• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    高寒山区土壤溶解性有机质特征及其对河流溶解性有机质输出的影响

    熊净 孙自永 胡雅璐 马瑞

    熊净, 孙自永, 胡雅璐, 马瑞, 2024. 高寒山区土壤溶解性有机质特征及其对河流溶解性有机质输出的影响. 地球科学, 49(11): 4169-4183. doi: 10.3799/dqkx.2024.043
    引用本文: 熊净, 孙自永, 胡雅璐, 马瑞, 2024. 高寒山区土壤溶解性有机质特征及其对河流溶解性有机质输出的影响. 地球科学, 49(11): 4169-4183. doi: 10.3799/dqkx.2024.043
    Xiong Jing, Sun Ziyong, Hu Yalu, Ma Rui, 2024. Characteristics of Dissolved Organic Matter in Alpine Mountain Soils and Its Effect on Riverine Dissolved Organic Matter Export. Earth Science, 49(11): 4169-4183. doi: 10.3799/dqkx.2024.043
    Citation: Xiong Jing, Sun Ziyong, Hu Yalu, Ma Rui, 2024. Characteristics of Dissolved Organic Matter in Alpine Mountain Soils and Its Effect on Riverine Dissolved Organic Matter Export. Earth Science, 49(11): 4169-4183. doi: 10.3799/dqkx.2024.043

    高寒山区土壤溶解性有机质特征及其对河流溶解性有机质输出的影响

    doi: 10.3799/dqkx.2024.043
    基金项目: 

    国家自然科学基金项目 41772270

    详细信息
      作者简介:

      熊净(1998-),男,博士研究生,主要从事冻土区土壤和河流碳循环的研究工作. ORCID:0009-0007-7309-9733. E-mail:xjing@cug.edu.cn

      通讯作者:

      孙自永, ORCID:0000-0001-6556-8105. E-mail: ziyong.sun@cug.edu.cn

    • 中图分类号: P64

    Characteristics of Dissolved Organic Matter in Alpine Mountain Soils and Its Effect on Riverine Dissolved Organic Matter Export

    • 摘要: 冻土区土壤中存储有大量有机碳.目前对高寒山区多年冻土区和季节冻土区土壤有机质特征及其差异研究较少,对土壤中溶解性有机质(dissolved organic matter,DOM)特征及其对河水中DOM输出的影响认识尚不明确.为了解高寒山区土壤中溶解性有机质的分布规律、成分特征及对水体中DOM输出特征的控制作用,本研究采集青藏高原东北部葫芦沟小流域中多年冻土区和季节冻土区不同深度(< 1 m)土壤样品,对土壤中总有机碳(soil organic carbon,SOC)和溶解性有机碳(dissolved organic carbon,DOC)含量、DOM的光谱特征、DOC的生物可降解性(biodegradable dissolved organic matter,BDOC)进行分析,并将其与不同水体中DOM特征的季节性变化进行对比.研究发现:多年冻土区与季节冻土区土壤在DOC的生物可降解性及微生物活动方面存在明显差异;多年冻土区土壤中SOC含量较高,但DOC含量较低,DOM的腐殖化程度和芳香性低于季节冻土区;季节冻土区的土壤中BDOC占比高于多年冻土.研究表明:高寒山区土壤水文特性对土壤有机质含量和特征的显著影响,其中土壤含水率是重要影响因素;多年冻土区浅层土壤DOM对河水DOC浓度和成分变化起决定性作用;相比之下,季节冻土区土壤对河水DOC浓度和成分变化直接影响较小,水文条件影响着水体中DOM的输出特征.本研究成果对高寒山区冻土退化条件下的碳循环研究具有指导意义.

       

    • 图  1  葫芦沟在黑河上游的位置(a)和葫芦沟流域的地形地貌和采集点分布(b)

      Fig.  1.  The position of the Hulugou catchment within the Heihe River basin (a) and the extent of the Hulugou catchment, soil sampling points, and vegetation types in the Hulugou catchment (b)

      图  2  葫芦沟流域内7个采样点土壤的容重、重量含水量、SOC含量、DOC含量随深度的变化

      Fig.  2.  Changes in soil bulk density (BD), soil water content (SWC), SOC and DOC with depth at seven sampling points within the Hulugou catchment watershed

      图  3  葫芦沟流域35个土壤样品浸提液中DOM的6个主要荧光组分

      Fig.  3.  Six major fluorescent components of DOM in the leachate of 35 soil samples from the Hulugou catchment

