Characteristics of Dissolved Organic Matter in Alpine Mountain Soils and Its Effect on Riverine Dissolved Organic Matter Export
-
摘要: 冻土区土壤中存储有大量有机碳.目前对高寒山区多年冻土区和季节冻土区土壤有机质特征及其差异研究较少,对土壤中溶解性有机质(dissolved organic matter,DOM)特征及其对河水中DOM输出的影响认识尚不明确.为了解高寒山区土壤中溶解性有机质的分布规律、成分特征及对水体中DOM输出特征的控制作用,本研究采集青藏高原东北部葫芦沟小流域中多年冻土区和季节冻土区不同深度(< 1 m)土壤样品,对土壤中总有机碳(soil organic carbon,SOC)和溶解性有机碳(dissolved organic carbon,DOC)含量、DOM的光谱特征、DOC的生物可降解性(biodegradable dissolved organic matter,BDOC)进行分析,并将其与不同水体中DOM特征的季节性变化进行对比.研究发现:多年冻土区与季节冻土区土壤在DOC的生物可降解性及微生物活动方面存在明显差异;多年冻土区土壤中SOC含量较高,但DOC含量较低,DOM的腐殖化程度和芳香性低于季节冻土区;季节冻土区的土壤中BDOC占比高于多年冻土.研究表明:高寒山区土壤水文特性对土壤有机质含量和特征的显著影响,其中土壤含水率是重要影响因素;多年冻土区浅层土壤DOM对河水DOC浓度和成分变化起决定性作用;相比之下,季节冻土区土壤对河水DOC浓度和成分变化直接影响较小,水文条件影响着水体中DOM的输出特征.本研究成果对高寒山区冻土退化条件下的碳循环研究具有指导意义.Abstract: The soil layers in permafrost regions store a large amount of organic carbon. However, the understanding of the influence of dissolved organic matter (DOM) in permafrost and seasonally frozen ground on the DOM characteristics of riverine output is still unclear due to limited existing studies on the characteristics of soil organic matter in permafrost and seasonally frozen ground and their differences in alpine catchments. To understand the distributions, and controlling mechanisms of dissolved organic matter in the soil of alpine catchments on aquatic DOM, this study collected soil samples of permafrost and seasonally frozen ground in the Hulugou catchment in the northeastern part of the Tibetan plateau and analyzed the soil organic carbon (SOC), dissolved organic carbon (DOC) content, spectral characteristics of DOM, and its biodegradable dissolved organic carbon (BDOC). Then, DOM characteristics in soils were compared with those from different water bodies at different seasons. The study reveals significant differences between permafrost and seasonally frozen soils in terms of dissolved organic carbon (DOC) biodegradability and microbial activity. Permafrost soils have higher soil organic carbon (SOC) but lower DOC, and their dissolved organic matter (DOM) is less humified and aromatic compared to seasonally frozen soils, where biodegradable DOC (BDOC) proportions are higher. The findings indicate that soil hydrological traits in cold mountain areas significantly influence soil organic matter, highlighting soil moisture as a critical factor. In permafrost areas, shallow soil DOM crucially affects river water DOC concentrations and composition. In contrast, seasonal permafrost zone soils have less direct influence on changes in stream DOC concentration and composition, with hydrological conditions shaping DOM's output features in water bodies. This research is crucial for understanding carbon cycling under permafrost degradation in cold mountain regions, condensed into a comprehensive summary within the specified word limit.
