Shale Oil Mobility Evaluation and Multi-Scale Characterization of Oil Occurrence Space of Liushagang Formation in Weixinan Sag, Beibuwan Basin
-
摘要: 为了明确北部湾盆地涠西南凹陷流沙港组页岩油赋存空间及可动性特征,采用岩石薄片鉴定、荧光观测、扫描电镜、氮气吸附、高压压汞、数字岩心分析、核磁共振、多温阶热解等实验技术,对涠西南凹陷流沙港组不同类型页岩油的储层孔隙结构、页岩油赋存空间及可动性特征进行定性分析和定量表征.结果表明:(1)基质型页岩油储层主要发育纳米级的有机孔、黄铁矿晶间孔、黏土矿物粒间孔、以及层理缝、有机质粒缘收缩缝;基质型页岩油主要赋存在孔喉半径小于10 nm的储集空间内.纹层型页岩除了发育纳米‒微米级的有机孔、晶间孔及微裂缝外,还发育粒间孔、粒内孔等;纹层型页岩油主要赋存在孔喉半径为10~50 nm之间的储集空间内.夹层型页岩主要发育纳米‒微米级的晶间孔、粒间孔、粒内孔及溶蚀孔等;夹层型页岩油主要赋存在孔喉半径介于100~1 000 nm的储集空间内.(2)不同类型页岩油可动性差异明显,其中夹层型页岩油可动性最好,最大可动油含量为22.78~42.63 mg/g,平均32.71 mg/g,可动油比例高达80%以上;纹层型页岩油可动性次之,最大可动油含量为1.78~16.35 mg/g,平均10.88 mg/g,可动油比例在60%左右;基质型页岩油可动油含量和可动油比例最小.(3)有机质丰度与成熟度、储层物性及矿物组成等共同控制了页岩油的可动性;当Ro为1.0%左右,TOC介于1.5%~4%之间,页岩储层可动油最为富集;另外,储层孔喉半径越大、物性越好、脆性矿物含量越高、黏土矿物含量越低,页岩油可动性越好.基于上述研究成果,夹层型页岩具有较大的赋存空间及较好的可动性,是涠西南凹陷页岩油勘探的首选类型,并推动海上页岩油钻探获得重大突破.Abstract: In order to clarify the occurrence space and mobility characteristics of shale oil in the Liushagang Formation of the Weixinan Sag in Beibuwan Basin, comprehensive experimental techniques such as thin section identification, fluorescence observation, scanning electron microscopy, nitrogen adsorption, high-pressure mercury injection, digital core analysis, nuclear magnetic resonance, and multi-temperature pyrolysis were utilized to qualitatively and quantitatively investigate the pore structure, occurrence space, and mobility characteristics of different types of shale oil reservoirs in the Liushagang Formation of the Weixinan Sag. Results show that: (1) matrix-type shales mainly contain nanoscale pores in organic matter, intergranular pores in pyrite, interparticle pores in clay minerals, fractures at bedding interface, as well as shrinkage fractures on the edge of organic matter particles. Oil in the matrix-type shales mainly stores in pores with pore throat radius less than 10 nm. In addition to organic pores, intergranular pores and microfractures, there are intergranular and intragranular pores developed in laminated shale oil reservoirs. Oil in the laminated shales mainly stores in pore spaces with pore throat radius between 10 nm and 50 nm. The "sandwiched" shales mainly contain intergranular pores, intergranular pores, intraparticle pores, and dissolution-related pores at the nanometer to micrometer scale. Oil in the "sandwiched" shales mainly exists in pore spaces with pore throat radius ranging from 100 to 1 000 nm. (2) There are significant differences in the oil mobility of different types of shales. Among them, the "sandwiched" shales have the best mobility. The maximum movable oil content of the "sandwiched" shales is between 22.78 and 42.63 mg/g (averaging 32.71 mg/g), and the movable oil proportion is higher than 80%. The second is the laminated shales, with the maximum movable oil content of 1.78-16.35 mg/g (averaging 10.88 mg/g), and the movable oil proportion of about 60%. The matrix-type shales have the lowest movable oil content and movable oil proportion. (3) The abundance and thermal maturity of organic matter, reservoir pore space, and mineral composition control the shale oil mobility; When the thermal maturity (Ro) is around 1.0% and TOC content is between 1.5% and 4%, shale reservoirs are mostly enriched in movable oil. In addition, the larger the pore throat radius, the better the physical properties, the higher content of brittle minerals, the lower content of clay minerals, the better shale oil movability. Based on the above results, the "sandwiched" shales have the largest storage space and the best mobility, and are the preferred target for shale oil exploration in the Weixinan Sag. These are the basis for the significant breakthroughs in offshore shale oil drilling.