      图  4  葫芦沟流域内7个采样点上土壤浸提液DOM中6个主要荧光组分的占比(a、b、c代表不同样点间的显著性差异,具有相同的字母符号代表组间无显著性差异,显著性水平p < 0.05)

      Fig.  4.  The proportions of the six main fluorescence components of DOM in the soil leachate from seven sampling points within the Hulugou catchment

      图  5  葫芦沟流域内7个采样点上土壤浸提液中DOM光谱特征参数随深度的变化

      Fig.  5.  Changes in the spectral characteristic parameters of DOM in the soil leachate with depth at seven sampling points within the Hulugou catchment

      图  6  葫芦沟流域7个采样点上土壤浸提液中BDOC占比随深度的变化(a)以及BDOC占比与C2组分(b)、C6组分(c)变化量的线性拟合

      Fig.  6.  Changes in the proportion of BDOC in the soil leachate with depth at seven sampling points in the Hulugou catchment watershed (a), linear fitting of BDOC with changes in components C2 (b) and C6 (c)

      图  7  流域内不同水体中DOC浓度和DOM的各特征光谱参数在不同冻融时期的变化特征

      Fig.  7.  Variation characteristics of DOC concentration and DOM optical indices in different water bodies within the watershed during different freeze-thaw periods

      图  8  环境因子与DOM成分特征BDOC的冗余分析(RDA) (a)和BDOC与环境因子、DOM成分特征的相关性热度图及Mantel检验(b)

      Fig.  8.  Redundancy analysis (RDA) of environmental factors and DOM component characteristics BDOC (a) and correlation heat map and Mantel test of BDOC correlation with environmental factors and DOM component characteristics (b)

      表  1  土壤采样点位信息

      Table  1.   Information on soil sampling locations

      采样点编号 海拔高度(m) 采样深度(cm) 冻土类型
      S01 2 990 80 季节冻土
      S02 3 140 80
      S03 3 340 80 多年冻土
      S04 3 465 100
      S05 3 540 100
      S06 3 655 40
      S07 3 950 60
      下载: 导出CSV

      表  2  光谱特征参数的计算公式和指示意义

      Table  2.   Basic information of spectral characteristic parameters

      光谱参数 计算公式 参数意义
      SUVA254 $ \frac{\mathrm{a}\mathrm{b}{\mathrm{s}}_{254\times 100}}{{C}_{\mathrm{D}\mathrm{O}\mathrm{C}}} $ 表征DOM中芳香性化合物含量,与DOM芳香化程度呈正相关关系.
      SR S275-295/S350-400 反映有机质来源与类型,包括分子量大小、光漂白活性.
      HIX λEx=254 nm
      ΣEm435-480Em300-445
      表征DOM的腐殖化程度,值越高表示DOM腐殖化程度越高.
      FI λEx=370 nm
      Em470 nm/Em520 nm
      表征芳香族有机质和非芳香族有机质对DOM荧光强度的相对贡献.
      BIX λEx=310 nm
      Em380 nm/Em430 nm
      反映DOM的生物内源和外源输入的相对贡献程度.
      注:abs254代表紫外可见光谱在波长为254 nm时的值;S275-295代表紫外可见光谱在波长为275~295 nm波长范围的光谱斜率系数;Ex代表激发波长;Em代表发射波长.
      下载: 导出CSV

      表  3  葫芦沟流域35个土壤样品浸提液中DOM的6个主要荧光组分的特征

      Table  3.   Characteristics of the six major fluorescent components of DOM in the leachate of 35 soil samples of Hulugou catchment

