• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    四川理塘乱石包滑坡滑带土环剪强度特性与高位远程滑动机制

    袁浩 郭长宝 吴瑞安 闫鸣岐 钟宁

    袁浩, 郭长宝, 吴瑞安, 闫鸣岐, 钟宁, 2024. 四川理塘乱石包滑坡滑带土环剪强度特性与高位远程滑动机制. 地球科学, 49(12): 4659-4672. doi: 10.3799/dqkx.2024.040
    引用本文: 袁浩, 郭长宝, 吴瑞安, 闫鸣岐, 钟宁, 2024. 四川理塘乱石包滑坡滑带土环剪强度特性与高位远程滑动机制. 地球科学, 49(12): 4659-4672. doi: 10.3799/dqkx.2024.040
    Yuan Hao, Guo Changbao, Wu Ruian, Yan Mingqi, Zhong Ning, 2024. Shear Strength Characteristics of Sliding Zone Soils and Mechanisms of Luanshibao Long Runout Landslide in Litang County, Sichuan Province, China. Earth Science, 49(12): 4659-4672. doi: 10.3799/dqkx.2024.040
    Citation: Yuan Hao, Guo Changbao, Wu Ruian, Yan Mingqi, Zhong Ning, 2024. Shear Strength Characteristics of Sliding Zone Soils and Mechanisms of Luanshibao Long Runout Landslide in Litang County, Sichuan Province, China. Earth Science, 49(12): 4659-4672. doi: 10.3799/dqkx.2024.040

    四川理塘乱石包滑坡滑带土环剪强度特性与高位远程滑动机制

    doi: 10.3799/dqkx.2024.040
    基金项目: 

    国家自然科学基金项目 42372339

    中国地质调查局项目 DD20221816

    详细信息
      作者简介:

      袁浩(1997-),男,博士研究生,从事工程地质与地质灾害调查研究. ORCID:0009⁃0002⁃8387⁃7520. E⁃mail:yh_313@126.com

      通讯作者:

      郭长宝, 研究员, 主要从事工程地质与地质灾害调查研究. ORCID: 0000⁃0002⁃1764⁃9792. E⁃mail: guochangbao@163.com

    • 中图分类号: P694

    Shear Strength Characteristics of Sliding Zone Soils and Mechanisms of Luanshibao Long Runout Landslide in Litang County, Sichuan Province, China

    • 摘要: 高位远程滑坡具有高位剪出、高速滑动与强动力剪切等特征,由于高速滑动过程中路径松散层饱水特性不同,其滑坡的高速远程滑动机制也存在差异.四川理塘乱石包高位远程滑坡运动路径松散层饱水,在滑坡发育特征调查的基础上,基于ICL-2高速环剪仪,对滑带土开展了200 kPa、400 kPa和600 kPa等不同法向应力下的高速不排水环剪试验,剪切速度为50 cm/s,剪切距离为300 m.试验结果表明,滑带的演化可以划分为初始剪缩、剪胀-剪缩、假剪胀、压缩排水等4个阶段,孔隙水压力呈非线性增长,与法向位移具有正相关性,在剪切距离至100 m时,孔隙水压力可上升至总应力的50%以上,颗粒破碎及其导致的滑带液化是滑带土抗剪强度降低的主要原因,滑带液化会导致试样剪切强度降低50%以上,孔隙水压力上升至总应力70%以上.乱石包滑坡的形成过程可概括为:地震作用-高速启滑、滑体解体碎屑化、滑带液化促进碎屑流远程运动、滑体减速堆积.研究成果可为运动路径松散层饱水型高位远程滑坡长距离滑动机制研究提供参考.