-
Key words:
- shale oil /
- occurrence space /
- mobility /
- movable oil content /
- Weixinan Sag /
- Beibuwan Basin /
- petroleum geology
-
图 5 涠西南凹陷不同类型页岩油储层铸体薄片与扫描电镜特征图
a. WY-1井,基质型,2 959 m流二段下层序油页岩,单偏光;b. WY-5井,基质型,2 520 m流二段下层序油页岩,扫描电镜,×20 000;c. WY-1井,基质型,2 959 m流二段下层序油页岩扫描电镜,×8 000;d. WY-5井,纹层型,2 546 m流二段下层序油页岩,单偏光;e. WY-5井,纹层型,2 546 m流二段下层序油页岩扫描电镜,×10 000;f. WY-5井,纹层型,2 553 m流二段下层序油页岩扫描电镜,×30 000;g. WY-1井,纹层型,3 053 m流二段下层序粉砂岩,单偏光;h. WY-1井,纹层型,3 053 m流二段下层序粉砂岩扫描电镜,×200;i. WY-6井,纹层型,2 923 m流二段下层序粉砂岩扫描电镜,×1 000;j. WY-1井,夹层型,3 060.2 m流三段上层序泥岩,单偏光;k. WY-1井,夹层型,3 060.2 m流三段上层序泥岩扫描电镜,×5 000;l. WY-1井,夹层型,3 060.2 m流三段上层序泥岩扫描电镜,×6 000;m. WY-1井,夹层型,3 059.8 m流三段上层序细砂岩,单偏光;n. WY-7井,夹层型,2 541 m流三段上层序细砂岩扫描电镜,×1 400;o. WY-7井,夹层型,2 441.2 m流三段上层序细砂岩扫描电镜,×2 800
Fig. 5. Thin section and SEM images of different kinds of shales in Weixinan Sag
图 6 涠西南凹陷不同类型页岩油三维聚焦离子束扫描电镜成像图及孔隙网络模型
a. WZ12-2-A10S1井,基质型,3 158.6 m流二段下层序油页岩三维聚焦离子束扫描;b. WZ12-2-A10S1井,基质型,3 158.6 m流二段下层序油页岩孔隙三维模型;c. WZ12-2-A10S1井,基质型,3 158.6 m流二段下层序油页岩孔隙网络模型;d. WY-1井,纹层型,3 021 m流二段下层序油页岩三维聚焦离子束扫描;e. WY-1井,纹层型,3 021 m流二段下层序油页岩孔隙三维模型;f. WY-1井,纹层型,3 021 m流二段下层序油页岩孔隙网络模型;g. WY-1井,夹层型,3 026.98 m流三段上层序粉砂岩三维聚焦离子束扫描;h. WY-1井,夹层型,3 026.98 m流三段上层序粉砂岩孔隙三维模型;i. WY-1井,夹层型,3 026.98 m流三段上层序粉砂岩孔隙网络模型
Fig. 6. 3D FIB-SEM images and pore network models of different kinds of shales in Weixinan Sag
-
Bechtel, A., Oberauer, K., Kostić, A., et al., 2018. Depositional Environment and Hydrocarbon Source Potential of the Lower Miocene Oil Shale Deposit in the Aleksinac Basin (Serbia). Organic Geochemistry, 115: 93-112. https://doi.org/10.1016/j.orggeochem.2017.10.009 Fu, N., Liu, J. S., 2018. Hydrocarbon Generation and Accumulation Characteristics of Three Type Source Rocks of Liu Ⅱ Segment in Beibuwan Basin. Natural Gas Geoscience, 29(7): 932-941 (in Chinese with English abstract). IUPAC, 1972. Manual of Symbols and Terminology. Pure and Applied Chemistry, 31: 578. Jarvie, D. M., 2012. Shale Resource Systems for Oil and Gas: Part 2—Shale-Oil Resource Systems. AAPG Bulletin, 97: 87-119. https://doi.org/10.1306/13321447M973489 Jiang, Q. G., Li, M. W., Qian, M. H., et al., 2016. Quantitative Characterization of Shale Oil in Different Occurrence States and Its Application. Petroleum Geology & Experiment, 38(6): 842-849 (in Chinese with English abstract). Jin, Z. J., Zhu, R. K., Liang, X. P., et al., 2021. Several Issues Worthy of Attention in Current Lacustrine Shale Oil Exploration and Development. Petroleum Exploration and Development, 48(6): 1276-1287 (in Chinese with English abstract). http://www.socolar.com/Article/Index?aid=100092117125&jid=100000049357 