      组分 激发波长最大值(nm) 发射波长最大值(nm) 对应有机质特征 可能来源
      C1 250(300) 420 来自陆地水生环境的微生物衍生的腐殖质样组分 陆生植物和土壤有机质;微生物过程
      C2 < 250(300) 425 陆地来源腐殖质 陆生植物和土壤有机质
      C3 220 550 陆地来源的腐殖质样组分或芳香族共轭大分子物质 陆生植物和土壤有机质
      C4 265(370) 465 来自陆地水生环境腐殖质样组分 陆地植物和土壤有机质
      C5 265(450) 495 陆地来源腐殖质;较大分子量和较强的芳香性 陆生植物和土壤有机质
      C6 275 345 类蛋白质 色氨酸样;微生物来源
      下载: 导出CSV
    • Bianchi, T. S., Wysocki, L. A., Schreiner, K. M., et al., 2011. Sources of Terrestrial Organic Carbon in the Mississippi Plume Region: Evidence for the Importance of Coastal Marsh Inputs. Aquatic Geochemistry, 17(4): 431-456. https://doi.org/10.1007/s10498-010-9110-3
      Campbell, T. P., Ulrich, D. E. M., Toyoda, J., et al., 2022. Microbial Communities Influence Soil Dissolved Organic Carbon Concentration by Altering Metabolite Composition. Frontiers in Microbiology, 12: 799014. https://doi.org/10.3389/fmicb.2021.799014
      Chaudhary, N., Miller, P. A., Smith, B., 2017. Modelling Past, Present and Future Peatland Carbon Accumulation across the Pan-Arctic Region. Biogeosciences, 14(18): 4023-4044. https://doi.org/10.5194/bg-14-4023-2017
      Chen, M. L., Hur, J., Gu, J. D., et al., 2023. Microbial Degradation of Various Types of Dissolved Organic Matter in Aquatic Ecosystems and Its Influencing Factors. Science China Earth Sciences, 66(2): 169-189. https://doi.org/10.1007/s11430-021-9996-1
      Chen, R. S., Song, Y. X., Kang, E. S., et al., 2014. A Cryosphere-Hydrology Observation System in a Small Alpine Watershed in the Qilian Mountains of China and Its Meteorological Gradient. Arctic, Antarctic, and Alpine Research, 46(2): 505-523. https://doi.org/10.1657/1938-4246-46.2.505
      Cheng, G. D., Jin, H. J., 2013. Permafrost and Groundwater on the Qinghai-Tibet Plateau and in Northeast China. Hydrogeology Journal, 21(1): 5-23. https://doi.org/10.1007/s10040-012-0927-2
      Ding, Y. J., Ye, B. S., Liu, S. Y., 2000. Impact of Climate Change on the Alpine Streamflow during the Past 40 a in the Middle Part of the Qilian Mountains, Northwestern China. Journal of Glaciolgy and Geocryology, 22(3): 193-199 (in Chinese with English abstract).
      Garten, C. T., Hanson, P. J., 2006. Measured Forest Soil C Stocks and Estimated Turnover Times along an Elevation Gradient. Geoderma, 136(1-2): 342-352. https://doi.org/10.1016/j.geoderma.2006.03.049
      Hu, Y. L., Ma, R., Sun, Z. Y., et al., 2023. Groundwater Plays an Important Role in Controlling Riverine Dissolved Organic Matter in a Cold Alpine Catchment, the Qinghai-Tibet Plateau. Water Resources Research, 59(2): e2022WR032426. https://doi.org/10.1029/2022WR032426
      Lim, A. G., Loiko, S. V., Pokrovsky, O. S., 2022. Sizable Pool of Labile Organic Carbon in Peat and Mineral Soils of Permafrost Peatlands, Western Siberia. Geoderma, 409: 115601. https://doi.org/10.1016/j.geoderma.2021.115601
      Liu, F. T., Kou, D., Abbott, B. W., et al., 2019. Disentangling the Effects of Climate, Vegetation, Soil and Related Substrate Properties on the Biodegradability of Permafrost-Derived Dissolved Organic Carbon. Journal of Geophysical Research: Biogeosciences, 124(11): 3377-3389. https://doi.org/10.1029/2018jg004944
      Logozzo, L. A., Hosen, J. D., McArthur, J., et al., 2023. Distinct Drivers of Two Size Fractions of Operationally Dissolved Iron in a Temperate River. Limnology and Oceanography, 68(6): 1185-1200. https://doi.org/10.1002/lno.12338
      Ma, R., Sun, Z. Y., Chang, Q. X., et al., 2021. Control of the Interactions between Stream and Groundwater by Permafrost and Seasonal Frost in an Alpine Catchment, Northeastern Tibet Plateau, China. Journal of Geophysical Research: Atmospheres, 126(5): e2020jd033689. https://doi.org/10.1029/2020jd033689