-
表 1 土壤采样点位信息
Table 1. Information on soil sampling locations
采样点编号 海拔高度(m) 采样深度(cm) 冻土类型 S01 2 990 80 季节冻土 S02 3 140 80 S03 3 340 80 多年冻土 S04 3 465 100 S05 3 540 100 S06 3 655 40 S07 3 950 60 表 2 光谱特征参数的计算公式和指示意义
Table 2. Basic information of spectral characteristic parameters
光谱参数 计算公式 参数意义 SUVA254 $ \frac{\mathrm{a}\mathrm{b}{\mathrm{s}}_{254\times 100}}{{C}_{\mathrm{D}\mathrm{O}\mathrm{C}}} $ 表征DOM中芳香性化合物含量,与DOM芳香化程度呈正相关关系. SR S275-295/S350-400 反映有机质来源与类型,包括分子量大小、光漂白活性. HIX λEx=254 nm
ΣEm435-480/ΣEm300-445表征DOM的腐殖化程度,值越高表示DOM腐殖化程度越高. FI λEx=370 nm
Em470 nm/Em520 nm表征芳香族有机质和非芳香族有机质对DOM荧光强度的相对贡献. BIX λEx=310 nm
Em380 nm/Em430 nm反映DOM的生物内源和外源输入的相对贡献程度. 注:abs254代表紫外可见光谱在波长为254 nm时的值;S275-295代表紫外可见光谱在波长为275~295 nm波长范围的光谱斜率系数;Ex代表激发波长;Em代表发射波长. 表 3 葫芦沟流域35个土壤样品浸提液中DOM的6个主要荧光组分的特征
Table 3. Characteristics of the six major fluorescent components of DOM in the leachate of 35 soil samples of Hulugou catchment
组分 激发波长最大值(nm) 发射波长最大值(nm) 对应有机质特征 可能来源 C1 250(300) 420 来自陆地水生环境的微生物衍生的腐殖质样组分 陆生植物和土壤有机质;微生物过程 C2 < 250(300) 425 陆地来源腐殖质 陆生植物和土壤有机质 C3 220 550 陆地来源的腐殖质样组分或芳香族共轭大分子物质 陆生植物和土壤有机质 C4 265(370) 465 来自陆地水生环境腐殖质样组分 陆地植物和土壤有机质 C5 265(450) 495 陆地来源腐殖质;较大分子量和较强的芳香性 陆生植物和土壤有机质 C6 275 345 类蛋白质 色氨酸样;微生物来源 -
Bianchi, T. S., Wysocki, L. A., Schreiner, K. M., et al., 2011. Sources of Terrestrial Organic Carbon in the Mississippi Plume Region: Evidence for the Importance of Coastal Marsh Inputs. Aquatic Geochemistry, 17(4): 431-456. https://doi.org/10.1007/s10498-010-9110-3 Campbell, T. P., Ulrich, D. E. M., Toyoda, J., et al., 2022. Microbial Communities Influence Soil Dissolved Organic Carbon Concentration by Altering Metabolite Composition. Frontiers in Microbiology, 12: 799014. https://doi.org/10.3389/fmicb.2021.799014 Chaudhary, N., Miller, P. A., Smith, B., 2017. Modelling Past, Present and Future Peatland Carbon Accumulation across the Pan-Arctic Region. Biogeosciences, 14(18): 4023-4044. https://doi.org/10.5194/bg-14-4023-2017 Chen, M. L., Hur, J., Gu, J. D., et al., 2023. Microbial Degradation of Various Types of Dissolved Organic Matter in Aquatic Ecosystems and Its Influencing Factors. Science China Earth Sciences, 66(2): 169-189. https://doi.org/10.1007/s11430-021-9996-1 Chen, R. S., Song, Y. X., Kang, E. S., et al., 2014. A Cryosphere-Hydrology Observation System in a Small Alpine Watershed in the Qilian Mountains of China and Its Meteorological Gradient. Arctic, Antarctic, and Alpine Research, 46(2): 505-523. https://doi.org/10.1657/1938-4246-46.2.505 Cheng, G. D., Jin, H. J., 2013. Permafrost and Groundwater on the Qinghai-Tibet Plateau and in Northeast China. Hydrogeology Journal, 21(1): 5-23. https://doi.org/10.1007/s10040-012-0927-2 Ding, Y. J., Ye, B. S., Liu, S. Y., 2000. Impact of Climate Change on the Alpine Streamflow during the Past 40 a in the Middle Part of the Qilian Mountains, Northwestern China. Journal of Glaciolgy and Geocryology, 22(3): 193-199 (in Chinese with English abstract). Garten, C. T., Hanson, P. J., 2006. Measured Forest Soil C Stocks and Estimated Turnover Times along an Elevation Gradient. Geoderma, 136(1-2): 342-352. https://doi.org/10.1016/j.geoderma.2006.03.049 Hu, Y. L., Ma, R., Sun, Z. Y., et al., 2023. Groundwater Plays an Important Role in Controlling Riverine Dissolved Organic Matter in a Cold Alpine Catchment, the Qinghai-Tibet Plateau. Water Resources Research, 59(2): e2022WR032426. https://doi.org/10.1029/2022WR032426 Lim, A. G., Loiko, S. V., Pokrovsky, O. S., 2022. Sizable Pool of Labile Organic Carbon in Peat and Mineral Soils of Permafrost Peatlands, Western Siberia. Geoderma, 409: 115601. https://doi.org/10.1016/j.geoderma.2021.115601 Liu, F. T., Kou, D., Abbott, B. W., et al., 2019. Disentangling the Effects of Climate, Vegetation, Soil and Related Substrate Properties on the Biodegradability of Permafrost-Derived Dissolved Organic Carbon. Journal of Geophysical Research: Biogeosciences, 124(11): 