Li, H. B., Guo, H. K., Zhou, S. W., et al., 2016. NMR Analysis of Movable Remaining Oil of Low Pemeability Reservoir. Journal of Southwest Petroleum University (Science & Technology Edition), 38(1): 119-127 (in Chinese with English abstract). Li, Y. C., Lan, L., Wang, K., et al., 2019. Differences in Lacustrine Source Rocks of Liushagang Formation in the Beibuwan Basin. Acta Petrolei Sinica, 40(12): 1451-1459 (in Chinese with English abstract). doi: 10.7623/syxb201912004 Liang, X. W., Guan, Z. X., Niu, X. B., et al., 2020. Reservoir Characteristics of Shale Oil in Chang 7 Member of Yanchang Formation, Ordos Basin. Natural Gas Geoscience, 31(10): 1489-1500 (in Chinese with English abstract). Lopatin, N. V., Zubairaev, S. L., Kos, I. M., et al., 2003. Unconventional Oil Accumulations in the Upper Jurassic Bazhenov Black Shale Formation, West Siberian Basin: A Self-Sourced Reservoir System. Journal of Petroleum Geology, 26(2): 225-244. https://doi.org/10.1111/j.1747-5457.2003.tb00027.x Lu, S. F., Xue, H. T., Wang, M., et al., 2016. Several Key Issues and Research Trends in Evaluation of Shale Oil. Acta Petrolei Sinica, 37(10): 1309-1322 (in Chinese with English abstract). doi: 10.7623/syxb201610012 Sun, X. D., Li, Y. Q., Dai, Q. W., 2014. Laser Scanning Confocal Microscope in Micropores Study. Journal of Chinese Electron Microscopy Society, 33(2): 123-128 (in Chinese with English abstract). doi: 10.3969/j.1000-6281.2014.02.005 Wen, J. C., Hu, Q. H., Yang, S. Y., et al., 2023. Shale Reservoir Characteristics and Shale Oil Mobility Evaluation of Kong 2 Member, Cangdong Sag, Bohai Bay Basin. Special Oil and Gas Reservoirs, 30(4): 63-70 (in Chinese with English abstract). Xu, C. G., Deng, Y., Fan, C. W., et al., 2022. Geological Characteristics and Resource Potential of Shale Oil in Weixinan Sag of Beibu Gulf Basin. China Offshore Oil and Gas, 34(5): 1-12 (in Chinese with English abstract). Yang, X. B., 2016. Hydrocarbon Accumulation Conditions in Beibu-Gulf Basin, Northern South China Sea. China Petroleum Exploration, 21(4): 85-92 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2016.04.009 Yu, S., Deng, Y. H., Li H. Y., et al., 2020. Forming Conditions and Distribution Controlling Factors of Oil Shale in Liu 2 Member of Beibuwan Basin. China Offshore Oil and Gas, 32(2): 24-33 (in Chinese with English abstract). Yu, Z. Y., Zhang, X. W., Tan, J. J., et al., 2019. Occurrence Characteristics and Mobility of Shale Oil in Biyang Sag. Petroleum Geology and Engineering, 33(1): 42-46 (in Chinese with English abstract). doi: 10.3969/j.issn.1673-8217.2019.01.011 