      Marcé, R., Verdura, L., Leung, N., 2021. Dissolved Organic Matter Spectroscopy Reveals a Hot Spot of Organic Matter Changes at the River-Reservoir Boundary. Aquatic Sciences, 83(4): 67. https://doi.org/10.1007/s00027-021-00823-6
      Marshall, L. P., Kaufman, D. S., Anderson, R. S., et al., 2023. Organic‐Matter Accumulation and Degradation in Holocene Permafrost Deposits along a Central Alaska Hillslope. Journal of Geophysical Research: Biogeosciences, 128(9): 007290. https://doi.org/10.1007/s00027-021-00823-6
      Moyano, F. E., Manzoni, S., Chenu, C., 2013. Responses of Soil Heterotrophic Respiration to Moisture Availability: An Exploration of Processes and Models. Soil Biology and Biochemistry, 59: 72-85. https://doi.org/10.1016/j.soilbio.2013.01.002
      Mu, C., Zhang, T., Wu, Q., et al., 2015. Editorial: Organic Carbon Pools in Permafrost Regions on the Qinghai-Xizang (Tibetan) Plateau. Cryosphere, 9(2): 479-486. doi: 10.5194/tc-9-479-2015
      Mu, C. C., Zhang, T. J., Wu, Q. B., et al., 2014. Stable Carbon Isotopes as Indicators for Permafrost Carbon Vulnerability in Upper Reach of Heihe River Basin, Northwestern China. Quaternary International, 321: 71-77. https://doi.org/10.1016/j.quaint.2013.12.001
      Mu, C. C., Zhang, T. J., Zhao, Q., et al., 2016. Soil Organic Carbon Stabilization by Iron in Permafrost Regions of the Qinghai-Tibet Plateau. Geophysical Research Letters, 43(19): 10286-10294. https://doi.org/10.1002/2016gl070071
      Murphy, K. R., Stedmon, C. A., Graeber, D., et al., 2013. Fluorescence Spectroscopy and Multi-Way Techniques. PARAFAC. Analytical Methods, 5(23): 6557-6566. https://doi.org/10.1039/C3AY41160E
      Obu, J., 2021. How Much of the Earth's Surface is Underlain by Permafrost? Journal of Geophysical Research: Earth Surface, 126(5): e2021JF006123. https://doi.org/10.1029/2021jf006123
      Olefeldt, D., Persson, A., Turetsky, M. R., 2014. Influence of the Permafrost Boundary on Dissolved Organic Matter Characteristics in Rivers within the Boreal and Taiga Plains of Western Canada. Environmental Research Letters, 9(3): 035005. https://doi.org/10.1088/1748-9326/9/3/035005
      Öquist, M. G., Bishop, K., Grelle, A., et al., 2014. The Full Annual Carbon Balance of Boreal Forests is Highly Sensitive to Precipitation. Environmental Science & Technology Letters, 1(7): 315-319. https://doi.org/10.1021/ez500169j
      Osburn, C. L., Mikan, M. P., Etheridge, J. R., et al., 2015. Seasonal Variation in the Quality of Dissolved and Particulate Organic Matter Exchanged between a Salt Marsh and Its Adjacent Estuary. Journal of Geophysical Research: Biogeosciences, 120(7): 1430-1449. https://doi.org/10.1002/2014jg002897
      Payandi-Rolland, D., Shirokova, L. S., Nakhle, P., et al., 2020. Aerobic Release and Biodegradation of Dissolved Organic Matter from Frozen Peat: Effects of Temperature and Heterotrophic Bacteria. Chemical Geology, 536: 119448. https://doi.org/10.1016/j.chemgeo.2019.119448
      Selvam, B. P., Laudon, H., Guillemette, F., et al., 2016. Influence of Soil Frost on the Character and Degradability of Dissolved Organic Carbon in Boreal Forest Soils. Journal of Geophysical Research: Biogeosciences, 121(3): 829-840. https://doi.org/10.1002/2015jg003228
      Stedmon, C. A., Seredyńska-Sobecka, B., Boe-Hansen, R., et al., 2011. A Potential Approach for Monitoring Drinking Water Quality from Groundwater Systems Using Organic Matter Fluorescence as an Early Warning for Contamination Events. Water Research, 45(18): 6030-6038. https://doi.org/10.1016/j.watres.2011.08.066
      Striegl, R. G., Aiken, G. R., Dornblaser, M. M., et al., 2005. A Decrease in Discharge-Normalized DOC Export by the Yukon River during Summer through Autumn. Geophysical Research Letters, 32(21): 413. https://doi.org/10.1029/2005gl024413