       

    • 图  1  乱石包高位远程滑坡区域位置与发育特征

      a. 乱石包滑坡区域位置;b. 乱石包高位远程滑坡发育特征;c. 崩滑源区照片(镜向EW);d. 堆积区前缘(镜向SW)

      Fig.  1.  Location map and development characteristics of the Luanshibao high-altitude and long runout landslide

      图  2  乱石包滑坡工程地质剖面图

      Fig.  2.  Engineering geological profile of the Luanshibao landslide

      图  3  ICL-2高速动态环剪仪

      a. ICL-2环剪仪主要组成;b. 环剪单元主要组成;c. 剪切盒主要构成

      Fig.  3.  ICL-2 high-speed ring shear apparatus

      图  4  不同法向应力下剪切结果曲线

      a. 法向应力200 kPa剪切曲线;b. 法向应力200 kPa剪切试样特征;c. 法向应力400 kPa剪切曲线;d.法向应力400 kPa剪切试样特征;e. 法向应力600 kPa剪切曲线f. 法向应力600 kPa剪切试样特征

      Fig.  4.  Shear result curves under different normal stresses

      图  5  不同法向应力下试样剪切强度参数分析

      a. 法向应力200 kPa下应力路径;b. 法向应力400 kPa下应力路径;c. 法向应力600 kPa下应力路径;d. 剪切强度参数拟合

      Fig.  5.  Analysis of shear strength parameters for samples under different normal stresses

      图  6  环剪试样剪切分层特征

      a. 法向应力200 kPa下试样剪切特征;b. 法向应力600 kPa下剪切带分层特征;c. 法向应力400 kPa下剪切带分层特征

      Fig.  6.  Shear layering characteristics of the ring shear test samples

      图  7  环剪试验前后颗粒破碎特征

      a. 环剪试验前后颗粒粒径对比;b. 主剪切带与非主剪切带对比;c. 不同法向应力下颗粒破碎程度对比;d. 法向应力600 kPa下剪切发育特征

      Fig.  7.  Characteristics of particle breakage characteristics before and after the ring shear test

      图  8  环剪试验中滑动剪切带演化过程和力学特性曲线

      Fig.  8.  The evolution process of sliding zone and mechanical property curves in ring shear test

      图  9  乱石包滑坡远程运动模式

      a. 乱石包滑坡远程运动过程;b. 乱石包滑带剖面(镜向SE)

      Fig.  9.  Long runout mechanisms of the Luanshidabao landslide

      表  1  乱石包滑坡高速环剪试验方案

      Table  1.   The experimental scheme for high-speed ring shear testing of the Luanshibao landslide

      样品编号 试验工况 剪切距离(m) 法向应力(kPa) 剪切速度(cm/s) 采样频率(Hz) 颗粒分析 破坏形态分析
      LSB⁃S1 高速(50 cm/s)饱和不排水 300 200 50 5 筛分环剪前后试样 高清相机拍照取样
      LSB⁃S2 400
      LSB⁃S3 600
      下载: 导出CSV

      表  2  乱石包滑坡高速环剪试样强度参数统计

      Table  2.   Statistical analysis of strength parameters for high-speed ring shear samples of the Luanshibao landslide

      试样编号 BD 法向应力(kPa) 峰值剪应力(kPa) 残余剪应力(kPa) 残余孔隙水压力(kPa) 峰值内摩擦角(°) 残余内摩擦角(°)
      LSB⁃S1 0.96 200 184 85 145 42.6 23.6
      LSB⁃S2 0.95 400 336 158 312 40.0 21.3
      LSB⁃S3 0.95 600 515 195 434 40.6 17.5
      下载: 导出CSV