3377-3389. https://doi.org/10.1029/2018jg004944 Logozzo, L. A., Hosen, J. D., McArthur, J., et al., 2023. Distinct Drivers of Two Size Fractions of Operationally Dissolved Iron in a Temperate River. Limnology and Oceanography, 68(6): 1185-1200. https://doi.org/10.1002/lno.12338 Ma, R., Sun, Z. Y., Chang, Q. X., et al., 2021. Control of the Interactions between Stream and Groundwater by Permafrost and Seasonal Frost in an Alpine Catchment, Northeastern Tibet Plateau, China. Journal of Geophysical Research: Atmospheres, 126(5): e2020jd033689. https://doi.org/10.1029/2020jd033689 Marcé, R., Verdura, L., Leung, N., 2021. Dissolved Organic Matter Spectroscopy Reveals a Hot Spot of Organic Matter Changes at the River-Reservoir Boundary. Aquatic Sciences, 83(4): 67. https://doi.org/10.1007/s00027-021-00823-6 Marshall, L. P., Kaufman, D. S., Anderson, R. S., et al., 2023. Organic‐Matter Accumulation and Degradation in Holocene Permafrost Deposits along a Central Alaska Hillslope. Journal of Geophysical Research: Biogeosciences, 128(9): 007290. https://doi.org/10.1007/s00027-021-00823-6 Moyano, F. E., Manzoni, S., Chenu, C., 2013. Responses of Soil Heterotrophic Respiration to Moisture Availability: An Exploration of Processes and Models. Soil Biology and Biochemistry, 59: 72-85. https://doi.org/10.1016/j.soilbio.2013.01.002 Mu, C., Zhang, T., Wu, Q., et al., 2015. Editorial: Organic Carbon Pools in Permafrost Regions on the Qinghai-Xizang (Tibetan) Plateau. Cryosphere, 9(2): 479-486. doi: 10.5194/tc-9-479-2015 Mu, C. C., Zhang, T. J., Wu, Q. B., et al., 2014. Stable Carbon Isotopes as Indicators for Permafrost Carbon Vulnerability in Upper Reach of Heihe River Basin, Northwestern China. Quaternary International, 321: 71-77. https://doi.org/10.1016/j.quaint.2013.12.001 Mu, C. C., Zhang, T. J., Zhao, Q., et al., 2016. Soil Organic Carbon Stabilization by Iron in Permafrost Regions of the Qinghai-Tibet Plateau. Geophysical Research Letters, 43(19): 10286-10294. https://doi.org/10.1002/2016gl070071 Murphy, K. R., Stedmon, C. A., Graeber, D., et al., 2013. Fluorescence Spectroscopy and Multi-Way Techniques. PARAFAC. Analytical Methods, 5(23): 6557-6566. https://doi.org/10.1039/C3AY41160E Obu, J., 2021. How Much of the Earth's Surface is Underlain by Permafrost? Journal of Geophysical Research: Earth Surface, 126(5): e2021JF006123. https://doi.org/10.1029/2021jf006123 Olefeldt, D., Persson, A., Turetsky, M. R., 2014. Influence of the Permafrost Boundary on Dissolved Organic Matter Characteristics in Rivers within the Boreal and Taiga Plains of Western Canada. Environmental Research Letters, 9(3): 035005. https://doi.org/10.1088/1748-9326/9/3/035005 Öquist, M. G., Bishop, K., Grelle, A., et al., 2014. The Full Annual Carbon Balance of Boreal Forests is Highly Sensitive to Precipitation. Environmental Science & Technology Letters, 1(7): 315-319. https://doi.org/10.1021/ez500169j Osburn, C. L., Mikan, M. P., Etheridge, J. R., et al., 2015. Seasonal Variation in the Quality of Dissolved and Particulate Organic Matter Exchanged between a Salt Marsh and Its Adjacent Estuary. Journal of Geophysical Research: Biogeosciences, 120(7): 1430-1449. https://doi.org/10.1002/2014jg002897 Payandi-Rolland, D., Shirokova, L. S., Nakhle, P., et al., 2020. Aerobic Release and Biodegradation of Dissolved Organic Matter from Frozen Peat: Effects of Temperature and Heterotrophic Bacteria. Chemical Geology, 536: 119448. https://doi.org/10.1016/j.chemgeo.2019.119448 Selvam, B. P., Laudon, H., Guillemette, F., et al., 2016. Influence of Soil Frost on the Character and Degradability of Dissolved Organic Carbon in Boreal Forest Soils. Journal of Geophysical Research: Biogeosciences, 121(3): 829-840. https://doi.org/10.1002/2015jg003228 Stedmon, C. A., Seredyńska-Sobecka, B., Boe-Hansen, R., et al., 2011. A Potential Approach for Monitoring Drinking Water Quality from Groundwater Systems Using