Zhang, H. M., 2019. Characteristics of Fine-Grained Reservoirs in the Chang 7 Member of the Southern Ordos Basin (Dissertation). China University of Petroleum, Beijing (in Chinese with English abstract). Zhang, J. C., Lin, L. M., Li, Y. X., et al., 2012. Classification and Evaluation of Shale Oil. Earth Science Frontiers, 19(5): 322-331 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DXQY201205032.htm Zhao, X. Z., Chen, C. W., Song, S. Y., et al., 2023. Shale Oil Reservoir Structure Characteristics of the Second Member of Kongdian Formation in Cangdong Sag, Bohai Bay Basin. Earth Science, 48(1): 63-76 (in Chinese with English abstract). Zhu, W. L., Jiang, W. R., 1998. Relations between Fractures and Hydrocarbon Reservoirs in Weixinan Sag. Acta Petrolei Sinica, 19(3): 6-10 (in Chinese with English abstract). doi: 10.3321/j.issn:0253-2697.1998.03.002 Zou, C. N., Yang, Z., Cui, J. W., et al., 2013. Formation Mechanism, Geological Characteristics and Development Strategy of Nonmarine Shale Oil in China. Petroleum Exploration and Development, 40(1): 14-26 (in Chinese with English abstract). http://www.cqvip.com/QK/90664X/20131/44578517.html 傅宁, 刘建升, 2018. 北部湾盆地流二段3类烃源岩的生烃成藏特征. 天然气地球科学, 29(7): 932-941. 蒋启贵, 黎茂稳, 钱门辉, 等, 2016. 不同赋存状态页岩油定量表征技术与应用研究. 石油实验地质, 38(6): 842-849. 金之钧, 朱如凯, 梁新平, 等, 2021. 当前陆相页岩油勘探开发值得关注的几个问题. 石油勘探与开发, 48(6): 1276-1287. 李海波, 郭和坤, 周尚文, 等, 2016. 低渗透储层可动剩余油核磁共振分析. 西南石油大学学报(自然科学版), 38(1): 119-127. 李友川, 兰蕾, 王柯, 等, 2019. 北部湾盆地流沙港组湖相烃源岩的差异. 石油学报, 40(12): 1451-1459. doi: 10.7623/syxb201912004 梁晓伟, 关梓轩, 牛小兵, 等, 2020. 鄂尔多斯盆地延长组7段页岩油储层储集性特征. 天然气地球科学, 31(10): 1489-1500. 卢双舫, 薛海涛, 王民, 等, 2016. 页岩油评价中的若干关键问题及研究趋势. 石油学报, 37(10): 1309-1322. doi: 10.7623/syxb201610012 孙先达, 李宜强, 戴琦雯, 2014. 激光扫描共聚焦显微镜在微孔隙研究中的应用. 电子显微学报, 33(2): 123-128. doi: 10.3969/j.1000-6281.2014.02.005 文家成, 胡钦红, 杨升宇, 等, 2023. 渤海湾盆地沧东凹陷孔二段页岩储层特征及页岩油可动性评价. 特种油气藏, 30(4): 63-70. doi: 10.3969/j.issn.1006-6535.2023.04.008 徐长贵, 邓勇, 范彩伟, 等, 2022. 北部湾盆地涠西南凹陷页岩油地质特征与资源潜力. 中国海上油气, 34(5): 1-12. 杨希冰, 2016. 南海北部北部湾盆地油气藏形成条件. 中国石油勘探, 21(4): 85-92. doi: 10.3969/j.issn.1672-7703.2016.04.009 于水, 邓运华, 李宏义, 等, 2020. 北部湾盆地流二段油页岩形成条件与分布控制因素. 中国海上油气, 32(2): 24-33. 余志远, 章新文, 谭静娟, 等, 2019. 泌阳凹陷页岩油赋存特征及可动性研究. 石油地质与工程, 33(1): 42-46. 张厚民, 2019. 鄂尔多斯盆地南部长7段细粒岩储层特征研究(硕士学位论文). 北京: 中国石油大学. 张金川, 林腊梅, 李玉喜, 等, 2012. 页岩油分类与评价. 地学前缘, 19(5): 322-331. 赵贤正, 陈长伟, 宋舜尧, 等, 2023. 渤海湾盆地沧东凹陷孔二段页岩层系不同岩性储层结构特征. 地球科学, 48(1): 63-76. doi: 10.3799/dqkx.2022.212 朱伟林, 江文荣, 1998. 北部湾盆地涠西南凹陷断裂与油气藏. 石油学报, 19(3): 6-10. doi: 10.3321/j.issn:0253-2697.1998.03.002 邹才能, 杨智, 崔景伟, 等, 2013. 页岩油形成机制、地质特征及发展对策. 石油勘探与开发, 40(1): 14-26. -