      表  3  环剪试验试样破碎特征

      Table  3.   Breakage characteristics of the ring shear test samples

      样品编号 法向应力(kPa) 最大法向压缩厚度(mm) 压缩百分比(%) 颗粒破碎率Bg(%) 中值粒径d50(mm)
      LSB⁃S1 200 2.73 6.83 80.4 0.33
      LSB⁃S2 400 2.90 7.25 85.2 0.32
      LSB⁃S3 600 2.93 7.33 95.5 0.30
      下载: 导出CSV
    • Agung, M. W., Sassa, K., Fukuoka, H., et al., 2004. Evolution of Shear-Zone Structure in Undrained Ring-Shear Tests. Landslides, 1(2): 101-112. https://doi.org/10.1007/s10346-004-0001-9
      Cheng, Q. G., Zhang, Z. Y., Huang, R. Q., 2007. Study on Dynamics of Rock Avalanches: State of the Art Report. Journal of Mountain Science, 25(1): 72-84 (in Chinese with English abstract).
      Cui, S. H., Pei, X. J., Jiang, Y., et al., 2021. Liquefaction within a Bedding Fault: Understanding the Initiation and Movement of the Daguangbao Landslide Triggered by the 2008 Wenchuan Earthquake (Ms = 8.0). Engineering Geology, 295: 106455. https://doi.org/10.1016/j.enggeo.2021.106455
      Dai, Z. L., Wang, F. W., Cheng, Q. G., et al., 2019. A Giant Historical Landslide on the Eastern Margin of the Tibetan Plateau. Bulletin of Engineering Geology and the Environment, 78(3): 2055-2068. https://doi.org/10.1007/s10064-017-1226-x
      Fukuoka, H., Sassa, K., Wang, G. H., et al., 2006. Observation of Shear Zone Development in Ring-Shear Apparatus with a Transparent Shear Box. Landslides, 3(3): 239-251. https://doi.org/10.1007/s10346-006-0043-2
      Guo, C. B., Montgomery, D. R., Zhang, Y. S., et al., 2020. Evidence for Repeated Failure of the Giant Yigong Landslide on the Edge of the Tibetan Plateau. Scientific Reports, 10: 14371. https://doi.org/10.1038/s41598-020-71335-w
      Guo, C. B., Yan, Y. Q., Zhang, Y. S., et al., 2022. Research Progress and Prospect of Failure Mechanism of Large Deep-Seated Creeping Landslides in Tibetan Plateau, China. Earth Science, 47(10): 3677-3700 (in Chinese with English abstract).
      Guo, C. B., Zhang, Y. S., Montgomery, D. R., et al., 2016. How Unusual is the Long-Runout of the Earthquake-Triggered Giant Luanshibao Landslide, Tibetan Plateau, China? Geomorphology, 259: 145-154. https://doi.org/10.1016/j.geomorph.2016.02.013
      Guo, C. B., Zhang, Y. S., Zhang, Y. N., et al., 2023. Freeze-Thaw Cycle Effects on Granite and the Formation Mechanism of Long-Runout Landslides: Insights from the Luanshibao Case Study in the Tibetan Plateau, China. Bulletin of Engineering Geology and the Environment, 82(10): 394. https://doi.org/10.1007/s10064-023-03427-6
      Habib, P., 1975. Production of Gaseous Pore Pressure during Rock Slides. Rock Mechanics, 7(4): 193-197. https://doi.org/10.1007/bf01246865
      Hu, M. J., Wang, F. W., Cheng, Q. G., 2009. Formation of Tremendous Yigong Landslide Based on High-Speed Shear Tests. Chinese Journal of Geotechnical Engineering, 31(10): 1602-1606 (in Chinese with English abstract).
      Hu, W., Chang, C. S., McSaveney, M., et al., 2020. A Weakening Rheology of Dry Granular Flows with Extensive Brittle Grain Damage in High-Speed Rotary Shear Experiments. Geophysical Research Letters, 47(11): e2020GL087763. https://doi.org/10.1029/2020gl087763