Organic Matter Fluorescence as an Early Warning for Contamination Events. Water Research, 45(18): 6030-6038. https://doi.org/10.1016/j.watres.2011.08.066 Striegl, R. G., Aiken, G. R., Dornblaser, M. M., et al., 2005. A Decrease in Discharge-Normalized DOC Export by the Yukon River during Summer through Autumn. Geophysical Research Letters, 32(21): 413. https://doi.org/10.1029/2005gl024413 Sun, Y. Q., Clauson, K., Zhou, M., et al., 2021. Hillslopes in Headwaters of Qinghai-Tibetan Plateau as Hotspots for Subsurface Dissolved Organic Carbon Processing during Permafrost Thaw. Journal of Geophysical Research: Biogeosciences, 126(5): e2020JG006222. https://doi.org/10.1029/2020jg006222 Tarnocai, C., Canadell, J. G., Schuur, E. A. G., et al., 2009. Soil Organic Carbon Pools in the Northern Circumpolar Permafrost Region. Global Biogeochemical Cycles, 23(2): GB2023. https://doi.org/10.1029/2008GB003327 Vonk, J. E., Tank, S. E., Mann, P. J., et al., 2015. Biodegradability of Dissolved Organic Carbon in Permafrost Soils and Aquatic Systems: A Meta-Analysis. Biogeosciences, 12(23): 6915-6930. https://doi.org/10.5194/bg-12-6915-2015 Wang, Q. F., Jin, H. J., Wu, Q. B., et al., 2022. The Vertical Distribution of Soil Organic Carbon and Nitrogen in a Permafrost-Affected Wetland on the Qinghai-Tibet Plateau: Implications for Holocene Development and Environmental Change. Permafrost and Periglacial Processes, 33(3): 286-297. https://doi.org/10.1002/ppp.2146 Wang, S. R., Zhuang, Q. L., Lähteenoja, O., et al., 2018. Potential Shift from a Carbon Sink to a Source in Amazonian Peatlands under a Changing Climate. Proceedings of the National Academy of Sciences of the United States of America, 115(49): 12407-12412. https://doi.org/10.1073/pnas.1801317115 Wickland, K. P., Waldrop, M. P., Aiken, G. R., et al., 2018. Dissolved Organic Carbon and Nitrogen Release from Boreal Holocene Permafrost and Seasonally Frozen Soils of Alaska. Environmental Research Letters, 13(6): 065011. https://doi.org/10.1088/1748-9326/aac4ad Yamashita, Y., Maie, N., Brice, H., et al., 2010. Optical Characterization of Dissolved Organic Matter in Tropical Rivers of the Guayana Shield, Venezuela. Journal of Geophysical Research: Biogeosciences, 115(G1): G00F10. https://doi.org/10.1029/2009JG000987 Yamashita, Y., Panton, A., Mahaffey, C., et al., 2011. Assessing the Spatial and Temporal Variability of Dissolved Organic Matter in Liverpool Bay Using Excitation-Emission Matrix Fluorescence and Parallel Factor Analysis. Ocean Dynamics, 61(5): 569-579. https://doi.org/10.1007/s10236-010-0365-4 Yang, Y., Cheng, S. L., Fang, H. J., et al., 2023. Linkages between the Molecular Composition of Dissolved Organic Matter and Soil Microbial Community in a Boreal Forest during Freeze-Thaw Cycles. Frontiers in Microbiology, 13: 1012512. https://doi.org/10.3389/fmicb.2022.1012512 Zhang, H., Gallego-Sala, A. V., Amesbury, M. J., et al., 2018. Inconsistent Response of Arctic Permafrost Peatland Carbon Accumulation to Warm Climate Phases. Global Biogeochemical Cycles 32(10): 1605-1620. https://doi.org/10.1029/2018gb005980 Zhang, S. X., Sun, Z. Y., Pan, Y. X., et al., 2023. Using Temperature to Trace River-Groundwater Interactions in Alpineregions: A Case Study in the Upper Reaches of the Heihe River. Bulletin of Geological Science and Technology, 42(4): 95-106 (in Chinese with English abstract). Zhao, L. S., Sun, Z. Y., Ma, R., et al., 2024. Characteristics and Controlling Factors of Dissolved Carbon Export from an Alpine Catchment Underlain by Seasonal Frost in the Qilian Mountains, Qinghai-Xizang Plateau. Earth Science, 49(3): 1177-1188 (in Chinese with English abstract). 丁永建, 叶佰生, 刘时银, 2000. 祁连山中部地区40 a来气候变化及其对径流的影响. 冰川冻土, 22(3): 193-199. 张淑勋, 孙自永, 潘艳喜, 等, 2023. 基于温度示踪的高寒地区河水与地下水相互作用: 以黑河上游流域为例. 地质科技通报, 42(4): 95-106. 赵鲁松, 孙自永, 马瑞, 等, 2024. 青藏高原季节冻土山区河流溶解性碳输出的特征及控制因素. 地球科学, 49(3): 1177-1188. doi: 10.3799/dqkx.2022.204 -