试验研究. 岩土工程学报, 40(3): 475-485.
      杨宗维, 2018. 冻/融过程中内蒙古东北部典型土体导热系数的试验研究(硕士学位论文). 呼和浩特: 内蒙古大学.
    • 加载中
    图(20) / 表(4)
    计量
    • 文章访问数:  17
    • HTML全文浏览量:  8
    • PDF下载量:  4
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-12-29
    • 网络出版日期:  2025-05-10
    • 刊出日期:  2025-04-25

    目录

      /

      返回文章
      返回