      Marsal, R. J., 1967. Large Scale Testing of Rockfill Materials. Journal of the Soil Mechanics and Foundations Division, 93(2): 27-43. https://doi.org/10.1061/jsfeaq.0000958
      Plafker, G., Ericksen, G. E., 1978. Nevados Huascarán Avalanches, Peru. Developments in Geotechnical Engineering. Elsevier, Amsterdam, 277-314. https://doi.org/10.1016/b978-0-444-41507-3.50016-7
      Sassa, K., Dang, K., He, B., et al., 2014. A New High-Stress Undrained Ring-Shear Apparatus and Its Application to the 1792 Unzen-Mayuyama Megaslide in Japan. Landslides, 11(5): 827-842. https://doi.org/10.1007/s10346-014-0501-1
      Sassa, K., Fukuoka, H., Scarascia-Mugnozza, G., et al., 1996. Earthquake-Induced-Landslides: Distribution, Motion and Mechanisms. Soils and Foundations, 36: 53-64. https://doi.org/10.3208/sandf.36.Special_53
      Siman-Tov, S., Brodsky, E. E., 2018. Gravity-Independent Grain Size Segregation in Experimental Granular Shear Flows as a Mechanism of Layer Formation. Geophysical Research Letters, 45(16): 8136-8144. https://doi.org/10.1029/2018gl078486
      Timothy, R. H. D., 1982. Spreading of Rock Avalanche Debris by Mechanical Fluidization. Rock Mechanics, 15(1): 9-24. https://doi.org/10.1007/bf01239474
      Timothy, R. H. D., McSaveney, M. J., Hodgson, K. A., 1999. A Fragmentation-Spreading Model for Long Runout Rock Avalanches. Canadian Geotechnical Journal, 36(6): 1096-1110. https://doi.org/10.1139/t99-067
      Wang, F. W., Sassa, K., 2007. Initiation and Traveling Mechanisms of the May 2004 Landslide-Debris Flow at Bettou-Dani of the Jinnosuke-Dani Landslide, Haku-San Mountain, Japan. Soils and Foundations, 47(1): 141-152. https://doi.org/10.3208/sandf.47.141
      Wang, F. W., 2019. Liquefactions Caused by Structure Collapse and Grain Crushing of Soils in Rapid and Long Runout Landslides Triggered by Earthquakes. Journal of Engineering Geology, 27(1): 98-107 (in Chinese with English abstract).
      Wang, Y. F., Cheng, Q. G., Lin, Q. W., et al., 2018. Insights into the Kinematics and Dynamics of the Luanshibao Rock Avalanche (Tibetan Plateau, China) Based on Its Complex Surface Landforms. Geomorphology, 317: 170-183. https://doi.org/10.1016/j.geomorph.2018.05.025
      Wang, Y. F., Cheng, Q. G., Lin, Q. W., et al., 2023. Rock Avalanches in the Tibetan Plateau of China. In: Alcántara-Ayala, I., Arbanas, Ž., Cuomo, S., et al., eds., Progress in Landslide Research and Technology. Springer, Switzerland, 55-111. https://doi.org/10.1007/978-3-031-44296-4_2
      Wu, R. A., Zhang, Y. S., Guo, C. B., et al., 2018. Characteristics and Formation Mechanisms of the Lagangcun Giant Ancient Landslide in Jiacha, Tibet. Acta Geologica Sinica, 92(6): 1324-1334(in Chinese with English abstract).
      Xu, X. W., Wen, X. Z., Yu, G. H., et al., 2005. Average Slip Rate, Earthquake Rupturing Segmentation and Recurrence Behavior on the Litang Fault Zone, Western Sichuan Province, China. Science in China: Earth Sciences, 48(8): 1183-1196. https://doi.org/10.1360/04yd0072