      Sun, Y. Q., Clauson, K., Zhou, M., et al., 2021. Hillslopes in Headwaters of Qinghai-Tibetan Plateau as Hotspots for Subsurface Dissolved Organic Carbon Processing during Permafrost Thaw. Journal of Geophysical Research: Biogeosciences, 126(5): e2020JG006222. https://doi.org/10.1029/2020jg006222
      Tarnocai, C., Canadell, J. G., Schuur, E. A. G., et al., 2009. Soil Organic Carbon Pools in the Northern Circumpolar Permafrost Region. Global Biogeochemical Cycles, 23(2): GB2023. https://doi.org/10.1029/2008GB003327
      Vonk, J. E., Tank, S. E., Mann, P. J., et al., 2015. Biodegradability of Dissolved Organic Carbon in Permafrost Soils and Aquatic Systems: A Meta-Analysis. Biogeosciences, 12(23): 6915-6930. https://doi.org/10.5194/bg-12-6915-2015
      Wang, Q. F., Jin, H. J., Wu, Q. B., et al., 2022. The Vertical Distribution of Soil Organic Carbon and Nitrogen in a Permafrost-Affected Wetland on the Qinghai-Tibet Plateau: Implications for Holocene Development and Environmental Change. Permafrost and Periglacial Processes, 33(3): 286-297. https://doi.org/10.1002/ppp.2146
      Wang, S. R., Zhuang, Q. L., Lähteenoja, O., et al., 2018. Potential Shift from a Carbon Sink to a Source in Amazonian Peatlands under a Changing Climate. Proceedings of the National Academy of Sciences of the United States of America, 115(49): 12407-12412. https://doi.org/10.1073/pnas.1801317115
      Wickland, K. P., Waldrop, M. P., Aiken, G. R., et al., 2018. Dissolved Organic Carbon and Nitrogen Release from Boreal Holocene Permafrost and Seasonally Frozen Soils of Alaska. Environmental Research Letters, 13(6): 065011. https://doi.org/10.1088/1748-9326/aac4ad
      Yamashita, Y., Maie, N., Brice, H., et al., 2010. Optical Characterization of Dissolved Organic Matter in Tropical Rivers of the Guayana Shield, Venezuela. Journal of Geophysical Research: Biogeosciences, 115(G1): G00F10. https://doi.org/10.1029/2009JG000987
      Yamashita, Y., Panton, A., Mahaffey, C., et al., 2011. Assessing the Spatial and Temporal Variability of Dissolved Organic Matter in Liverpool Bay Using Excitation-Emission Matrix Fluorescence and Parallel Factor Analysis. Ocean Dynamics, 61(5): 569-579. https://doi.org/10.1007/s10236-010-0365-4
      Yang, Y., Cheng, S. L., Fang, H. J., et al., 2023. Linkages between the Molecular Composition of Dissolved Organic Matter and Soil Microbial Community in a Boreal Forest during Freeze-Thaw Cycles. Frontiers in Microbiology, 13: 1012512. https://doi.org/10.3389/fmicb.2022.1012512
      Zhang, H., Gallego-Sala, A. V., Amesbury, M. J., et al., 2018. Inconsistent Response of Arctic Permafrost Peatland Carbon Accumulation to Warm Climate Phases. Global Biogeochemical Cycles 32(10): 1605-1620. https://doi.org/10.1029/2018gb005980
      Zhang, S. X., Sun, Z. Y., Pan, Y. X., et al., 2023. Using Temperature to Trace River-Groundwater Interactions in Alpineregions: A Case Study in the Upper Reaches of the Heihe River. Bulletin of Geological Science and Technology, 42(4): 95-106 (in Chinese with English abstract).
      Zhao, L. S., Sun, Z. Y., Ma, R., et al., 2024. Characteristics and Controlling Factors of Dissolved Carbon Export from an Alpine Catchment Underlain by Seasonal Frost in the Qilian Mountains, Qinghai-Xizang Plateau. Earth Science, 49(3): 1177-1188 (in Chinese with English abstract).
      丁永建, 叶佰生, 刘时银, 2000. 祁连山中部地区40 a来气候变化及其对径流的影响. 冰川冻土, 22(3): 193-199.
      张淑勋, 孙自永, 潘艳喜, 等, 2023. 基于温度示踪的高寒地区河水与地下水相互作用: 以黑河上游流域为例. 地质科技通报, 42(4): 95-106.
      赵鲁松, 孙自永, 马瑞, 等, 2024. 青藏高原季节冻土山区河流溶解性碳输出的特征及控制因素. 地球科学, 49(3): 1177-1188. doi: 10.3799/dqkx.2022.204
    • 加载中
    图(8) / 表(3)
    计量
    • 文章访问数:  577
    • HTML全文浏览量:  110
    • PDF下载量:  44
    • 被引次数: 0
    出版历程
    • 收稿日期:  2024-04-22
    • 刊出日期:  2024-11-25

    目录

      /

      返回文章
      返回