      Yan, Y. Q., Guo, C. B., Zhong, N., et al., 2022. Deformation Characteristics of Jiaju Ancient Landslide Based on InSAR Monitoring Method, Sichuan, China. Earth Science, 47(12): 4681-4697(in Chinese with English abstract).
      Yin, Y. P., 2000. Characteristics and Disaster Mitigation Research on the Giant Landslide in Bomi, Yigong, Xizang. Hydrogeology & Engineering Geology, 44(4): 8-11 (in Chinese with English abstract).
      Yin, Y. P., Li, B., Gao, Y., et al., 2023. Geostructures, Dynamics and Risk Mitigation of High-Altitude and Long-Runout Rockslides. Journal of Rock Mechanics and Geotechnical Engineering, 15(1): 66-101. https://doi.org/10.1016/j.jrmge.2022.11.001
      Yin, Y. P., Wang, W. P., Zhang, N., et al., 2017. Long Runout Geological Disaster Initiated by the Ridge-Top Rockslide in a Strong Earthquake Area: A Case Study of the Xinmo Landslide in Maoxian County, Sichuan Province. Geology in China, 44(5): 827-841(in Chinese with English abstract).
      Zeng, Q. L., Yuan, G. X., Davies, T., et al., 2020. 10Be Dating and Seismic Origin of Luanshibao Rock Avalanche in SE Tibetan Plateau and Implications on Litang Active Fault. Landslides, 17(5): 1091-1104. https://doi.org/10.1007/s10346-019-01319-z
      Zeng, Q. L., Wei, R. Q., McSaveney, M., et al., 2021. From Surface Morphologies to Inner Structures: Insights into Hypermobility of the Nixu Rock Avalanche, Southern Tibet, China. Landslides, 18(1): 125-143. https://doi.org/10.1007/s10346-020-01503-6
      Zhang, M., Yin, Y. P., Wu, S. R., et al., 2010. Development Status and Prospects of Studies on Kinematics of Long Runout Rock Avalanches. Journal of Engineering Geology, 18(6): 805-817(in Chinese with English abstract).
      Zhu, L., Cui, S. H., Pei, X. J., et al., 2022. Investigation of the Characteristics and Long-Runout Movement Mechanisms of the Luanshibao Landslide on the Eastern Margin of the Qinghai-Tibet Plateau. Soil Dynamics and Earthquake Engineering, 153: 107094. https://doi.org/10.1016/j.soildyn.2021.107094
      程谦恭, 张倬元, 黄润秋, 2007. 高速远程崩滑动力学的研究现状及发展趋势. 山地学报, 25(1): 72-84.
      郭长宝, 闫怡秋, 张永双, 等, 2022. 青藏高原大型深层蠕滑型滑坡变形机制研究进展与展望. 地球科学, 47(10): 3677-3700.
      胡明鉴, 汪发武, 程谦恭, 2009. 基于高速环剪试验易贡巨型滑坡形成原因试验探索. 岩土工程学报, 31(10): 1602-1606.
      汪发武, 2019. 地震诱发的高速远程滑坡过程中土结构破坏和土粒子破碎引起的两种不同的液化机理. 工程地质学报, 27(1): 98-107.
      吴瑞安, 张永双, 郭长宝, 等, 2018. 西藏加查拉岗村巨型古滑坡发育特征与形成机理研究. 地质学报, 92(6): 1324-1334.
      闫怡秋, 郭长宝, 钟宁, 等, 2022. 基于InSAR形变监测的四川甲居古滑坡变形特征. 地球科学, 47(12): 4681-4697.
      殷跃平, 2000. 西藏波密易贡高速巨型滑坡特征及减灾研究. 水文地质工程地质, 27(4): 8-11.
      殷跃平, 王文沛, 张楠, 等, 2017. 强震区高位滑坡远程灾害特征研究: 以四川茂县新磨滑坡为例. 中国地质, 44(5): 827-841.
      张明, 殷跃平, 吴树仁, 等, 2010. 高速远程滑坡-碎屑流运动机理研究发展现状与展望. 工程地质学报, 18(6): 805-817.
    • 加载中
    图(9) / 表(3)
    计量
    • 文章访问数:  269
    • HTML全文浏览量:  81
    • PDF下载量:  38
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-12-04
    • 网络出版日期:  2025-01-09
    • 刊出日期:  2024-12-25

    目录

      /

      返回文章
      返回